X-Git-Url: https://www.ginac.de/ginac.git//ginac.git?p=ginac.git;a=blobdiff_plain;f=ginac%2Finifcns_gamma.cpp;h=3f3bd561bc4a54c85dd1f1a9eb912216eb6ff782;hp=9c1da65157426b2cb960fd29f7f491c2012b57f6;hb=0c718e0dda0d2de1224f39ec5e3c39720e0abfc2;hpb=6bff4f32e5cbe9f7e51837f392a2d0bf0d5b721d diff --git a/ginac/inifcns_gamma.cpp b/ginac/inifcns_gamma.cpp index 9c1da651..3f3bd561 100644 --- a/ginac/inifcns_gamma.cpp +++ b/ginac/inifcns_gamma.cpp @@ -4,7 +4,7 @@ * some related stuff. */ /* - * GiNaC Copyright (C) 1999-2001 Johannes Gutenberg University Mainz, Germany + * GiNaC Copyright (C) 1999-2003 Johannes Gutenberg University Mainz, Germany * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by @@ -64,7 +64,7 @@ static ex lgamma_eval(const ex & x) if (x.info(info_flags::integer)) { // lgamma(n) -> log((n-1)!) for postitive n if (x.info(info_flags::posint)) - return log(factorial(x + _ex_1())); + return log(factorial(x + _ex_1)); else throw (pole_error("lgamma_eval(): logarithmic pole",0)); } @@ -105,7 +105,7 @@ static ex lgamma_series(const ex & arg, ex recur; for (numeric p = 0; p<=m; ++p) recur += log(arg+p); - return (lgamma(arg+m+_ex1())-recur).series(rel, order, options); + return (lgamma(arg+m+_ex1)-recur).series(rel, order, options); } @@ -141,11 +141,11 @@ static ex tgamma_eval(const ex & x) { if (x.info(info_flags::numeric)) { // trap integer arguments: - const numeric two_x = _num2()*ex_to(x); + const numeric two_x = _num2*ex_to(x); if (two_x.is_even()) { // tgamma(n) -> (n-1)! for postitive n if (two_x.is_positive()) { - return factorial(ex_to(x).sub(_num1())); + return factorial(ex_to(x).sub(_num1)); } else { throw (pole_error("tgamma_eval(): simple pole",1)); } @@ -155,13 +155,13 @@ static ex tgamma_eval(const ex & x) // trap positive x==(n+1/2) // tgamma(n+1/2) -> Pi^(1/2)*(1*3*..*(2*n-1))/(2^n) if (two_x.is_positive()) { - const numeric n = ex_to(x).sub(_num1_2()); - return (doublefactorial(n.mul(_num2()).sub(_num1())).div(pow(_num2(),n))) * pow(Pi,_ex1_2()); + const numeric n = ex_to(x).sub(_num1_2); + return (doublefactorial(n.mul(_num2).sub(_num1)).div(pow(_num2,n))) * sqrt(Pi); } else { // trap negative x==(-n+1/2) // tgamma(-n+1/2) -> Pi^(1/2)*(-2)^n/(1*3*..*(2*n-1)) - const numeric n = abs(ex_to(x).sub(_num1_2())); - return (pow(_num_2(), n).div(doublefactorial(n.mul(_num2()).sub(_num1()))))*power(Pi,_ex1_2()); + const numeric n = abs(ex_to(x).sub(_num1_2)); + return (pow(_num_2, n).div(doublefactorial(n.mul(_num2).sub(_num1))))*sqrt(Pi); } } // tgamma_evalf should be called here once it becomes available @@ -198,10 +198,10 @@ static ex tgamma_series(const ex & arg, throw do_taylor(); // caught by function::series() // if we got here we have to care for a simple pole at -m: const numeric m = -ex_to(arg_pt); - ex ser_denom = _ex1(); + ex ser_denom = _ex1; for (numeric p; p<=m; ++p) ser_denom *= arg+p; - return (tgamma(arg+m+_ex1())/ser_denom).series(rel, order+1, options); + return (tgamma(arg+m+_ex1)/ser_denom).series(rel, order+1, options); } @@ -234,19 +234,19 @@ static ex beta_eval(const ex & x, const ex & y) // treat all problematic x and y that may not be passed into tgamma, // because they would throw there although beta(x,y) is well-defined // using the formula beta(x,y) == (-1)^y * beta(1-x-y, y) - const numeric nx = ex_to(x); - const numeric ny = ex_to(y); + const numeric &nx = ex_to(x); + const numeric &ny = ex_to(y); if (nx.is_real() && nx.is_integer() && ny.is_real() && ny.is_integer()) { if (nx.is_negative()) { if (nx<=-ny) - return pow(_num_1(), ny)*beta(1-x-y, y); + return pow(_num_1, ny)*beta(1-x-y, y); else throw (pole_error("beta_eval(): simple pole",1)); } if (ny.is_negative()) { if (ny<=-nx) - return pow(_num_1(), nx)*beta(1-y-x, x); + return pow(_num_1, nx)*beta(1-y-x, x); else throw (pole_error("beta_eval(): simple pole",1)); } @@ -256,7 +256,7 @@ static ex beta_eval(const ex & x, const ex & y) if ((nx+ny).is_real() && (nx+ny).is_integer() && !(nx+ny).is_positive()) - return _ex0(); + return _ex0; // beta_evalf should be called here once it becomes available } @@ -291,25 +291,25 @@ static ex beta_series(const ex & arg1, // tgamma series directly. const ex arg1_pt = arg1.subs(rel); const ex arg2_pt = arg2.subs(rel); - GINAC_ASSERT(is_ex_exactly_of_type(rel.lhs(),symbol)); - const symbol *s = static_cast(rel.lhs().bp); + GINAC_ASSERT(is_a(rel.lhs())); + const symbol &s = ex_to(rel.lhs()); ex arg1_ser, arg2_ser, arg1arg2_ser; if ((!arg1_pt.info(info_flags::integer) || arg1_pt.info(info_flags::positive)) && (!arg2_pt.info(info_flags::integer) || arg2_pt.info(info_flags::positive))) throw do_taylor(); // caught by function::series() // trap the case where arg1 is on a pole: if (arg1.info(info_flags::integer) && !arg1.info(info_flags::positive)) - arg1_ser = tgamma(arg1+*s).series(rel, order, options); + arg1_ser = tgamma(arg1+s).series(rel, order, options); else arg1_ser = tgamma(arg1).series(rel,order); // trap the case where arg2 is on a pole: if (arg2.info(info_flags::integer) && !arg2.info(info_flags::positive)) - arg2_ser = tgamma(arg2+*s).series(rel, order, options); + arg2_ser = tgamma(arg2+s).series(rel, order, options); else arg2_ser = tgamma(arg2).series(rel,order); // trap the case where arg1+arg2 is on a pole: if ((arg1+arg2).info(info_flags::integer) && !(arg1+arg2).info(info_flags::positive)) - arg1arg2_ser = tgamma(arg2+arg1+*s).series(rel, order, options); + arg1arg2_ser = tgamma(arg2+arg1+s).series(rel, order, options); else arg1arg2_ser = tgamma(arg2+arg1).series(rel,order); // compose the result (expanding all the terms): @@ -345,13 +345,13 @@ static ex psi1_evalf(const ex & x) static ex psi1_eval(const ex & x) { if (x.info(info_flags::numeric)) { - const numeric nx = ex_to(x); + const numeric &nx = ex_to(x); if (nx.is_integer()) { // integer case if (nx.is_positive()) { // psi(n) -> 1 + 1/2 +...