X-Git-Url: https://www.ginac.de/ginac.git//ginac.git?p=ginac.git;a=blobdiff_plain;f=ginac%2Finifcns_gamma.cpp;h=3f7fc677adda5d3725418a02be8351bc72f4001c;hp=ecec37a603dbc208f12aeacb790a2daac18b6309;hb=955cb185a85535ab328ffedbfccdc508ce80fa91;hpb=b5e7e31e6d33bbae4d635c27637c7e114b043735 diff --git a/ginac/inifcns_gamma.cpp b/ginac/inifcns_gamma.cpp index ecec37a6..3f7fc677 100644 --- a/ginac/inifcns_gamma.cpp +++ b/ginac/inifcns_gamma.cpp @@ -63,7 +63,7 @@ static ex gamma_eval(ex const & x) if (x.info(info_flags::integer)) { // gamma(n+1) -> n! for postitive n if (x.info(info_flags::posint)) { - return factorial(ex_to_numeric(x).sub(numONE())); + return factorial(ex_to_numeric(x).sub(_num1())); } else { throw (std::domain_error("gamma_eval(): simple pole")); } @@ -73,16 +73,16 @@ static ex gamma_eval(ex const & x) // trap positive x==(n+1/2) // gamma(n+1/2) -> Pi^(1/2)*(1*3*..*(2*n-1))/(2^n) if ((x*2).info(info_flags::posint)) { - numeric n = ex_to_numeric(x).sub(numHALF()); - numeric coefficient = doublefactorial(n.mul(numTWO()).sub(numONE())); - coefficient = coefficient.div(numTWO().power(n)); - return coefficient * pow(Pi,numHALF()); + numeric n = ex_to_numeric(x).sub(_num1_2()); + numeric coefficient = doublefactorial(n.mul(_num2()).sub(_num1())); + coefficient = coefficient.div(_num2().power(n)); + return coefficient * pow(Pi,_num1_2()); } else { // trap negative x==(-n+1/2) // gamma(-n+1/2) -> Pi^(1/2)*(-2)^n/(1*3*..*(2*n-1)) - numeric n = abs(ex_to_numeric(x).sub(numHALF())); + numeric n = abs(ex_to_numeric(x).sub(_num1_2())); numeric coefficient = numeric(-2).power(n); - coefficient = coefficient.div(doublefactorial(n.mul(numTWO()).sub(numONE())));; + coefficient = coefficient.div(doublefactorial(n.mul(_num2()).sub(_num1())));; return coefficient*sqrt(Pi); } } @@ -94,24 +94,28 @@ static ex gamma_diff(ex const & x, unsigned diff_param) { GINAC_ASSERT(diff_param==0); - return psi(x)*gamma(x); // diff(log(gamma(x)),x)==psi(x) + // d/dx log(gamma(x)) -> psi(x) + // d/dx gamma(x) -> psi(x)*gamma(x) + return psi(x)*gamma(x); } static ex gamma_series(ex const & x, symbol const & s, ex const & point, int order) { // method: - // Taylor series where there is no pole falls back to psi functions. - // On a pole at -n use the identity - // series(GAMMA(x),x=-n,order) == - // series(GAMMA(x+n+1)/(x*(x+1)...*(x+n)),x=-n,order+1); + // Taylor series where there is no pole falls back to psi function evaluation. + // On a pole at -m use the recurrence relation + // gamma(x) == gamma(x+1) / x + // from which follows + // series(gamma(x),x,-m,order) == + // series(gamma(x+m+1)/(x*(x+1)...*(x+m)),x,-m,order+1); ex xpoint = x.subs(s==point); if (!xpoint.info(info_flags::integer) || xpoint.info(info_flags::positive)) - throw do_taylor(); - // if we got here we have to care for a simple pole at -n: - numeric n = -ex_to_numeric(xpoint); - ex ser_numer = gamma(x+n+exONE()); - ex ser_denom = exONE(); - for (numeric p; p<=n; ++p) + throw do_taylor(); // caught by function::series() + // if we got here we have to care for a simple pole at -m: + numeric m = -ex_to_numeric(xpoint); + ex ser_numer = gamma(x+m+_ex1()); + ex ser_denom = _ex1(); + for (numeric p; p<=m; ++p) ser_denom *= x+p; return (ser_numer/ser_denom).series(s, point, order+1); } @@ -144,13 +148,13 @@ static ex beta_eval(ex const & x, ex const & y) ny.is_real() && ny.is_integer()) { if (nx.is_negative()) { if (nx<=-ny) - return numMINUSONE().power(ny)*beta(1-x-y, y); + return _num_1().power(ny)*beta(1-x-y, y); else throw (std::domain_error("beta_eval(): simple pole")); } if (ny.is_negative()) { if (ny<=-nx) - return numMINUSONE().power(nx)*beta(1-y-x, x); + return _num_1().power(nx)*beta(1-y-x, x); else throw (std::domain_error("beta_eval(): simple pole")); } @@ -160,7 +164,7 @@ static ex beta_eval(ex const & x, ex const & y) if ((nx+ny).is_real() && (nx+ny).is_integer() && !(nx+ny).is_positive()) - return exZERO(); + return _ex0(); return gamma(x)*gamma(y)/gamma(x+y); } return beta(x,y).hold(); @@ -171,9 +175,11 @@ static ex beta_diff(ex const & x, ex const & y, unsigned diff_param) GINAC_ASSERT(diff_param<2); ex retval; - if (diff_param==0) // d/dx beta(x,y) + // d/dx beta(x,y) -> (psi(x)-psi(x+y)) * beta(x,y) + if (diff_param==0) retval = (psi(x)-psi(x+y))*beta(x,y); - if (diff_param==1) // d/dy beta(x,y) + // d/dy beta(x,y) -> (psi(y)-psi(x+y)) * beta(x,y) + if (diff_param==1) retval = (psi(y)-psi(x+y))*beta(x,y); return retval; } @@ -181,7 +187,7 @@ static ex beta_diff(ex const & x, ex const & y, unsigned diff_param) REGISTER_FUNCTION(beta, beta_eval, beta_evalf, beta_diff, NULL); ////////// -// Psi-function (aka polygamma-function) +// Psi-function (aka digamma-function) ////////// static ex psi1_evalf(ex const & x) @@ -193,7 +199,7 @@ static ex psi1_evalf(ex const & x) return psi(ex_to_numeric(x)); } -/** Evaluation of polygamma-function psi(x). +/** Evaluation of digamma-function psi(x). * Somebody ought to provide some good numerical evaluation some day... */ static ex psi1_eval(ex const & x) { @@ -204,18 +210,18 @@ static ex psi1_eval(ex const & x) // psi(n) -> 1 + 1/2 +...+ 1/(n-1) - EulerGamma if (x.info(info_flags::integer)) { numeric rat(0); - for (numeric i(ex_to_numeric(x)-numONE()); i.is_positive(); --i) + for (numeric i(ex_to_numeric(x)-_num1()); i.is_positive(); --i) rat += i.inverse(); return rat-EulerGamma; } // psi((2m+1)/2) -> 2/(2m+1) + 2/2m +...+ 2/1 - EulerGamma - 2log(2) - if ((exTWO()*x).info(info_flags::integer)) { + if ((_ex2()*x).info(info_flags::integer)) { numeric rat(0); - for (numeric i((ex_to_numeric(x)-numONE())*numTWO()); i.is_positive(); i-=numTWO()) - rat += numTWO()*i.inverse(); - return rat-EulerGamma-exTWO()*log(exTWO()); + for (numeric i((ex_to_numeric(x)-_num1())*_num2()); i.is_positive(); i-=_num2()) + rat += _num2()*i.inverse(); + return rat-EulerGamma-_ex2()*log(_ex2()); } - if (x.compare(exONE())==1) { + if (x.compare(_ex1())==1) { // should call numeric, since >1 } } @@ -227,10 +233,32 @@ static ex psi1_diff(ex const & x, unsigned diff_param) { GINAC_ASSERT(diff_param==0); - return psi(exONE(), x); + // d/dx psi(x) -> psi(1,x) + return psi(_ex1(), x); } -const unsigned function_index_psi1 = function::register_new("psi", psi1_eval, psi1_evalf, psi1_diff, NULL); +static ex psi1_series(ex const & x, symbol const & s, ex const & point, int order) +{ + // method: + // Taylor series where there is no pole falls back to polygamma function + // evaluation. + // On a pole at -m use the recurrence relation + // psi(x) == psi(x+1) - 1/z + // from which follows + // series(psi(x),x,-m,order) == + // series(psi(x+m+1) - 1/x - 1/(x+1) - 1/(x+m)),x,-m,order); + ex xpoint = x.subs(s==point); + if (!xpoint.info(info_flags::integer) || xpoint.info(info_flags::positive)) + throw do_taylor(); // caught by function::series() + // if we got here we have to care for a simple pole at -m: + numeric m = -ex_to_numeric(xpoint); + ex recur; + for (numeric p; p<=m; ++p) + recur += power(x+p,_ex_1()); + return (psi(x+m+_ex1())-recur).series(s, point, order); +} + +const unsigned function_index_psi1 = function::register_new("psi", psi1_eval, psi1_evalf, psi1_diff, psi1_series); ////////// // Psi-functions (aka polygamma-functions) psi(0,x)==psi(x) @@ -254,14 +282,14 @@ static ex psi2_eval(ex const & n, ex const & x) if (n.is_zero()) return psi(x); // psi(-1,x) -> log(gamma(x)) - if (n.is_equal(exMINUSONE())) + if (n.is_equal(_ex_1())) return log(gamma(x)); if (n.info(info_flags::numeric) && n.info(info_flags::posint) && x.info(info_flags::numeric)) { numeric nn = ex_to_numeric(n); numeric nx = ex_to_numeric(x); - if (x.is_equal(exONE())) - return numMINUSONE().power(nn+numONE())*factorial(nn)*zeta(ex(nn+numONE())); + if (x.is_equal(_ex1())) + return _num_1().power(nn+_num1())*factorial(nn)*zeta(ex(nn+_num1())); } return psi(n, x).hold(); } @@ -274,11 +302,34 @@ static ex psi2_diff(ex const & n, ex const & x, unsigned diff_param) // d/dn psi(n,x) throw(std::logic_error("cannot diff psi(n,x) with respect to n")); } - // d/dx psi(n,x) + // d/dx psi(n,x) -> psi(n+1,x) return psi(n+1, x); } -const unsigned function_index_psi2 = function::register_new("psi", psi2_eval, psi2_evalf, psi2_diff, NULL); +static ex psi2_series(ex const & n, ex const & x, symbol const & s, ex const & point, int order) +{ + // method: + // Taylor series where there is no pole falls back to polygamma function + // evaluation. + // On a pole at -m use the recurrence relation + // psi(n,x) == psi(n,x+1) - (-)^n * n! / z^(n+1) + // from which follows + // series(psi(x),x,-m,order) == + // series(psi(x+m+1) - (-1)^n * n! + // * ((x)^(-n-1) + (x+1)^(-n-1) + (x+m)^(-n-1))),x,-m,order); + ex xpoint = x.subs(s==point); + if (!xpoint.info(info_flags::integer) || xpoint.info(info_flags::positive)) + throw do_taylor(); // caught by function::series() + // if we got here we have to care for a pole of order n+1 at -m: + numeric m = -ex_to_numeric(xpoint); + ex recur; + for (numeric p; p<=m; ++p) + recur += power(x+p,-n+_ex_1()); + recur *= factorial(n)*power(_ex_1(),n); + return (psi(n, x+m+_ex1())-recur).series(s, point, order); +} + +const unsigned function_index_psi2 = function::register_new("psi", psi2_eval, psi2_evalf, psi2_diff, psi2_series); #ifndef NO_GINAC_NAMESPACE } // namespace GiNaC