X-Git-Url: https://www.ginac.de/ginac.git//ginac.git?p=ginac.git;a=blobdiff_plain;f=ginac%2Ffactor.cpp;h=2f98f9db5d0ee442ad54ad03fe6b8b18bf503bd6;hp=204010be3750294640434dc28da698f9f452db69;hb=f3b92d92e9b8ee71b189ddb2c7e27ed72b577732;hpb=edc92b7a463993da62357fb4afad053e8c6d0771 diff --git a/ginac/factor.cpp b/ginac/factor.cpp index 204010be..2f98f9db 100644 --- a/ginac/factor.cpp +++ b/ginac/factor.cpp @@ -1,16 +1,39 @@ /** @file factor.cpp * - * Polynomial factorization code (implementation). + * Polynomial factorization (implementation). + * + * The interface function factor() at the end of this file is defined in the + * GiNaC namespace. All other utility functions and classes are defined in an + * additional anonymous namespace. + * + * Factorization starts by doing a square free factorization and making the + * coefficients integer. Then, depending on the number of free variables it + * proceeds either in dedicated univariate or multivariate factorization code. + * + * Univariate factorization does a modular factorization via Berlekamp's + * algorithm and distinct degree factorization. Hensel lifting is used at the + * end. + * + * Multivariate factorization uses the univariate factorization (applying a + * evaluation homomorphism first) and Hensel lifting raises the answer to the + * multivariate domain. The Hensel lifting code is completely distinct from the + * code used by the univariate factorization. * * Algorithms used can be found in - * [W1] An Improved Multivariate Polynomial Factoring Algorithm, - * P.S.Wang, Mathematics of Computation, Vol. 32, No. 144 (1978) 1215--1231. + * [Wan] An Improved Multivariate Polynomial Factoring Algorithm, + * P.S.Wang, + * Mathematics of Computation, Vol. 32, No. 144 (1978) 1215--1231. * [GCL] Algorithms for Computer Algebra, - * K.O.Geddes, S.R.Czapor, G.Labahn, Springer Verlag, 1992. + * K.O.Geddes, S.R.Czapor, G.Labahn, + * Springer Verlag, 1992. + * [Mig] Some Useful Bounds, + * M.Mignotte, + * In "Computer Algebra, Symbolic and Algebraic Computation" (B.Buchberger et al., eds.), + * pp. 259-263, Springer-Verlag, New York, 1982. */ /* - * GiNaC Copyright (C) 1999-2008 Johannes Gutenberg University Mainz, Germany + * GiNaC Copyright (C) 1999-2011 Johannes Gutenberg University Mainz, Germany * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by @@ -61,17 +84,6 @@ namespace GiNaC { #define DCOUT(str) cout << #str << endl #define DCOUTVAR(var) cout << #var << ": " << var << endl #define DCOUT2(str,var) cout << #str << ": " << var << endl -#else -#define DCOUT(str) -#define DCOUTVAR(var) -#define DCOUT2(str,var) -#endif - -// anonymous namespace to hide all utility functions -namespace { - -typedef vector mvec; -#ifdef DEBUGFACTOR ostream& operator<<(ostream& o, const vector& v) { vector::const_iterator i = v.begin(), end = v.end(); @@ -80,7 +92,7 @@ ostream& operator<<(ostream& o, const vector& v) } return o; } -ostream& operator<<(ostream& o, const vector& v) +static ostream& operator<<(ostream& o, const vector& v) { vector::const_iterator i = v.begin(), end = v.end(); while ( i != end ) { @@ -89,7 +101,7 @@ ostream& operator<<(ostream& o, const vector& v) } return o; } -ostream& operator<<(ostream& o, const vector& v) +static ostream& operator<<(ostream& o, const vector& v) { vector::const_iterator i = v.begin(), end = v.end(); while ( i != end ) { @@ -98,6 +110,13 @@ ostream& operator<<(ostream& o, const vector& v) } return o; } +ostream& operator<<(ostream& o, const vector& v) +{ + for ( size_t i=0; i >& v) { vector< vector >::const_iterator i = v.begin(), end = v.end(); @@ -107,7 +126,14 @@ ostream& operator<<(ostream& o, const vector< vector >& v) } return o; } -#endif +#else +#define DCOUT(str) +#define DCOUTVAR(var) +#define DCOUT2(str,var) +#endif // def DEBUGFACTOR + +// anonymous namespace to hide all utility functions +namespace { //////////////////////////////////////////////////////////////////////////////// // modular univariate polynomial code @@ -192,8 +218,32 @@ static void expt_pos(umodpoly& a, unsigned int q) } } +template struct enable_if +{ + typedef T type; +}; + +template struct enable_if { /* empty */ }; + +template struct uvar_poly_p +{ + static const bool value = false; +}; + +template<> struct uvar_poly_p +{ + static const bool value = true; +}; + +template<> struct uvar_poly_p +{ + static const bool value = true; +}; + template -static T operator+(const T& a, const T& b) +// Don't define this for anything but univariate polynomials. +static typename enable_if::value, T>::type +operator+(const T& a, const T& b) { int sa = a.size(); int sb = b.size(); @@ -224,7 +274,11 @@ static T operator+(const T& a, const T& b) } template -static T operator-(const T& a, const T& b) +// Don't define this for anything but univariate polynomials. Otherwise +// overload resolution might fail (this actually happens when compiling +// GiNaC with g++ 3.4). +static typename enable_if::value, T>::type +operator-(const T& a, const T& b) { int sa = a.size(); int sb = b.size(); @@ -365,10 +419,12 @@ static void umodpoly_from_ex(umodpoly& ump, const ex& e, const ex& x, const cl_m canonicalize(ump); } +#ifdef DEBUGFACTOR static void umodpoly_from_ex(umodpoly& ump, const ex& e, const ex& x, const cl_I& modulus) { umodpoly_from_ex(ump, e, x, find_modint_ring(modulus)); } +#endif static ex upoly_to_ex(const upoly& a, const ex& x) { @@ -423,7 +479,7 @@ static umodpoly umodpoly_to_umodpoly(const umodpoly& a, const cl_modint_ring& R, cl_modint_ring oldR = a[0].ring(); size_t sa = a.size(); e.resize(sa+m, R->zero()); - for ( int i=0; icanonhom(oldR->retract(a[i])); } canonicalize(e); @@ -606,7 +662,7 @@ static bool squarefree(const umodpoly& a) umodpoly b; deriv(a, b); if ( b.empty() ) { - return true; + return false; } umodpoly c; gcd(a, b, c); @@ -619,6 +675,8 @@ static bool squarefree(const umodpoly& a) //////////////////////////////////////////////////////////////////////////////// // modular matrix +typedef vector mvec; + class modular_matrix { friend ostream& operator<<(ostream& o, const modular_matrix& m); @@ -633,90 +691,76 @@ public: cl_MI operator()(size_t row, size_t col) const { return m[row*c + col]; } void mul_col(size_t col, const cl_MI x) { - mvec::iterator i = m.begin() + col; for ( size_t rc=0; rc::iterator i = m.begin() + row*c; for ( size_t cc=0; cc::iterator i1 = m.begin() + row1*c; - vector::iterator i2 = m.begin() + row2*c; for ( size_t cc=0; cc::iterator i1 = m.begin() + row1*c; - vector::iterator i2 = m.begin() + row2*c; for ( size_t cc=0; cc& newrow) { - mvec::iterator i1 = m.begin() + row*c; - mvec::const_iterator i2 = newrow.begin(), end = newrow.end(); - for ( ; i2 != end; ++i1, ++i2 ) { - *i1 = *i2; + for (std::size_t i2 = 0; i2 < newrow.size(); ++i2) { + std::size_t i1 = row*c + i2; + m[i1] = newrow[i2]; } } mvec::const_iterator row_begin(size_t row) const { return m.begin()+row*c; } @@ -768,6 +812,11 @@ ostream& operator<<(ostream& o, const modular_matrix& m) // END modular matrix //////////////////////////////////////////////////////////////////////////////// +/** Calculates the Q matrix for a polynomial. Used by Berlekamp's algorithm. + * + * @param[in] a_ modular polynomial + * @param[out] Q Q matrix + */ static void q_matrix(const umodpoly& a_, modular_matrix& Q) { umodpoly a = a_; @@ -791,6 +840,11 @@ static void q_matrix(const umodpoly& a_, modular_matrix& Q) } } +/** Determine the nullspace of a matrix M-1. + * + * @param[in,out] M matrix, will be modified + * @param[out] basis calculated nullspace of M-1 + */ static void nullspace(modular_matrix& M, vector& basis) { const size_t n = M.rowsize(); @@ -835,11 +889,20 @@ static void nullspace(modular_matrix& M, vector& basis) } } +/** Berlekamp's modular factorization. + * + * The implementation follows the algorithm in chapter 8 of [GCL]. + * + * @param[in] a modular polynomial + * @param[out] upv vector containing modular factors. if upv was not empty the + * new elements are added at the end + */ static void berlekamp(const umodpoly& a, upvec& upv) { cl_modint_ring R = a[0].ring(); umodpoly one(1, R->one()); + // find nullspace of Q matrix modular_matrix Q(degree(a), degree(a), R->zero()); q_matrix(a, Q); vector nu; @@ -847,6 +910,7 @@ static void berlekamp(const umodpoly& a, upvec& upv) const unsigned int k = nu.size(); if ( k == 1 ) { + // irreducible return; } @@ -858,6 +922,7 @@ static void berlekamp(const umodpoly& a, upvec& upv) list::iterator u = factors.begin(); + // calculate all gcd's while ( true ) { for ( unsigned int s=0; s exponent 1/prime + * @param[in] ap resulting polynomial + */ static void expt_1_over_p(const umodpoly& a, unsigned int prime, umodpoly& ap) { size_t newdeg = degree(a)/prime; @@ -907,6 +982,12 @@ static void expt_1_over_p(const umodpoly& a, unsigned int prime, umodpoly& ap) } } +/** Modular square free factorization. + * + * @param[in] a polynomial + * @param[out] factors modular factors + * @param[out] mult corresponding multiplicities (exponents) + */ static void modsqrfree(const umodpoly& a, upvec& factors, vector& mult) { const unsigned int prime = cl_I_to_uint(a[0].ring()->modulus); @@ -952,6 +1033,18 @@ static void modsqrfree(const umodpoly& a, upvec& factors, vector& mult) } } +#endif // deactivation of square free factorization + +/** Distinct degree factorization (DDF). + * + * The implementation follows the algorithm in chapter 8 of [GCL]. + * + * @param[in] a_ modular polynomial + * @param[out] degrees vector containing the degrees of the factors of the + * corresponding polynomials in ddfactors. + * @param[out] ddfactors vector containing polynomials which factors have the + * degree given in degrees. + */ static void distinct_degree_factor(const umodpoly& a_, vector& degrees, upvec& ddfactors) { umodpoly a = a_; @@ -966,7 +1059,6 @@ static void distinct_degree_factor(const umodpoly& a_, vector& degrees, upv w[1] = R->one(); umodpoly x = w; - bool nontrivial = false; while ( i <= nhalf ) { expt_pos(w, q); umodpoly buf; @@ -994,10 +1086,19 @@ static void