+ 1/(n-1) - Euler numeric rat = 0; - for (numeric i(nx+_num_1()); i>0; --i) + for (numeric i(nx+_num_1); i>0; --i) rat += i.inverse(); return rat-Euler; } else { @@ -359,14 +359,14 @@ static ex psi1_eval(const ex & x) throw (pole_error("psi_eval(): simple pole",1)); } } - if ((_num2()*nx).is_integer()) { + if ((_num2*nx).is_integer()) { // half integer case if (nx.is_positive()) { // psi((2m+1)/2) -> 2/(2m+1) + 2/2m +...+ 2/1 - Euler - 2log(2) numeric rat = 0; - for (numeric i = (nx+_num_1())*_num2(); i>0; i-=_num2()) - rat += _num2()*i.inverse(); - return rat-Euler-_ex2()*log(_ex2()); + for (numeric i = (nx+_num_1)*_num2; i>0; i-=_num2) + rat += _num2*i.inverse(); + return rat-Euler-_ex2*log(_ex2); } else { // use the recurrence relation // psi(-m-1/2) == psi(-m-1/2+1) - 1 / (-m-1/2) @@ -375,8 +375,8 @@ static ex psi1_eval(const ex & x) // where r == ((-1/2)^(-1) + ... + (-m-1/2)^(-1)) numeric recur = 0; for (numeric p = nx; p<0; ++p) - recur -= pow(p, _num_1()); - return recur+psi(_ex1_2()); + recur -= pow(p, _num_1); + return recur+psi(_ex1_2); } } // psi1_evalf should be called here once it becomes available @@ -390,7 +390,7 @@ static ex psi1_deriv(const ex & x, unsigned deriv_param) GINAC_ASSERT(deriv_param==0); // d/dx psi(x) -> psi(1,x) - return psi(_ex1(), x); + return psi(_ex1, x); } static ex psi1_series(const ex & arg, @@ -413,8 +413,8 @@ static ex psi1_series(const ex & arg, const numeric m = -ex_to(arg_pt); ex recur; for (numeric p; p<=m; ++p) - recur += power(arg+p,_ex_1()); - return (psi(arg+m+_ex1())-recur).series(rel, order, options); + recur += power(arg+p,_ex_1); + return (psi(arg+m+_ex1)-recur).series(rel, order, options); } const unsigned function_index_psi1 = @@ -449,17 +449,17 @@ static ex psi2_eval(const ex & n, const ex & x) if (n.is_zero()) return psi(x); // psi(-1,x) -> log(tgamma(x)) - if (n.is_equal(_ex_1())) + if (n.is_equal(_ex_1)) return log(tgamma(x)); if (n.info(info_flags::numeric) && n.info(info_flags::posint) && x.info(info_flags::numeric)) { - const numeric nn = ex_to(n); - const numeric nx = ex_to(x); + const numeric &nn = ex_to(n); + const numeric &nx = ex_to(x); if (nx.is_integer()) { // integer case - if (nx.is_equal(_num1())) + if (nx.is_equal(_num1)) // use psi(n,1) == (-)^(n+1) * n! * zeta(n+1) - return pow(_num_1(),nn+_num1())*factorial(nn)*zeta(ex(nn+_num1())); + return pow(_num_1,nn+_num1)*factorial(nn)*zeta(ex(nn+_num1)); if (nx.is_positive()) { // use the recurrence relation // psi(n,m) == psi(n,m+1) - (-)^n * n! / m^(n+1) @@ -468,25 +468,25 @@ static ex psi2_eval(const ex & n, const ex & x) // where r == (-)^n * n! * (1^(-n-1) + ... + (m-1)^(-n-1)) numeric recur = 0; for (numeric p = 1; p psi(n+1,x) - return psi(n+_ex1(), x); + return psi(n+_ex1, x); } static ex psi2_series(const ex & n, @@ -540,9 +540,9 @@ static ex psi2_series(const ex & n, const numeric m = -ex_to(arg_pt); ex recur; for (numeric p; p<=m; ++p) - recur += power(arg+p,-n+_ex_1()); - recur *= factorial(n)*power(_ex_1(),n); - return (psi(n, arg+m+_ex1())-recur).series(rel, order, options); + recur += power(arg+p,-n+_ex_1); + recur *= factorial(n)*power(_ex_1,n); + return (psi(n, arg+m+_ex1)-recur).series(rel, order, options); } const unsigned function_index_psi2 =