X-Git-Url: https://www.ginac.de/ginac.git//ginac.git?p=ginac.git;a=blobdiff_plain;f=ginac%2Finifcns_nstdsums.cpp;h=5215dd8dba570c9d0379b0890b376651f432abd8;hp=3d1f8bcf45b37b721f090bfc962c4634ebe262dd;hb=8bf3668614986630b9a2825d4fde73a0c1f2c31c;hpb=da64e515abf7243bc4c84ca3631470931c4e6691 diff --git a/ginac/inifcns_nstdsums.cpp b/ginac/inifcns_nstdsums.cpp index 3d1f8bcf..5215dd8d 100644 --- a/ginac/inifcns_nstdsums.cpp +++ b/ginac/inifcns_nstdsums.cpp @@ -471,7 +471,13 @@ namespace { // performs the actual series summation for multiple polylogarithms cln::cl_N multipleLi_do_sum(const std::vector& s, const std::vector& x) { + // ensure all x <> 0. + for (std::vector::const_iterator it = x.begin(); it != x.end(); ++it) { + if ( *it == 0 ) return cln::cl_float(0, cln::float_format(Digits)); + } + const int j = s.size(); + bool flag_accidental_zero = false; std::vector t(j); cln::cl_F one = cln::cl_float(1, cln::float_format(Digits)); @@ -480,19 +486,13 @@ cln::cl_N multipleLi_do_sum(const std::vector& s, const std::vector=0; k--) { - t[k] = t[k] + t[k+1] * cln::expt(x[k], q+j-1-k) / cln::expt(cln::cl_I(q+j-1-k), s[k]); - } - // ... and do it again (to avoid premature drop out due to special arguments) q++; t[j-1] = t[j-1] + cln::expt(x[j-1], q) / cln::expt(cln::cl_I(q),s[j-1]) * one; for (int k=j-2; k>=0; k--) { + flag_accidental_zero = cln::zerop(t[k+1]); t[k] = t[k] + t[k+1] * cln::expt(x[k], q+j-1-k) / cln::expt(cln::cl_I(q+j-1-k), s[k]); } - } while (t[0] != t0buf); + } while ( (t[0] != t0buf) || flag_accidental_zero ); return t[0]; } @@ -1504,9 +1504,37 @@ static ex Li_eval(const ex& m_, const ex& x_) static ex Li_series(const ex& m, const ex& x, const relational& rel, int order, unsigned options) { - epvector seq; - seq.push_back(expair(Li(m, x), 0)); - return pseries(rel, seq); + if (is_a(m) || is_a(x)) { + // multiple polylog + epvector seq; + seq.push_back(expair(Li(m, x), 0)); + return pseries(rel, seq); + } + + // classical polylog + const ex x_pt = x.subs(rel, subs_options::no_pattern); + if (m.info(info_flags::numeric) && x_pt.info(info_flags::numeric)) { + // First special case: x==0 (derivatives have poles) + if (x_pt.is_zero()) { + const symbol s; + ex ser; + // manually construct the primitive expansion + for (int i=1; i=1 (branch cut) + throw std::runtime_error("Li_series: don't know how to do the series expansion at this point!"); + } + // all other cases should be safe, by now: + throw do_taylor(); // caught by function::series() } @@ -1988,9 +2016,48 @@ static ex S_eval(const ex& n, const ex& p, const ex& x) static ex S_series(const ex& n, const ex& p, const ex& x, const relational& rel, int order, unsigned options) { - epvector seq; - seq.push_back(expair(S(n, p, x), 0)); - return pseries(rel, seq); + if (p == _ex1) { + return Li(n+1, x).series(rel, order, options); + } + + const ex x_pt = x.subs(rel, subs_options::no_pattern); + if (n.info(info_flags::posint) && p.info(info_flags::posint) && x_pt.info(info_flags::numeric)) { + // First special case: x==0 (derivatives have poles) + if (x_pt.is_zero()) { + const symbol s; + ex ser; + // manually construct the primitive expansion + // subsum = Euler-Zagier-Sum is needed + // dirty hack (slow ...) calculation of subsum: + std::vector presubsum, subsum; + subsum.push_back(0); + for (int i=1; i=1 (branch cut) + throw std::runtime_error("S_series: don't know how to do the series expansion at this point!"); + } + // all other cases should be safe, by now: + throw do_taylor(); // caught by function::series() } @@ -2414,6 +2481,37 @@ ex trafo_H_1tx_prepend_zero(const ex& e, const ex& arg) } +// do integration [ReV] (49) +// put parameter 1 in front of existing parameters +ex trafo_H_prepend_one(const ex& e, const ex& arg) +{ + ex h; + std::string name; + if (is_a(e)) { + name = ex_to(e).get_name(); + } + if (name == "H") { + h = e; + } else { + for (int i=0; i(e.op(i))) { + std::string name = ex_to(e.op(i)).get_name(); + if (name == "H") { + h = e.op(i); + } + } + } + } + if (h != 0) { + lst newparameter = ex_to(h.op(0)); + newparameter.prepend(1); + return e.subs(h == H(newparameter, h.op(1)).hold()); + } else { + return e * H(lst(1),1-arg).hold(); + } +} + + // do integration [ReV] (55) // put parameter -1 in front