distinct_degree_factor(const umodpoly& a_, vector& degrees, upv } } +/** Modular same degree factorization. + * Same degree factorization is a kind of misnomer. It performs distinct degree + * factorization, but instead of using the Cantor-Zassenhaus algorithm it + * (sub-optimally) uses Berlekamp's algorithm for the factors of the same + * degree. + * + * @param[in] a modular polynomial + * @param[out] upv vector containing modular factors. if upv was not empty the + * new elements are added at the end + */ static void same_degree_factor(const umodpoly& a, upvec& upv) { cl_modint_ring R = a[0].ring(); - int deg = degree(a); vector degrees; upvec ddfactors; @@ -1013,40 +1114,29 @@ static void same_degree_factor(const umodpoly& a, upvec& upv) } } +// Yes, we can (choose). +#define USE_SAME_DEGREE_FACTOR + +/** Modular univariate factorization. + * + * In principle, we have two algorithms at our disposal: Berlekamp's algorithm + * and same degree factorization (SDF). SDF seems to be slightly faster in + * almost all cases so it is activated as default. + * + * @param[in] p modular polynomial + * @param[out] upv vector containing modular factors. if upv was not empty the + * new elements are added at the end + */ static void factor_modular(const umodpoly& p, upvec& upv) { - upvec factors; - vector mult; - modsqrfree(p, factors, mult); - -#define USE_SAME_DEGREE_FACTOR #ifdef USE_SAME_DEGREE_FACTOR - for ( size_t i=0; i0; --j ) { - upv.insert(upv.end(), upvbuf.begin(), upvbuf.end()); - } - } + same_degree_factor(p, upv); #else - for ( size_t i=0; i0; --j ) { - upv.push_back(factors[i]); - } - } - } + berlekamp(p, upv); #endif } -/** Calculates polynomials s and t such that a*s+b*t==1. +/** Calculates modular polynomials s and t such that a*s+b*t==1. * Assertion: a and b are relatively prime and not zero. * * @param[in] a polynomial @@ -1096,6 +1186,12 @@ static void exteuclid(const umodpoly& a, const umodpoly& b, umodpoly& s, umodpol canonicalize(t); } +/** Replaces the leading coefficient in a polynomial by a given number. + * + * @param[in] poly polynomial to change + * @param[in] lc new leading coefficient + * @return changed polynomial + */ static upoly replace_lc(const upoly& poly, const cl_I& lc) { if ( poly.empty() ) return poly; @@ -1104,19 +1200,60 @@ static upoly replace_lc(const upoly& poly, const cl_I& lc) return r; } +/** Calculates the bound for the modulus. + * See [Mig]. + */ +static inline cl_I calc_bound(const ex& a, const ex& x, int maxdeg) +{ + cl_I maxcoeff = 0; + cl_R coeff = 0; + for ( int i=a.degree(x); i>=a.ldegree(x); --i ) { + cl_I aa = abs(the(ex_to(a.coeff(x, i)).to_cl_N())); + if ( aa > maxcoeff ) maxcoeff = aa; + coeff = coeff + square(aa); + } + cl_I coeffnorm = ceiling1(the(cln::sqrt(coeff))); + cl_I B = coeffnorm * expt_pos(cl_I(2), cl_I(maxdeg)); + return ( B > maxcoeff ) ? B : maxcoeff; +} + +/** Calculates the bound for the modulus. + * See [Mig]. + */ +static inline cl_I calc_bound(const upoly& a, int maxdeg) +{ + cl_I maxcoeff = 0; + cl_R coeff = 0; + for ( int i=degree(a); i>=0; --i ) { + cl_I aa = abs(a[i]); + if ( aa > maxcoeff ) maxcoeff = aa; + coeff = coeff + square(aa); + } + cl_I coeffnorm = ceiling1(the(cln::sqrt(coeff))); + cl_I B = coeffnorm * expt_pos(cl_I(2), cl_I(maxdeg)); + return ( B > maxcoeff ) ? B : maxcoeff; +} + +/** Hensel lifting as