X-Git-Url: https://www.ginac.de/ginac.git//ginac.git?p=ginac.git;a=blobdiff_plain;f=ginac%2Finifcns_gamma.cpp;fp=ginac%2Finifcns_gamma.cpp;h=baed308d366fba1a571e24989deca9f4c6c818a5;hp=4a1e3c3803dfecc9dd1d6034ec5e74f664afa952;hb=22abfbe8c78e339188096a5bf749a7c2d4f0a368;hpb=6dfb8aee92f97422e9c0e2b7aa4706ecf13cac84 diff --git a/ginac/inifcns_gamma.cpp b/ginac/inifcns_gamma.cpp index 4a1e3c38..baed308d 100644 --- a/ginac/inifcns_gamma.cpp +++ b/ginac/inifcns_gamma.cpp @@ -142,11 +142,11 @@ static ex tgamma_eval(const ex & x) { if (x.info(info_flags::numeric)) { // trap integer arguments: - const numeric two_x = _num2*ex_to(x); + const numeric two_x = (*_num2_p)*ex_to(x); if (two_x.is_even()) { // tgamma(n) -> (n-1)! for postitive n if (two_x.is_positive()) { - return factorial(ex_to(x).sub(_num1)); + return factorial(ex_to(x).sub(*_num1_p)); } else { throw (pole_error("tgamma_eval(): simple pole",1)); } @@ -156,13 +156,13 @@ static ex tgamma_eval(const ex & x) // trap positive x==(n+1/2) // tgamma(n+1/2) -> Pi^(1/2)*(1*3*..*(2*n-1))/(2^n) if (two_x.is_positive()) { - const numeric n = ex_to(x).sub(_num1_2); - return (doublefactorial(n.mul(_num2).sub(_num1)).div(pow(_num2,n))) * sqrt(Pi); + const numeric n = ex_to(x).sub(*_num1_2_p); + return (doublefactorial(n.mul(*_num2_p).sub(*_num1_p)).div(pow(*_num2_p,n))) * sqrt(Pi); } else { // trap negative x==(-n+1/2) // tgamma(-n+1/2) -> Pi^(1/2)*(-2)^n/(1*3*..*(2*n-1)) - const numeric n = abs(ex_to(x).sub(_num1_2)); - return (pow(_num_2, n).div(doublefactorial(n.mul(_num2).sub(_num1))))*sqrt(Pi); + const numeric n = abs(ex_to(x).sub(*_num1_2_p)); + return (pow(*_num_2_p, n).div(doublefactorial(n.mul(*_num2_p).sub(*_num1_p))))*sqrt(Pi); } } // tgamma_evalf should be called here once it becomes available @@ -245,13 +245,13 @@ static ex beta_eval(const ex & x, const ex & y) ny.is_real() && ny.is_integer()) { if (nx.is_negative()) { if (nx<=-ny) - return pow(_num_1, ny)*beta(1-x-y, y); + return pow(*_num_1_p, ny)*beta(1-x-y, y); else throw (pole_error("beta_eval(): simple pole",1)); } if (ny.is_negative()) { if (ny<=-nx) - return pow(_num_1, nx)*beta(1-y-x, x); + return pow(*_num_1_p, nx)*beta(1-y-x, x); else throw (pole_error("beta_eval(): simple pole",1)); } @@ -356,7 +356,7 @@ static ex psi1_eval(const ex & x) if (nx.is_positive()) { // psi(n) -> 1 + 1/2 +...+ 1/(n-1) - Euler numeric rat = 0; - for (numeric i(nx+_num_1); i>0; --i) + for (numeric i(nx+(*_num_1_p)); i>0; --i) rat += i.inverse(); return rat-Euler; } else { @@ -364,13 +364,13 @@ static ex psi1_eval(const ex & x) throw (pole_error("psi_eval(): simple pole",1)); } } - if ((_num2*nx).is_integer()) { + if (((*_num2_p)*nx).is_integer()) { // half integer case if (nx.is_positive()) { // psi((2m+1)/2) -> 2/(2m+1) + 2/2m +...+ 2/1 - Euler - 2log(2) numeric rat = 0; - for (numeric i = (nx+_num_1)*_num2; i>0; i-=_num2) - rat += _num2*i.inverse(); + for (numeric i = (nx+(*_num_1_p))*(*_num2_p); i>0; i-=(*_num2_p)) + rat += (*_num2_p)*i.inverse(); return rat-Euler-_ex2*log(_ex2); } else { // use the recurrence relation @@ -380,7 +380,7 @@ static ex psi1_eval(const ex & x) // where r == ((-1/2)^(-1) + ... + (-m-1/2)^(-1)) numeric recur = 0; for (numeric p = nx; p<0; ++p) - recur -= pow(p, _num_1); + recur -= pow(p, *_num_1_p); return recur+psi(_ex1_2); } } @@ -462,9 +462,9 @@ static ex psi2_eval(const ex & n, const ex & x) const numeric &nx = ex_to(x); if (nx.is_integer()) { // integer case - if (nx.is_equal(_num1)) + if (nx.is_equal(*_num1_p)) // use psi(n,1) == (-)^(n+1) * n! * zeta(n+1) - return pow(_num_1,nn+_num1)*factorial(nn)*zeta(ex(nn+_num1)); + return pow(*_num_1_p,nn+(*_num1_p))*factorial(nn)*zeta(ex(nn+(*_num1_p))); if (nx.is_positive()) { // use the recurrence relation // psi(n,m) == psi(n,m+1) - (-)^n * n! / m^(n+1) @@ -473,25 +473,25 @@ static ex psi2_eval(const ex & n, const ex & x) // where r == (-)^n * n! * (1^(-n-1) + ... + (m-1)^(-n-1)) numeric recur = 0; for (numeric p = 1; p