of existing parameters ex trafo_H_1tx_prepend_minusone(const ex& e, const ex& arg) @@ -2509,6 +2607,109 @@ ex trafo_H_1mxt1px_prepend_one(const ex& e, const ex& arg) } +// do x -> 1-x transformation +struct map_trafo_H_1mx : public map_function +{ + ex operator()(const ex& e) + { + if (is_a(e) || is_a(e)) { + return e.map(*this); + } + + if (is_a(e)) { + std::string name = ex_to(e).get_name(); + if (name == "H") { + + lst parameter = ex_to(e.op(0)); + ex arg = e.op(1); + + // special cases if all parameters are either 0, 1 or -1 + bool allthesame = true; + if (parameter.op(0) == 0) { + for (int i=1; i0; i--) { + newparameter.append(0); + } + return pow(-1, parameter.nops()) * H(newparameter, 1-arg).hold(); + } + } else if (parameter.op(0) == -1) { + throw std::runtime_error("map_trafo_H_1mx: cannot handle weights equal -1!"); + } else { + for (int i=1; i0; i--) { + newparameter.append(1); + } + return pow(-1, parameter.nops()) * H(newparameter, 1-arg).hold(); + } + } + + lst newparameter = parameter; + newparameter.remove_first(); + + if (parameter.op(0) == 0) { + + // leading zero + ex res = convert_H_to_zeta(parameter); + //ex res = convert_from_RV(parameter, 1).subs(H(wild(1),wild(2))==zeta(wild(1))); + map_trafo_H_1mx recursion; + ex buffer = recursion(H(newparameter, arg).hold()); + if (is_a(buffer)) { + for (int i=0; i 1/x transformation struct map_trafo_H_1overx : public map_function { @@ -2822,6 +3023,7 @@ static ex H_evalf(const ex& x1, const ex& x2) return filter(H(x1, xtemp).hold()).subs(xtemp==x2).evalf(); } // ... and expand parameter notation + bool has_minus_one = false; lst m; for (lst::const_iterator it = morg.begin(); it != morg.end(); it++) { if (*it > 1) { @@ -2829,19 +3031,18 @@ static ex H_evalf(const ex& x1, const ex& x2) m.append(0); } m.append(1); - } else if (*it < -1) { + } else if (*it <= -1) { for (ex count=*it+1; count < 0; count++) { m.append(0); } m.append(-1); + has_minus_one = true; } else { m.append(*it); } } - // since the transformations produce a lot of terms, they are only efficient for - // argument near one. - // no transformation needed -> do summation + // do summation if (cln::abs(x) < 0.95) { lst m_lst; lst s_lst; @@ -2871,6 +3072,7 @@ static ex H_evalf(const ex& x1, const ex& x2) } } + symbol xtemp("xtemp"); ex res = 1; // ensure that the realpart of the argument is positive @@ -2884,14 +3086,8 @@ static ex H_evalf(const ex& x1, const ex& x2) } } - // choose transformations - symbol xtemp("xtemp"); - if (cln::abs(x-1) < 1.4142) { - // x -> (1-x)/(1+x) - map_trafo_H_1mxt1px trafo; - res *= trafo(H(m, xtemp)); - } else { - // x -> 1/x + // x -> 1/x + if (cln::abs(x) >= 2.0) { map_trafo_H_1overx trafo; res *= trafo(H(m, xtemp)); if (cln::imagpart(x) <= 0) { @@ -2899,17 +3095,25 @@ static ex H_evalf(const ex& x1, const ex& x2) } else { res = res.subs(H_polesign == I*Pi); } + return res.subs(xtemp == numeric(x)).evalf(); + } + + // check transformations for 0.95 <= |x| < 2.0 + + // |(1-x)/(1+x)| < 0.9 -> circular area with center=9,53+0i and radius=9.47 + if (cln::abs(x-9.53) <= 9.47) { + // x -> (1-x)/(1+x) + map_trafo_H_1mxt1px trafo; + res *= trafo(H(m, xtemp)); + } else { + // x -> 1-x + if (has_minus_one) { + map_trafo_H_convert_to_Li filter; + return filter(H(m, numeric(x)).hold()).evalf(); + } + map_trafo_H_1mx trafo; + res *= trafo(H(m, xtemp)); } - - // simplify result -// TODO -// map_trafo_H_convert converter; -// res = converter(res).expand(); -// lst ll; -// res.find(H(wild(1),wild(2)), ll); -// res.find(zeta(wild(1)), ll); -// res.find(zeta(wild(1),wild(2)), ll); -// res = res.collect(ll); return res.subs(xtemp == numeric(x)).evalf(); } @@ -3537,18 +3741,18 @@ static ex zeta1_eval(const ex& m) if (y.is_zero()) { return _ex_1_2; } - if (y.is_equal(_num1)) { + if (y.is_equal(*_num1_p)) { return zeta(m).hold(); } if (y.info(info_flags::posint)) { if (y.info(info_flags::odd)) { return zeta(m).hold(); } else { - return abs(bernoulli(y)) * pow(Pi, y) * pow(_num2, y-_num1) / factorial(y); + return abs(bernoulli(y)) * pow(Pi, y) * pow(*_num2_p, y-(*_num1_p)) / factorial(y); } } else { if (y.info(info_flags::odd)) { - return -bernoulli(_num1-y) / (_num1-y); + return -bernoulli((*_num1_p)-y) / ((*_num1_p)-y); } else { return _ex0; }