X-Git-Url: https://www.ginac.de/ginac.git//ginac.git?p=ginac.git;a=blobdiff_plain;f=ginac%2Finifcns_gamma.cpp;h=8ed385150e8175d15df02931ecd5c8fd8796c5cc;hp=dbe8840ac66245e702e26ac4cafb02b0e3a4c46c;hb=a6bb52b00bf185271774e7d56215923700a3ec40;hpb=4afb5bbe2c0b0a60928120a042997ba7d89e8f5c diff --git a/ginac/inifcns_gamma.cpp b/ginac/inifcns_gamma.cpp index dbe8840a..8ed38515 100644 --- a/ginac/inifcns_gamma.cpp +++ b/ginac/inifcns_gamma.cpp @@ -86,7 +86,9 @@ static ex gamma_eval(const ex & x) return coefficient*power(Pi,_ex1_2()); } } + // gamma_evalf should be called here once it becomes available } + return gamma(x).hold(); } @@ -99,7 +101,7 @@ static ex gamma_diff(const ex & x, unsigned diff_param) return psi(x)*gamma(x); } -static ex gamma_series(const ex & x, const symbol & s, const ex & point, int order) +static ex gamma_series(const ex & x, const symbol & s, const ex & pt, int order) { // method: // Taylor series where there is no pole falls back to psi function @@ -108,17 +110,17 @@ static ex gamma_series(const ex & x, const symbol & s, const ex & point, int ord // gamma(x) == gamma(x+1) / x // from which follows // series(gamma(x),x,-m,order) == - // series(gamma(x+m+1)/(x*(x+1)...*(x+m)),x,-m,order+1); - ex xpoint = x.subs(s==point); - if (!xpoint.info(info_flags::integer) || xpoint.info(info_flags::positive)) + // series(gamma(x+m+1)/(x*(x+1)*...*(x+m)),x,-m,order+1); + const ex x_pt = x.subs(s==pt); + if (!x_pt.info(info_flags::integer) || x_pt.info(info_flags::positive)) throw do_taylor(); // caught by function::series() // if we got here we have to care for a simple pole at -m: - numeric m = -ex_to_numeric(xpoint); + numeric m = -ex_to_numeric(x_pt); ex ser_numer = gamma(x+m+_ex1()); ex ser_denom = _ex1(); for (numeric p; p<=m; ++p) ser_denom *= x+p; - return (ser_numer/ser_denom).series(s, point, order+1); + return (ser_numer/ser_denom).series(s, pt, order+1); } REGISTER_FUNCTION(gamma, gamma_eval, gamma_evalf, gamma_diff, gamma_series); @@ -141,11 +143,11 @@ static ex beta_evalf(const ex & x, const ex & y) static ex beta_eval(const ex & x, const ex & y) { if (x.info(info_flags::numeric) && y.info(info_flags::numeric)) { - numeric nx(ex_to_numeric(x)); - numeric ny(ex_to_numeric(y)); // treat all problematic x and y that may not be passed into gamma, // because they would throw there although beta(x,y) is well-defined // using the formula beta(x,y) == (-1)^y * beta(1-x-y, y) + numeric nx(ex_to_numeric(x)); + numeric ny(ex_to_numeric(y)); if (nx.is_real() && nx.is_integer() && ny.is_real() && ny.is_integer()) { if (nx.is_negative()) { @@ -188,29 +190,36 @@ static ex beta_diff(const ex & x, const ex & y, unsigned diff_param) return retval; } -static ex beta_series(const ex & x, const ex & y, const symbol & s, const ex & point, int order) +static ex beta_series(const ex & x, const ex & y, const symbol & s, const ex & pt, int order) { // method: - // Taylor series where there is no pole falls back to beta function - // evaluation. - // On a pole at -m use the recurrence relation - // gamma(x) == gamma(x+1) / x - // from which follows - // series(gamma(x),x,-m,order) == - // series(gamma(x+m+1)/(x*(x+1)...*(x+m)),x,-m,order+1); - ex xpoint = x.subs(s==point); - ex ypoint = y.subs(s==point); - if ((!xpoint.info(info_flags::integer) || xpoint.info(info_flags::positive)) && - (!ypoint.info(info_flags::integer) || ypoint.info(info_flags::positive))) + // Taylor series where there is no pole of one of the gamma functions + // falls back to beta function evaluation. Otherwise, fall back to + // gamma series directly. + // FIXME: this could need some testing, maybe it's wrong in some cases? + const ex x_pt = x.subs(s==pt); + const ex y_pt = y.subs(s==pt); + ex x_ser, y_ser, xy_ser; + if ((!x_pt.info(info_flags::integer) || x_pt.info(info_flags::positive)) && + (!y_pt.info(info_flags::integer) || y_pt.info(info_flags::positive))) throw do_taylor(); // caught by function::series() - // if we got here we have to care for a simple pole at -m: - throw (std::domain_error("beta_series(): please code me")); - /*numeric m = -ex_to_numeric(xpoint); - *ex ser_numer = gamma(x+m+_ex1()); - *ex ser_denom = _ex1(); - *for (numeric p; p<=m; ++p) - * ser_denom *= x+p; - *return (ser_numer/ser_denom).series(s, point, order+1);*/ + // trap the case where x is on a pole directly: + if (x.info(info_flags::integer) && !x.info(info_flags::positive)) + x_ser = gamma(x+s).series(s,pt,order); + else + x_ser = gamma(x).series(s,pt,order); + // trap the case where y is on a pole directly: + if (y.info(info_flags::integer) && !y.info(info_flags::positive)) + y_ser = gamma(y+s).series(s,pt,order); + else + y_ser = gamma(y).series(s,pt,order); + // trap the case where y is on a pole directly: + if ((x+y).info(info_flags::integer) && !