used by factor_univariate(). + * + * The implementation follows the algorithm in chapter 6 of [GCL]. + * + * @param[in] a_ primitive univariate polynomials + * @param[in] p prime number that does not divide lcoeff(a) + * @param[in] u1_ modular factor of a (mod p) + * @param[in] w1_ modular factor of a (mod p), relatively prime to u1_, + * fulfilling u1_*w1_ == a mod p + * @param[out] u lifted factor + * @param[out] w lifted factor, u*w = a + */ static void hensel_univar(const upoly& a_, unsigned int p, const umodpoly& u1_, const umodpoly& w1_, upoly& u, upoly& w) { upoly a = a_; const cl_modint_ring& R = u1_[0].ring(); // calc bound B - cl_R maxcoeff = 0; - for ( int i=degree(a); i>=0; --i ) { - maxcoeff = maxcoeff + square(abs(a[i])); - } - cl_I normmc = ceiling1(the(cln::sqrt(maxcoeff))); - cl_I maxdegree = (degree(u1_) > degree(w1_)) ? degree(u1_) : degree(w1_); - cl_I B = normmc * expt_pos(cl_I(2), maxdegree); + int maxdeg = (degree(u1_) > degree(w1_)) ? degree(u1_) : degree(w1_); + cl_I maxmodulus = 2*calc_bound(a, maxdeg); // step 1 cl_I alpha = lcoeff(a); @@ -1143,16 +1280,9 @@ static void hensel_univar(const upoly& a_, unsigned int p, const umodpoly& u1_, w = replace_lc(umodpoly_to_upoly(w1), alpha); upoly e = a - u * w; cl_I modulus = p; - const cl_I maxmodulus = 2*B*abs(alpha); // step 4 while ( !e.empty() && modulus < maxmodulus ) { - // ad-hoc divisablity check - for ( size_t k=0; k primes; @@ -1223,73 +1357,147 @@ static unsigned int next_prime(unsigned int p) throw logic_error("next_prime: should not reach this point!"); } +/** Manages the splitting a vector of of modular factors into two partitions. + */ class factor_partition { public: + /** Takes the vector of modular factors and initializes the first partition */ factor_partition(const upvec& factors_) : factors(factors_) { n = factors.size(); - k.resize(n, 1); - k[0] = 0; - sum = n-1; + k.resize(n, 0); + k[0] = 1; + cache.resize(n-1); one.resize(1, factors.front()[0].ring()->one()); + len = 1; + last = 0; split(); } int operator[](size_t i) const { return k[i]; } size_t size() const { return n; } - size_t size_first() const { return n-sum; } - size_t size_second() const { return sum; } -#ifdef DEBUGFACTOR - void get() const { DCOUTVAR(k); } -#endif + size_t size_left() const { return n-len; } + size_t size_right() const { return len; } + /** Initializes the next partition. + Returns true, if there is one, false otherwise. */ bool next() { - for ( size_t i=n-1; i>=1; --i ) { - if ( k[i] ) { - --k[i]; - --sum; - if ( sum > 0 ) { - split(); - return true; + if ( last == n-1 ) { + int rem = len - 1; + int p = last - 1; + while ( rem ) { + if ( k[p] ) { + --rem; + --p; + continue; } - else { - return false; + last = p - 1; + while ( k[last] == 0 ) { --last; } + if ( last == 0 && n == 2*len ) return false; + k[last++] = 0; + for ( size_t i=0; i<=len-rem; ++i ) { + k[last] = 1; + ++last; } + fill(k.begin()+last, k.end(), 0); + --last; + split(); + return true; } - ++k[i]; - ++sum; + last = len; + ++len; + if ( len > n/2 ) return false; + fill(k.begin(), k.begin()+len, 1); + fill(k.begin()+len+1, k.end(), 0); } - return false; + else { + k[last++] = 0; + k[last] = 1; + } + split(); + return true; } - void split() + /** Get first partition */ + umodpoly& left() { return lr[0]; } + /** Get second partition */ + umodpoly& right() { return