X-Git-Url: https://www.ginac.de/ginac.git//ginac.git?p=ginac.git;a=blobdiff_plain;f=ginac%2Findexed.cpp;h=dcd6d9510d6d0ac688802373f30f7d93e0f07362;hp=6e36eb305fc157d4d109f3464ce19be919dc572d;hb=9f015041142625abf6645b3ea39c62b59a5f442c;hpb=24fe247f9ed16114a765a01c593fec5c4a2f591c;ds=sidebyside diff --git a/ginac/indexed.cpp b/ginac/indexed.cpp index 6e36eb30..dcd6d951 100644 --- a/ginac/indexed.cpp +++ b/ginac/indexed.cpp @@ -1,9 +1,9 @@ /** @file indexed.cpp * - * Implementation of GiNaC's index carrying objects. */ + * Implementation of GiNaC's indexed expressions. */ /* - * GiNaC Copyright (C) 1999 Johannes Gutenberg University Mainz, Germany + * GiNaC Copyright (C) 1999-2002 Johannes Gutenberg University Mainz, Germany * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by @@ -20,276 +20,976 @@ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ -#include +#include +#include #include "indexed.h" -#include "ex.h" #include "idx.h" -#include "debugmsg.h" +#include "add.h" +#include "mul.h" +#include "ncmul.h" +#include "power.h" +#include "relational.h" +#include "symmetry.h" +#include "lst.h" +#include "print.h" +#include "archive.h" +#include "utils.h" namespace GiNaC { +GINAC_IMPLEMENT_REGISTERED_CLASS(indexed, exprseq) + ////////// -// default constructor, destructor, copy constructor assignment operator and helpers +// default ctor, dtor, copy ctor, assignment operator and helpers ////////// -// public +indexed::indexed() : symtree(sy_none()) +{ + tinfo_key = TINFO_indexed; +} -indexed::indexed() +void indexed::copy(const indexed & other) { - debugmsg("indexed default constructor",LOGLEVEL_CONSTRUCT); - tinfo_key=TINFO_indexed; + inherited::copy(other); + symtree = other.symtree; } -indexed::~indexed() +DEFAULT_DESTROY(indexed) + +////////// +// other constructors +////////// + +indexed::indexed(const ex & b) : inherited(b), symtree(sy_none()) { - debugmsg("indexed destructor",LOGLEVEL_DESTRUCT); - destroy(0); + tinfo_key = TINFO_indexed; + validate(); } -indexed::indexed(indexed const & other) +indexed::indexed(const ex & b, const ex & i1) : inherited(b, i1), symtree(sy_none()) { - debugmsg("indexed copy constructor",LOGLEVEL_CONSTRUCT); - copy (other); + tinfo_key = TINFO_indexed; + validate(); } -indexed const & indexed::operator=(indexed const & other) +indexed::indexed(const ex & b, const ex & i1, const ex & i2) : inherited(b, i1, i2), symtree(sy_none()) { - debugmsg("indexed operator=",LOGLEVEL_ASSIGNMENT); - if (this != &other) { - destroy(1); - copy(other); - } - return *this; + tinfo_key = TINFO_indexed; + validate(); } -// protected +indexed::indexed(const ex & b, const ex & i1, const ex & i2, const ex & i3) : inherited(b, i1, i2, i3), symtree(sy_none()) +{ + tinfo_key = TINFO_indexed; + validate(); +} -void indexed::copy(indexed const & other) +indexed::indexed(const ex & b, const ex & i1, const ex & i2, const ex & i3, const ex & i4) : inherited(b, i1, i2, i3, i4), symtree(sy_none()) { - exprseq::copy(other); + tinfo_key = TINFO_indexed; + validate(); } -void indexed::destroy(bool call_parent) +indexed::indexed(const ex & b, const symmetry & symm, const ex & i1, const ex & i2) : inherited(b, i1, i2), symtree(symm) { - if (call_parent) { - exprseq::destroy(call_parent); - } + tinfo_key = TINFO_indexed; + validate(); +} + +indexed::indexed(const ex & b, const symmetry & symm, const ex & i1, const ex & i2, const ex & i3) : inherited(b, i1, i2, i3), symtree(symm) +{ + tinfo_key = TINFO_indexed; + validate(); +} + +indexed::indexed(const ex & b, const symmetry & symm, const ex & i1, const