(x+y).info(info_flags::positive)) + xy_ser = gamma(y+x+s).series(s,pt,order); + else + xy_ser = gamma(y+x).series(s,pt,order); + // compose the result: + return (x_ser*y_ser/xy_ser).series(s,pt,order); } REGISTER_FUNCTION(beta, beta_eval, beta_evalf, beta_diff, beta_series); @@ -233,28 +242,43 @@ static ex psi1_evalf(const ex & x) static ex psi1_eval(const ex & x) { if (x.info(info_flags::numeric)) { - if (x.info(info_flags::integer) && !x.info(info_flags::positive)) - throw (std::domain_error("psi_eval(): simple pole")); - if (x.info(info_flags::positive)) { - // psi(n) -> 1 + 1/2 +...+ 1/(n-1) - EulerGamma - if (x.info(info_flags::integer)) { + numeric nx = ex_to_numeric(x); + if (nx.is_integer()) { + // integer case + if (nx.is_positive()) { + // psi(n) -> 1 + 1/2 +...+ 1/(n-1) - EulerGamma numeric rat(0); - for (numeric i(ex_to_numeric(x)-_num1()); i.is_positive(); --i) + for (numeric i(nx+_num_1()); i.is_positive(); --i) rat += i.inverse(); return rat-EulerGamma; + } else { + // for non-positive integers there is a pole: + throw (std::domain_error("psi_eval(): simple pole")); } - // psi((2m+1)/2) -> 2/(2m+1) + 2/2m +...+ 2/1 - EulerGamma - 2log(2) - if ((_ex2()*x).info(info_flags::integer)) { + } + if ((_num2()*nx).is_integer()) { + // half integer case + if (nx.is_positive()) { + // psi((2m+1)/2) -> 2/(2m+1) + 2/2m +...+ 2/1 - EulerGamma - 2log(2) numeric rat(0); - for (numeric i((ex_to_numeric(x)-_num1())*_num2()); i.is_positive(); i-=_num2()) - rat += _num2()*i.inverse(); - return rat-EulerGamma-_ex2()*log(_ex2()); - } - if (x.compare(_ex1())==1) { - // should call numeric, since >1 + for (numeric i((nx+_num_1())*_num2()); i.is_positive(); i-=_num2()) + rat += _num2()*i.inverse(); + return rat-EulerGamma-_ex2()*log(_ex2()); + } else { + // use the recurrence relation + // psi(-m-1/2) == psi(-m-1/2+1) - 1 / (-m-1/2) + // to relate psi(-m-1/2) to psi(1/2): + // psi(-m-1/2) == psi(1/2) + r + // where r == ((-1/2)^(-1) + ... + (-m-1/2)^(-1)) + numeric recur(0); + for (numeric p(nx); p<0; ++p) + recur -= pow(p, _num_1()); + return recur+psi(_ex1_2()); } } + // psi1_evalf should be called here once it becomes available } + return psi(x).hold(); } @@ -266,7 +290,7 @@ static ex psi1_diff(const ex & x, unsigned diff_param) return psi(_ex1(), x); } -static ex psi1_series(const ex & x, const symbol & s, const ex & point, int order) +static ex psi1_series(const ex & x, const symbol & s, const ex & pt, int order) { // method: // Taylor series where there is no pole falls back to polygamma function @@ -276,15 +300,15 @@ static ex psi1_series(const ex & x, const symbol & s, const ex & point, int orde // from which follows // series(psi(x),x,-m,order) == // series(psi(x+m+1) - 1/x - 1/(x+1) - 1/(x+m)),x,-m,order); - ex xpoint = x.subs(s==point); - if (!xpoint.info(info_flags::integer) || xpoint.info(info_flags::positive)) + const ex x_pt = x.subs(s==pt); + if (!x_pt.info(info_flags::integer) || x_pt.info(info_flags::positive)) throw do_taylor(); // caught by function::series() // if we got here we have to care for a simple pole at -m: - numeric m = -ex_to_numeric(xpoint); + numeric m = -ex_to_numeric(x_pt); ex recur; for (numeric p; p<=m; ++p) recur += power(x+p,_ex_1()); - return (psi(x+m+_ex1())-recur).series(s, point, order); + return (psi(x+m+_ex1())-recur).series(s, pt, order); } const unsigned function_index_psi1 = function::register_new("psi", psi1_eval, psi1_evalf, psi1_diff, psi1_series); @@ -318,24 +342,53 @@ static ex psi2_eval(const ex & n, const ex & x) numeric nn = ex_to_numeric(n); numeric nx = ex_to_numeric(x); if (nx.is_integer()) { + // integer case if (nx.is_equal(_num1())) - return pow(_num_1(), nn+_num1())*factorial(nn)*zeta(ex(nn+_num1())); + // use psi(n,1) == (-)^(n+1) * n! * zeta(n+1) + return pow(_num_1(),nn+_num1())*factorial(nn)*zeta(ex(nn+_num1())); if (nx.is_positive()) { // use the recurrence relation // psi(n,m) == psi(n,m+1) - (-)^n * n! / m^(n+1) // to relate psi(n,m) to psi(n,1): // psi(n,m) == psi(n,1) + r // where r == (-)^n * n! * (1^(-n-1) + ... + (m-1)^(-n-1)) - numeric recur; + numeric recur(0); for (numeric p(1); p