lr[1]; } +private: + void split_cached() { - left = one; - right = one; - for ( size_t i=0; i= d ) { + lr[group] = lr[group] * cache[pos][d-1]; + } + else { + if ( cache[pos].size() == 0 ) { + cache[pos].push_back(factors[pos] * factors[pos+1]); + } + size_t j = pos + cache[pos].size() + 1; + d -= cache[pos].size(); + while ( d ) { + umodpoly buf = cache[pos].back() * factors[j]; + cache[pos].push_back(buf); + --d; + ++j; + } + lr[group] = lr[group] * cache[pos].back(); + } } else { - left = left * factors[i]; + lr[group] = lr[group] * factors[pos]; + } + } while ( i < n ); + } + void split() + { + lr[0] = one; + lr[1] = one; + if ( n > 6 ) { + split_cached(); + } + else { + for ( size_t i=0; i > cache; upvec factors; umodpoly one; - size_t n, sum; + size_t n; + size_t len; + size_t last; vector k; }; +/** Contains a pair of univariate polynomial and its modular factors. + * Used by factor_univariate(). + */ struct ModFactors { upoly poly; upvec factors; }; -static ex factor_univariate(const ex& poly, const ex& x) +/** Univariate polynomial factorization. + * + * Modular factorization is tried for several primes to minimize the number of + * modular factors. Then, Hensel lifting is performed. + * + * @param[in] poly expanded square free univariate polynomial + * @param[in] x symbol + * @param[in,out] prime prime number to start trying modular factorization with, + * output value is the prime number actually used + */ +static ex factor_univariate(const ex& poly, const ex& x, unsigned int& prime) { ex unit, cont, prim_ex; poly.unitcontprim(x, unit, cont, prim_ex); @@ -1297,18 +1505,19 @@ static ex factor_univariate(const ex& poly, const ex& x) upoly_from_ex(prim, prim_ex, x); // determine proper prime and minimize number of modular factors - unsigned int p = 3, lastp = 3; + prime = 3; + unsigned int lastp = prime; cl_modint_ring R; unsigned int trials = 0; unsigned int minfactors = 0; - cl_I lc = lcoeff(prim); + cl_I lc = lcoeff(prim) * the(ex_to(cont).to_cl_N()); upvec factors; while ( trials < 2 ) { umodpoly modpoly; while ( true ) { - p = next_prime(p); - if ( !zerop(rem(lc, p)) ) { - R = find_modint_ring(p); + prime = next_prime(prime); + if ( !zerop(rem(lc, prime)) ) { + R = find_modint_ring(prime); umodpoly_from_upoly(modpoly, prim, R); if ( squarefree(modpoly) ) break; } @@ -1324,16 +1533,16 @@ static ex factor_univariate(const ex& poly, const ex& x) if ( minfactors == 0 || trialfactors.size() < minfactors ) { factors = trialfactors; - minfactors = factors.size(); - lastp = p; + minfactors = trialfactors.size(); + lastp = prime; trials = 1; } else { ++trials; } } - p = lastp; - R = find_modint_ring(p); + prime = lastp; + R = find_modint_ring(prime); // lift all factor combinations stack tocheck; @@ -1347,10 +1556,12 @@ static ex factor_univariate(const ex& poly, const ex& x) const size_t n = tocheck.top().factors.size(); factor_partition part(tocheck.top().factors); while ( true ) { - hensel_univar(tocheck.top().poly, p, part.left, part.right, f1, f2); + // call Hensel lifting + hensel_univar(tocheck.top().poly, prime, part.left(), part.right(), f1, f2); if ( !f1.empty() ) { - if ( part.size_first() == 1 ) { - if ( part.size_second() == 1 ) { + // successful, update the stack and the result + if ( part.size_left() == 1 ) { + if ( part.size_right() == 1 ) { result *= upoly_to_ex(f1, x) * upoly_to_ex(f2, x); tocheck.pop(); break; @@ -1365,8 +1576,8 @@ static ex factor_univariate(const ex& poly, const ex& x) } break; } - else if ( part.size_second() == 1 ) { - if ( part.size_first() == 1 ) { + else if ( part.size_right() == 1 ) { + if ( part.size_left() == 1 ) { result *= upoly_to_ex(f1, x) * upoly_to_ex(f2, x); tocheck.pop(); break; @@ -1382,7 +1593,7 @@ static ex factor_univariate(const ex& poly, const ex& x) break; } else { - upvec newfactors1(part.size_first()), newfactors2(part.size_second()); + upvec newfactors1(part.size_left()), newfactors2(part.size_right()); upvec::iterator i1 = newfactors1.begin(), i2 = newfactors2.begin(); for ( size_t i=0; i==). + */ struct EvalPoint { ex x; int evalpoint; }; +#ifdef DEBUGFACTOR +ostream& operator<<(ostream& o, const vector& v) +{ + for ( size_t i=0; i multivar_diophant(const vector& a_, const ex& x, const ex& c, const vector& I, unsigned int d, unsigned int p, unsigned int k); +static vector multivar_diophant(const vector& a_, const ex& x, const ex& c, const vector& I, unsigned int d, unsigned int p, unsigned int k); -upvec multiterm_eea_lift(const upvec& a, const ex& x, unsigned int p, unsigned int k) +/** Utility function for multivariate Hensel lifting. + * + * Solves the equation + * s_1*b_1 + ... + s_r*b_r == 1 mod p^k + * with deg(s_i) < deg(a_i) + * and with given b_1 = a_1 * ... * a_{i-1} * a_{i+1} * ... * a_r + * + * The implementation follows the algorithm in chapter 6 of [GCL]. + * + * @param[in] a vector of modular univariate polynomials + * @param[in] x symbol + * @param[in] p prime number + * @param[in] k p^k is modulus + * @return vector of polynomials (s_i) + */ +static upvec multiterm_eea_lift(const upvec& a, const ex& x, unsigned int p, unsigned int k) { const size_t r = a.size(); cl_modint_ring R = find_modint_ring(expt_pos(cl_I(p),k)); @@ -1451,10 +1701,12 @@ upvec multiterm_eea_lift(const upvec& a, const ex& x, unsigned int p, unsigned i return s; } -/** - * Assert: a not empty. +/** Changes the modulus of a modular polynomial. Used by eea_lift(). + * + * @param[in] R new modular ring + * @param[in,out] a polynomial to change (in situ) */ -void change_modulus(const cl_modint_ring& R, umodpoly& a) +static void change_modulus(const cl_modint_ring& R, umodpoly& a) { if ( a.empty() ) return; cl_modint_ring oldR = a[0].ring(); @@ -1465,7 +1717,21 @@ void change_modulus(const cl_modint_ring& R, umodpoly& a) canonicalize(a); } -void eea_lift(const umodpoly& a, const umodpoly& b, const ex& x, unsigned int p, unsigned int k, umodpoly& s_, umodpoly& t_) +/** Utility function for multivariate Hensel lifting. + * + * Solves s*a + t*b == 1 mod p^k given a,b. + * + * The implementation follows the algorithm in chapter 6 of [GCL]. + * + * @param[in] a polynomial + * @param[in] b polynomial + * @param[in] x symbol + * @param[in] p prime number + * @param[in] k p^k is modulus + * @param[out] s_ output polynomial + * @param[out] t_ output polynomial + */ +static void eea_lift(const umodpoly& a, const umodpoly& b, const ex& x, unsigned int p, unsigned int k, umodpoly& s_, umodpoly& t_) { cl_modint_ring R = find_modint_ring(p); umodpoly amod = a; @@ -1508,7 +1774,22 @@ void eea_lift(const umodpoly& a, const umodpoly& b, const ex& x, unsigned int p, s_ = s; t_ = t; } -upvec univar_diophant(const