ex & i2, const ex & i3, const ex & i4) : inherited(b, i1, i2, i3, i4), symtree(symm) +{ + tinfo_key = TINFO_indexed; + validate(); +} + +indexed::indexed(const ex & b, const exvector & v) : inherited(b), symtree(sy_none()) +{ + seq.insert(seq.end(), v.begin(), v.end()); + tinfo_key = TINFO_indexed; + validate(); +} + +indexed::indexed(const ex & b, const symmetry & symm, const exvector & v) : inherited(b), symtree(symm) +{ + seq.insert(seq.end(), v.begin(), v.end()); + tinfo_key = TINFO_indexed; + validate(); +} + +indexed::indexed(const symmetry & symm, const exprseq & es) : inherited(es), symtree(symm) +{ + tinfo_key = TINFO_indexed; +} + +indexed::indexed(const symmetry & symm, const exvector & v, bool discardable) : inherited(v, discardable), symtree(symm) +{ + tinfo_key = TINFO_indexed; +} + +indexed::indexed(const symmetry & symm, exvector * vp) : inherited(vp), symtree(symm) +{ + tinfo_key = TINFO_indexed; } ////////// -// other constructors +// archiving +////////// + +indexed::indexed(const archive_node &n, const lst &sym_lst) : inherited(n, sym_lst) +{ + if (!n.find_ex("symmetry", symtree, sym_lst)) { + // GiNaC versions <= 0.9.0 had an unsigned "symmetry" property + unsigned symm = 0; + n.find_unsigned("symmetry", symm); + switch (symm) { + case 1: + symtree = sy_symm(); + break; + case 2: + symtree = sy_anti(); + break; + default: + symtree = sy_none(); + break; + } + const_cast(ex_to(symtree)).validate(seq.size() - 1); + } +} + +void indexed::archive(archive_node &n) const +{ + inherited::archive(n); + n.add_ex("symmetry", symtree); +} + +DEFAULT_UNARCHIVE(indexed) + +////////// +// functions overriding virtual functions from base classes ////////// -// public +void indexed::print(const print_context & c, unsigned level) const +{ + GINAC_ASSERT(seq.size() > 0); + + if (is_of_type(c, print_tree)) { + + c.s << std::string(level, ' ') << class_name() + << std::hex << ", hash=0x" << hashvalue << ", flags=0x" << flags << std::dec + << ", " << seq.size()-1 << " indices" + << ", symmetry=" << symtree << std::endl; + unsigned delta_indent = static_cast(c).delta_indent; + seq[0].print(c, level + delta_indent); + printindices(c, level + delta_indent); + + } else { + + bool is_tex = is_of_type(c, print_latex); + const ex & base = seq[0]; + bool need_parens = is_ex_exactly_of_type(base, add) || is_ex_exactly_of_type(base, mul) + || is_ex_exactly_of_type(base, ncmul) || is_ex_exactly_of_type(base, power) + || is_ex_of_type(base, indexed); + if (is_tex) + c.s << "{"; + if (need_parens) + c.s << "("; + base.print(c); + if (need_parens) + c.s << ")"; + if (is_tex) + c.s << "}"; + printindices(c, level); + } +} + +bool indexed::info(unsigned inf) const +{ + if (inf == info_flags::indexed) return true; + if (inf == info_flags::has_indices) return seq.size() > 1; + return inherited::info(inf); +} + +struct idx_is_not : public std::binary_function { + bool operator() (const ex & e, unsigned inf) const { + return !(ex_to(e).get_value().info(inf)); + } +}; + +bool indexed::all_index_values_are(unsigned inf) const +{ + // No indices? Then no property can be fulfilled + if (seq.size() < 2) + return false; + + // Check all indices + return find_if(seq.begin() + 1, seq.end(), bind2nd(idx_is_not(), inf)) == seq.end(); +} -indexed::indexed(ex const & i1) : exprseq(i1) +int indexed::compare_same_type(const basic & other) const { - debugmsg("indexed constructor from ex",LOGLEVEL_CONSTRUCT); - tinfo_key=TINFO_indexed; - GINAC_ASSERT(all_of_type_idx()); + GINAC_ASSERT(is_a(other)); + return inherited::compare_same_type(other); } -indexed::indexed(ex