X-Git-Url: https://www.ginac.de/ginac.git//ginac.git?p=ginac.git;a=blobdiff_plain;f=ginac%2Finifcns.h;h=b8349d1bba898d93e292debc4aef6ecbc313639d;hp=cff2bb2484309200a3ff777665e1c5b6dbb90979;hb=9d92d4b442fc4c1a95685884be4ba0494cd02bbe;hpb=8d08b902f1bb734fe91b5aa29c66c59788464be7 diff --git a/ginac/inifcns.h b/ginac/inifcns.h index cff2bb24..b8349d1b 100644 --- a/ginac/inifcns.h +++ b/ginac/inifcns.h @@ -3,7 +3,7 @@ * Interface to GiNaC's initially known functions. */ /* - * GiNaC Copyright (C) 1999-2000 Johannes Gutenberg University Mainz, Germany + * GiNaC Copyright (C) 1999-2008 Johannes Gutenberg University Mainz, Germany * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by @@ -17,21 +17,38 @@ * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software - * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #ifndef __GINAC_INIFCNS_H__ #define __GINAC_INIFCNS_H__ +#include "numeric.h" #include "function.h" #include "ex.h" -#ifndef NO_NAMESPACE_GINAC namespace GiNaC { -#endif // ndef NO_NAMESPACE_GINAC +/** Complex conjugate. */ +DECLARE_FUNCTION_1P(conjugate_function) + +/** Real part. */ +DECLARE_FUNCTION_1P(real_part_function) + +/** Imaginary part. */ +DECLARE_FUNCTION_1P(imag_part_function) + /** Absolute value. */ DECLARE_FUNCTION_1P(abs) + +/** Step function. */ +DECLARE_FUNCTION_1P(step) + +/** Complex sign. */ +DECLARE_FUNCTION_1P(csgn) + +/** Eta function: log(a*b) == log(a) + log(b) + eta(a, b). */ +DECLARE_FUNCTION_2P(eta) /** Sine. */ DECLARE_FUNCTION_1P(sin) @@ -84,36 +101,82 @@ DECLARE_FUNCTION_1P(Li2) /** Trilogarithm. */ DECLARE_FUNCTION_1P(Li3) -// overloading at work: we cannot use the macros -/** Riemann's Zeta-function. */ -extern const unsigned function_index_zeta1; -inline function zeta(const ex & p1) { - return function(function_index_zeta1, p1); -} /** Derivatives of Riemann's Zeta-function. */ -extern const unsigned function_index_zeta2; -inline function zeta(const ex & p1, const ex & p2) { - return function(function_index_zeta2, p1, p2); +DECLARE_FUNCTION_2P(zetaderiv) + +// overloading at work: we cannot use the macros here +/** Multiple zeta value including Riemann's zeta-function. */ +class zeta1_SERIAL { public: static unsigned serial; }; +template +inline function zeta(const T1& p1) { + return function(zeta1_SERIAL::serial, ex(p1)); +} +/** Alternating Euler sum or colored MZV. */ +class zeta2_SERIAL { public: static unsigned serial; }; +template +inline function zeta(const T1& p1, const T2& p2) { + return function(zeta2_SERIAL::serial, ex(p1), ex(p2)); +} +class zeta_SERIAL; +template<> inline bool is_the_function(const ex& x) +{ + return is_the_function(x) || is_the_function(x); +} + +// overloading at work: we cannot use the macros here +/** Generalized multiple polylogarithm. */ +class G2_SERIAL { public: static unsigned serial; }; +template +inline function G(const T1& x, const T2& y) { + return function(G2_SERIAL::serial, ex(x), ex(y)); +} +/** Generalized multiple polylogarithm with explicit imaginary parts. */ +class G3_SERIAL { public: static unsigned serial; }; +template +inline function G(const T1& x, const T2& s, const T3& y) { + return function(G3_SERIAL::serial, ex(x), ex(s), ex(y)); +} +class G_SERIAL; +template<> inline bool is_the_function(const ex& x) +{ + return is_the_function(x) || is_the_function(x); } +/** Polylogarithm and multiple polylogarithm. */ +DECLARE_FUNCTION_2P(Li) + +/** Nielsen's generalized polylogarithm. */ +DECLARE_FUNCTION_3P(S) + +/** Harmonic polylogarithm. */ +DECLARE_FUNCTION_2P(H) + /** Gamma-function. */ -DECLARE_FUNCTION_1P(Gamma) +DECLARE_FUNCTION_1P(lgamma) +DECLARE_FUNCTION_1P(tgamma) /** Beta-function. */ -DECLARE_FUNCTION_2P(Beta) +DECLARE_FUNCTION_2P(beta) -// overloading at work: we cannot use the macros +// overloading at work: we cannot use the macros here /** Psi-function (aka digamma-function). */ -extern const unsigned function_index_psi1; -inline function psi(const ex & p1) { - return function(function_index_psi1, p1); +class psi1_SERIAL { public: static unsigned serial; }; +template +inline function psi(const T1 & p1) { + return function(psi1_SERIAL::serial, ex(p1)); } /** Derivatives of Psi-function (aka polygamma-functions). */ -extern const unsigned function_index_psi2; -inline function psi(const ex & p1, const ex & p2) { - return function(function_index_psi2, p1, p2); +class psi2_SERIAL { public: static unsigned serial; }; +template +inline function psi(const T1 & p1, const T2 & p2) { + return function(psi2_SERIAL::serial, ex(p1), ex(p2)); +} +class psi_SERIAL; +template<> inline bool is_the_function(const ex & x) +{ + return is_the_function(x) || is_the_function(x); } - + /** Factorial function. */ DECLARE_FUNCTION_1P(factorial) @@ -123,20 +186,30 @@ DECLARE_FUNCTION_2P(binomial) /** Order term function (for truncated power series). */ DECLARE_FUNCTION_1P(Order) -/** Inert partial differentiation operator. */ -DECLARE_FUNCTION_2P(Derivative) - -ex lsolve(const ex &eqns, const ex &symbols); - -ex ncpower(const ex &basis, unsigned exponent); +ex lsolve(const ex &eqns, const ex &symbols, unsigned options = solve_algo::automatic); +/** Find a real root of real-valued function f(x) numerically within a given + * interval. The function must change sign across interval. Uses Newton- + * Raphson method combined with bisection in order to guarantee convergence. + * + * @param f Function f(x) + * @param x Symbol f(x) + * @param x1 lower interval limit + * @param x2 upper interval limit + * @exception runtime_error (if interval is invalid). */ +const numeric fsolve(const ex& f, const symbol& x, const numeric& x1, const numeric& x2); + +/** Check whether a function is the Order (O(n)) function. */ inline bool is_order_function(const ex & e) { - return is_ex_the_function(e, Order); + return is_ex_the_function(e, Order); } -#ifndef NO_NAMESPACE_GINAC +/** Converts a given list containing parameters for H in Remiddi/Vermaseren notation into + * the corresponding GiNaC functions. + */ +ex convert_H_to_Li(const ex& parameterlst, const ex& arg); + } // namespace GiNaC -#endif // ndef NO_NAMESPACE_GINAC #endif // ndef __GINAC_INIFCNS_H__