const & i1, ex const & i2) : exprseq(i1,i2) +ex indexed::eval(int level) const { - debugmsg("indexed constructor from ex,ex",LOGLEVEL_CONSTRUCT); - tinfo_key=TINFO_indexed; - GINAC_ASSERT(all_of_type_idx()); + // First evaluate children, then we will end up here again + if (level > 1) + return indexed(ex_to(symtree), evalchildren(level)); + + const ex &base = seq[0]; + + // If the base object is 0, the whole object is 0 + if (base.is_zero()) + return _ex0; + + // If the base object is a product, pull out the numeric factor + if (is_ex_exactly_of_type(base, mul) && is_ex_exactly_of_type(base.op(base.nops() - 1), numeric)) { + exvector v(seq); + ex f = ex_to(base.op(base.nops() - 1)); + v[0] = seq[0] / f; + return f * thisexprseq(v); + } + + // Canonicalize indices according to the symmetry properties + if (seq.size() > 2) { + exvector v = seq; + GINAC_ASSERT(is_exactly_a(symtree)); + int sig = canonicalize(v.begin() + 1, ex_to(symtree)); + if (sig != INT_MAX) { + // Something has changed while sorting indices, more evaluations later + if (sig == 0) + return _ex0; + return ex(sig) * thisexprseq(v); + } + } + + // Let the class of the base object perform additional evaluations + return ex_to(base).eval_indexed(*this); } -indexed::indexed(ex const & i1, ex const & i2, ex const & i3) - : exprseq(i1,i2,i3) +ex indexed::thisexprseq(const exvector & v) const { - debugmsg("indexed constructor from ex,ex,ex",LOGLEVEL_CONSTRUCT); - tinfo_key=TINFO_indexed; - GINAC_ASSERT(all_of_type_idx()); + return indexed(ex_to(symtree), v); } -indexed::indexed(exvector const & iv) : exprseq(iv) +ex indexed::thisexprseq(exvector * vp) const { - debugmsg("indexed constructor from exvector",LOGLEVEL_CONSTRUCT); - tinfo_key=TINFO_indexed; - GINAC_ASSERT(all_of_type_idx()); + return indexed(ex_to(symtree), vp); } -indexed::indexed(exvector * ivp) : exprseq(ivp) +ex indexed::expand(unsigned options) const { - debugmsg("indexed constructor from exvector *",LOGLEVEL_CONSTRUCT); - tinfo_key=TINFO_indexed; - GINAC_ASSERT(all_of_type_idx()); + GINAC_ASSERT(seq.size() > 0); + + if ((options & expand_options::expand_indexed) && is_ex_exactly_of_type(seq[0], add)) { + + // expand_indexed expands (a+b).i -> a.i + b.i + const ex & base = seq[0]; + ex sum = _ex0; + for (unsigned i=0; i 1) { + + exvector::const_iterator it=seq.begin() + 1, itend = seq.end(); + + if (is_of_type(c, print_latex)) { + + // TeX output: group by variance + bool first = true; + bool covariant = true; + + while (it != itend) { + bool cur_covariant = (is_ex_of_type(*it, varidx) ? ex_to(*it).is_covariant() : true); + if (first || cur_covariant != covariant) { // Variance changed + // The empty {} prevents indices from ending up on top of each other + if (!first) + c.s << "}{}"; + covariant = cur_covariant; + if (covariant) + c.s << "_{"; + else + c.s << "^{"; + } + it->print(c, level); + c.s << " "; + first = false; + it++; + } + c.s << "}"; + + } else { + + // Ordinary output + while (it != itend) { + it->print(c, level); + it++; + } + } + } } -void indexed::printraw(ostream & os) const +/** Check whether all indices are of class idx and validate the symmetry + * tree. This function is used internally to make sure that all constructed + * indexed objects really carry indices and not some other classes. */ +void indexed::validate(void) const { - debugmsg("indexed printraw",LOGLEVEL_PRINT); - os << "indexed(indices="; - printrawindices(os); - os << ",hash=" << hashvalue << ",flags=" << flags << ")"; + GINAC_ASSERT(seq.size() > 0); + exvector::const_iterator it = seq.begin() + 1, itend = seq.end(); + while (it != itend) { + if (!is_ex_of_type(*it, idx)) + throw(std::invalid_argument("indices of indexed object must be of type idx")); + it++; + } + + if (!symtree.is_zero()) { + if (!is_ex_exactly_of_type(symtree, symmetry)) + throw(std::invalid_argument("symmetry of indexed object must be of type symmetry")); + const_cast(ex_to(symtree)).validate(seq.size() - 1); + } } -void indexed::printtree(ostream & os, unsigned indent) const +/** Implementation of ex::diff() for an indexed object always returns 0. + * + * @see ex::diff */ +ex indexed::derivative(const symbol & s) const { - debugmsg("indexed printtree",LOGLEVEL_PRINT); - os << string(indent,' ') << "indexed: " << seq.size() << " indices"; - os << ",hash=" << hashvalue << ",flags=" << flags << endl; - printtreeindices(os,indent); + return _ex0; } -void indexed::print(ostream & os, unsigned upper_precedence) const +////////// +// global functions +////////// + +/** Check whether two sorted index vectors are consistent (i.e. equal). */ +static bool indices_consistent(const exvector & v1, const exvector & v2) { - debugmsg("indexed print",LOGLEVEL_PRINT); - os << "UNNAMEDINDEX"; - printindices(os); + // Number of indices must be the same + if (v1.size() != v2.size()) + return false; + + return equal(v1.begin(), v1.end(), v2.begin(), ex_is_equal()); } -void indexed::printcsrc(ostream & os, unsigned type, - unsigned upper_precedence) const +exvector indexed::get_indices(void) const { - debugmsg("indexed print csrc",LOGLEVEL_PRINT); - print(os,upper_precedence); + GINAC_ASSERT(seq.size() >= 1); + return exvector(seq.begin() + 1, seq.end()); } -bool indexed::info(unsigned inf) const +exvector indexed::get_dummy_indices(void) const { - if (inf==info_flags::indexed) return true; - if (inf==info_flags::has_indices) return seq.size()!=0; - return exprseq::info(inf); + exvector free_indices, dummy_indices; + find_free_and_dummy(seq.begin() + 1, seq.end(), free_indices, dummy_indices); + return dummy_indices; } -exvector indexed::get_indices(void) const +exvector indexed::get_dummy_indices(const indexed & other) const { - return seq; + exvector indices = get_free_indices(); + exvector other_indices = other.get_free_indices(); + indices.insert(indices.end(), other_indices.begin(), other_indices.end()); + exvector dummy_indices; + find_dummy_indices(indices, dummy_indices); + return dummy_indices; +} - /* - idxvector filtered_indices; - filtered_indices.reserve(indices.size()); - for (idxvector::const_iterator cit=indices.begin(); cit!=indices.end(); ++cit) { - if ((*cit).get_type()==t) { - filtered_indices.push_back(*cit); - } - } - return filtered_indices; - */ +bool indexed::has_dummy_index_for(const ex & i) const +{ + exvector::const_iterator it = seq.begin() + 1, itend = seq.end(); + while (it != itend) { + if (is_dummy_pair(*it, i)) + return true; + it++; + } + return false; } -// protected +exvector indexed::get_free_indices(void) const +{ + exvector free_indices, dummy_indices; + find_free_and_dummy(seq.begin() + 1, seq.end(), free_indices, dummy_indices); + return free_indices; +} -int indexed::compare_same_type(basic const & other) const +exvector add::get_free_indices(void) const { - GINAC_ASSERT(is_of_type(other,indexed)); - return exprseq::compare_same_type(other); + exvector free_indices; + for (unsigned i=0; i 0) { + if (find_if(global_dummy_indices.begin(), global_dummy_indices.end(), bind2nd(ex_is_equal(), *it)) == global_dummy_indices.end()) { + global_dummy_indices.push_back(*it); + global_size++; + remaining--; + } + it++; + } + + // If this is the first set of local indices, do nothing + if (old_global_size == 0) + return e; + } + GINAC_ASSERT(local_size <= global_size); + + // Construct lists of index symbols + exlist local_syms, global_syms; + for (unsigned i=0; i(local_uniq), ex_is_less()); + set_difference(global_syms.begin(), global_syms.end(), local_syms.begin(), local_syms.end(), std::back_insert_iterator(global_uniq), ex_is_less()); + + // Replace remaining non-common local index symbols by global ones + if (local_uniq.empty()) + return e; + else { + while (global_uniq.size() > local_uniq.size()) + global_uniq.pop_back(); + return e.subs(lst(local_uniq), lst(global_uniq)); + } } -ex indexed::thisexprseq(exvector * vp) const +/** Given a set of indices, extract those of class varidx. */ +static void find_variant_indices(const exvector & v, exvector & variant_indices) { - return indexed(vp); + exvector::const_iterator it1, itend; + for (it1 = v.begin(), itend = v.end(); it1 != itend; ++it1) { + if (is_exactly_a(*it1)) + variant_indices.push_back(*it1); + } } -////////// -// virtual functions which can be overridden by derived classes -////////// +/** Raise/lower dummy indices in a single indexed objects to canonicalize their + * variance. + * + * @param e Object to work on + * @param variant_dummy_indices The set of indices that might need repositioning (will be changed by this function) + * @param moved_indices The set of indices that have been repositioned (will be changed by this function) + * @return true if 'e' was changed */ +bool reposition_dummy_indices(ex & e, exvector & variant_dummy_indices, exvector & moved_indices) +{ + bool something_changed = false; + + // If a dummy index is encountered for the first time in the + // product, pull it up, otherwise, pull it down + exvector::const_iterator it2, it2start, it2end; + for (it2start = ex_to(e).seq.begin(), it2end = ex_to(e).seq.end(), it2 = it2start + 1; it2 != it2end; ++it2) { + if (!is_exactly_a(*it2)) + continue; + + exvector::iterator vit, vitend; + for (vit = variant_dummy_indices.begin(), vitend = variant_dummy_indices.end(); vit != vitend; ++vit) { + if (it2->op(0).is_equal(vit->op(0))) { + if (ex_to(*it2).is_covariant()) { + e = e.subs(lst( + *it2 == ex_to(*it2).toggle_variance(), + ex_to(*it2).toggle_variance() == *it2 + )); + something_changed = true; + it2 = ex_to(e).seq.begin() + (it2 - it2start); + it2start = ex_to(e).seq.begin(); + it2end = ex_to(e).seq.end(); + } + moved_indices.push_back(*vit); + variant_dummy_indices.erase(vit); + goto next_index; + } + } + + for (vit = moved_indices.begin(), vitend = moved_indices.end(); vit != vitend; ++vit) { + if (it2->op(0).is_equal(vit->op(0))) { + if (ex_to(*it2).is_contravariant()) { + e = e.subs(*it2 == ex_to(*it2).toggle_variance()); + something_changed = true; + it2 = ex_to(e).seq.begin() + (it2 - it2start); + it2start = ex_to(e).seq.begin(); + it2end = ex_to(e).seq.end(); + } + goto next_index; + } + } + +next_index: ; + } + + return something_changed; +} -// none +/* Ordering that only compares the base expressions of indexed objects. */ +struct ex_base_is_less : public std::binary_function { + bool operator() (const ex &lh, const ex &rh) const + { + return (is_a(lh) ? lh.op(0) : lh).compare(is_a(rh) ? rh.op(0) : rh) < 0; + } +}; + +/** Simplify product of indexed expressions (commutative, noncommutative and + * simple squares), return list of free indices. */ +ex simplify_indexed_product(const ex & e, exvector & free_indices, exvector & dummy_indices, const scalar_products & sp) +{ + // Remember whether the product was commutative or noncommutative + // (because we chop it into factors and need to reassemble later) + bool non_commutative = is_ex_exactly_of_type(e, ncmul); + + // Collect factors in an exvector, store squares twice + exvector v; + v.reserve(e.nops() * 2); + + if (is_ex_exactly_of_type(e, power)) { + // We only get called for simple squares, split a^2 -> a*a + GINAC_ASSERT(e.op(1).is_equal(_ex2)); + v.push_back(e.op(0)); + v.push_back(e.op(0)); + } else { + for (unsigned i=0; i 1); + exvector::iterator it1, itend = v.end(), next_to_last = itend - 1; + for (it1 = v.begin(); it1 != next_to_last; it1++) { + +try_again: + if (!is_ex_of_type(*it1, indexed)) + continue; + + bool first_noncommutative = (it1->return_type() != return_types::commutative); + + // Indexed factor found, get free indices and look for contraction + // candidates + exvector free1, dummy1; + find_free_and_dummy(ex_to(*it1).seq.begin() + 1, ex_to(*it1).seq.end(), free1, dummy1); + + exvector::iterator it2; + for (it2 = it1 + 1; it2 != itend; it2++) { + + if (!is_ex_of_type(*it2, indexed)) + continue; + + bool second_noncommutative = (it2->return_type() != return_types::commutative); + + // Find free indices of second factor and merge them with free + // indices of first factor + exvector un; + find_free_and_dummy(ex_to(*it2).seq.begin() + 1, ex_to(*it2).seq.end(), un, dummy1); + un.insert(un.end(), free1.begin(), free1.end()); + + // Check whether the two factors share dummy indices + exvector free, dummy; + find_free_and_dummy(un, free, dummy); + unsigned num_dummies = dummy.size(); + if (num_dummies == 0) + continue; + + // At least one dummy index, is it a defined scalar product? + bool contracted = false; + if (free.empty()) { + if (sp.is_defined(*it1, *it2)) { + *it1 = sp.evaluate(*it1, *it2); + *it2 = _ex1; + goto contraction_done; + } + } + + // Try to contract the first one with the second one + contracted = ex_to(it1->op(0)).contract_with(it1, it2, v); + if (!contracted) { + + // That didn't work; maybe the second object knows how to + // contract itself with the first one + contracted = ex_to(it2->op(0)).contract_with(it2, it1, v); + } + if (contracted) { +contraction_done: + if (first_noncommutative || second_noncommutative + || is_ex_exactly_of_type(*it1, add) || is_ex_exactly_of_type(*it2, add) + || is_ex_exactly_of_type(*it1, mul) || is_ex_exactly_of_type(*it2, mul) + || is_ex_exactly_of_type(*it1, ncmul) || is_ex_exactly_of_type(*it2, ncmul)) { + + // One of the factors became a sum or product: + // re-expand expression and run again + // Non-commutative products are always re-expanded to give + // simplify_ncmul() the chance to re-order and canonicalize + // the product + ex r = (non_commutative ? ex(ncmul(v, true)) : ex(mul(v))); + return simplify_indexed(r, free_indices, dummy_indices, sp); + } + + // Both objects may have new indices now or they might + // even not be indexed objects any more, so we have to + // start over + something_changed = true; + goto try_again; + } + } + } + + // Find free indices (concatenate them all and call find_free_and_dummy()) + // and all dummy indices that appear + exvector un, individual_dummy_indices; + for (it1 = v.begin(), itend = v.end(); it1 != itend; ++it1) { + exvector free_indices_of_factor; + if (is_ex_of_type(*it1, indexed)) { + exvector dummy_indices_of_factor; + find_free_and_dummy(ex_to(*it1).seq.begin() + 1, ex_to(*it1).seq.end(), free_indices_of_factor, dummy_indices_of_factor); + individual_dummy_indices.insert(individual_dummy_indices.end(), dummy_indices_of_factor.begin(), dummy_indices_of_factor.end()); + } else + free_indices_of_factor = it1->get_free_indices(); + un.insert(un.end(), free_indices_of_factor.begin(), free_indices_of_factor.end()); + } + exvector local_dummy_indices; + find_free_and_dummy(un, free_indices, local_dummy_indices); + local_dummy_indices.insert(local_dummy_indices.end(), individual_dummy_indices.begin(), individual_dummy_indices.end()); + + // Filter out the dummy indices with variance + exvector variant_dummy_indices; + find_variant_indices(local_dummy_indices, variant_dummy_indices); + + // Any indices with variance present at all? + if (!variant_dummy_indices.empty()) { + + // Yes, bring the product into a canonical order that only depends on + // the base expressions of indexed objects + if (!non_commutative) + std::sort(v.begin(), v.end(), ex_base_is_less()); + + exvector moved_indices; + + // Iterate over all indexed objects in the product + for (it1 = v.begin(), itend = v.end(); it1 != itend; ++it1) { + if (!is_ex_of_type(*it1, indexed)) + continue; + + if (reposition_dummy_indices(*it1, variant_dummy_indices, moved_indices)) + something_changed = true; + } + } + + ex r; + if (something_changed) + r = non_commutative ? ex(ncmul(v, true)) : ex(mul(v)); + else + r = e; + + // The result should be symmetric with respect to exchange of dummy + // indices, so if the symmetrization vanishes, the whole expression is + // zero. This detects things like eps.i.j.k * p.j * p.k = 0. + if (local_dummy_indices.size() >= 2) { + lst dummy_syms; + for (int i=0; i(r.op(0).op(0)).scalar_mul_indexed(r.op(0), ex_to(r.op(1))); + else + return r; +} -////////// -// non-virtual functions in this class -////////// +/** Simplify indexed expression, return list of free indices. */ +ex simplify_indexed(const ex & e, exvector & free_indices, exvector & dummy_indices, const scalar_products & sp) +{ + // Expand the expression + ex e_expanded = e.expand(); + + // Simplification of single indexed object: just find the free indices + // and perform dummy index renaming/repositioning + if (is_ex_of_type(e_expanded, indexed)) { + + // Find the dummy indices + const indexed &i = ex_to(e_expanded); + exvector local_dummy_indices; + find_free_and_dummy(i.seq.begin() + 1, i.seq.end(), free_indices, local_dummy_indices); + + // Filter out the dummy indices with variance + exvector variant_dummy_indices; + find_variant_indices(local_dummy_indices, variant_dummy_indices); + + // Any indices with variance present at all? + if (!variant_dummy_indices.empty()) { + + // Yes, reposition them + exvector moved_indices; + reposition_dummy_indices(e_expanded, variant_dummy_indices, moved_indices); + } + + // Rename the dummy indices + return rename_dummy_indices(e_expanded, dummy_indices, local_dummy_indices); + } + + // Simplification of sum = sum of simplifications, check consistency of + // free indices in each term + if (is_ex_exactly_of_type(e_expanded, add)) { + bool first = true; + ex sum = _ex0; + free_indices.clear(); + + for (unsigned i=0; i(sum.op(0)).add_indexed(sum, term); + else + sum += term; + } + } + } + + return sum; + } + + // Simplification of products + if (is_ex_exactly_of_type(e_expanded, mul) + || is_ex_exactly_of_type(e_expanded, ncmul) + || (is_ex_exactly_of_type(e_expanded, power) && is_ex_of_type(e_expanded.op(0), indexed) && e_expanded.op(1).is_equal(_ex2))) + return simplify_indexed_product(e_expanded, free_indices, dummy_indices, sp); + + // Cannot do anything + free_indices.clear(); + return e_expanded; +} -// protected +/** Simplify/canonicalize expression containing indexed objects. This + * performs contraction of dummy indices where possible and checks whether + * the free indices in sums are consistent. + * + * @return simplified expression */ +ex ex::simplify_indexed(void) const +{ + exvector free_indices, dummy_indices; + scalar_products sp; + return GiNaC::simplify_indexed(*this, free_indices, dummy_indices, sp); +} -void indexed::printrawindices(ostream & os) const +/** Simplify/canonicalize expression containing indexed objects. This + * performs contraction of dummy indices where possible, checks whether + * the free indices in sums are consistent, and automatically replaces + * scalar products by known values if desired. + * + * @param sp Scalar products to be replaced automatically + * @return simplified expression */ +ex ex::simplify_indexed(const scalar_products & sp) const { - if (seq.size()!=0) { - for (exvector::const_iterator cit=seq.begin(); cit!=seq.end(); ++cit) { - (*cit).printraw(os); - os << ","; - } - } + exvector free_indices, dummy_indices; + return GiNaC::simplify_indexed(*this, free_indices, dummy_indices, sp); } -void indexed::printtreeindices(ostream & os, unsigned indent) const +/** Symmetrize expression over its free indices. */ +ex ex::symmetrize(void) const { - if (seq.size()!=0) { - for (exvector::const_iterator cit=seq.begin(); cit!=seq.end(); ++cit) { - os << string(indent+delta_indent,' '); - (*cit).printraw(os); - os << endl; - } - } + return GiNaC::symmetrize(*this, get_free_indices()); } -void indexed::printindices(ostream & os) const +/** Antisymmetrize expression over its free indices. */ +ex ex::antisymmetrize(void) const { - if (seq.size()!=0) { - if (seq.size()>1) { - os << "{"; - } - exvector::const_iterator last=seq.end()-1; - exvector::const_iterator cit=seq.begin(); - for (; cit!=last; ++cit) { - (*cit).print(os); - os << ","; - } - (*cit).print(os); - if (seq.size()>1) { - os << "}"; - } - } + return GiNaC::antisymmetrize(*this, get_free_indices()); } -bool indexed::all_of_type_idx(void) const +/** Symmetrize expression by cyclic permutation over its free indices. */ +ex ex::symmetrize_cyclic(void) const { - // used only inside of ASSERTs - for (exvector::const_iterator cit=seq.begin(); cit!=seq.end(); ++cit) { - if (!is_ex_of_type(*cit,idx)) return false; - } - return true; + return GiNaC::symmetrize_cyclic(*this, get_free_indices()); } ////////// -// static member variables +// helper classes ////////// -// none +void scalar_products::add(const ex & v1, const ex & v2, const ex & sp) +{ + spm[make_key(v1, v2)] = sp; +} -////////// -// global constants -////////// +void scalar_products::add_vectors(const lst & l) +{ + // Add all possible pairs of products + unsigned num = l.nops(); + for (unsigned i=0; isecond; +} + +void scalar_products::debugprint(void) const +{ + std::cerr << "map size=" << spm.size() << std::endl; + spmap::const_iterator i = spm.begin(), end = spm.end(); + while (i != end) { + const spmapkey & k = i->first; + std::cerr << "item key=(" << k.first << "," << k.second; + std::cerr << "), value=" << i->second << std::endl; + ++i; + } +} + +/** Make key from object pair. */ +spmapkey scalar_products::make_key(const ex & v1, const ex & v2) +{ + // If indexed, extract base objects + ex s1 = is_ex_of_type(v1, indexed) ? v1.op(0) : v1; + ex s2 = is_ex_of_type(v2, indexed) ? v2.op(0) : v2; + + // Enforce canonical order in pair + if (s1.compare(s2) > 0) + return spmapkey(s2, s1); + else + return spmapkey(s1, s2); +} } // namespace GiNaC