upvec& a, const ex& x, unsigned int m, unsigned int p, unsigned int k) +/** Utility function for multivariate Hensel lifting. + * + * Solves the equation + * s_1*b_1 + ... + s_r*b_r == x^m mod p^k + * with given b_1 = a_1 * ... * a_{i-1} * a_{i+1} * ... * a_r + * + * The implementation follows the algorithm in chapter 6 of [GCL]. + * + * @param a vector with univariate polynomials mod p^k + * @param x symbol + * @param m exponent of x^m in the equation to solve + * @param p prime number + * @param k p^k is modulus + * @return vector of polynomials (s_i) + */ +static upvec univar_diophant(const upvec& a, const ex& x, unsigned int m, unsigned int p, unsigned int k) { cl_modint_ring R = find_modint_ring(expt_pos(cl_I(p),k)); @@ -1538,6 +1819,10 @@ upvec univar_diophant(const upvec& a, const ex& x, unsigned int m, unsigned int return result; } +/** Map used by function make_modular(). + * Finds every coefficient in a polynomial and replaces it by is value in the + * given modular ring R (symmetric representation). + */ struct make_modular_map : public map_function { cl_modint_ring R; make_modular_map(const cl_modint_ring& R_) : R(R_) { } @@ -1562,13 +1847,38 @@ struct make_modular_map : public map_function { } }; +/** Helps mimicking modular multivariate polynomial arithmetic. + * + * @param e expression of which to make the coefficients equal to their value + * in the modular ring R (symmetric representation) + * @param R modular ring + * @return resulting expression + */ static ex make_modular(const ex& e, const cl_modint_ring& R) { make_modular_map map(R); return map(e.expand()); } -vector multivar_diophant(const vector& a_, const ex& x, const ex& c, const vector& I, unsigned int d, unsigned int p, unsigned int k) +/** Utility function for multivariate Hensel lifting. + * + * Returns the polynomials s_i that fulfill + * s_1*b_1 + ... + s_r*b_r == c mod + * with given b_1 = a_1 * ... * a_{i-1} * a_{i+1} * ... * a_r + * + * The implementation follows the algorithm in chapter 6 of [GCL]. + * + * @param a_ vector of multivariate factors mod p^k + * @param x symbol (equiv. x_1 in [GCL]) + * @param c polynomial mod p^k + * @param I vector of evaluation points + * @param d maximum total degree of result + * @param p prime number + * @param k p^k is modulus + * @return vector of polynomials (s_i) + */ +static vector multivar_diophant(const vector& a_, const ex& x, const ex& c, const vector& I, + unsigned int d, unsigned int p, unsigned int k) { vector a = a_; @@ -1606,22 +1916,20 @@ vector multivar_diophant(const vector& a_, const ex& x, const ex& c, con ex e = make_modular(buf, R); ex monomial = 1; - for ( size_t m=1; m<=d; ++m ) { - while ( !e.is_zero() && e.has(xnu) ) { - monomial *= (xnu - alphanu); - monomial = expand(monomial); - ex cm = e.diff(ex_to(xnu), m).subs(xnu==alphanu) / factorial(m); - cm = make_modular(cm, R); - if ( !cm.is_zero() ) { - vector delta_s = multivar_diophant(anew, x, cm, Inew, d, p, k); - ex buf = e; - for ( size_t j=0; j(xnu), m).subs(xnu==alphanu) / factorial(m); + cm = make_modular(cm, R); + if ( !cm.is_zero() ) { + vector delta_s = multivar_diophant(anew, x, cm, Inew, d, p, k); + ex buf = e; + for ( size_t j=0; j multivar_diophant(const vector& a_, const ex& x, const ex& c, con return sigma; } -#ifdef DEBUGFACTOR -ostream& operator<<(ostream& o, const vector& v) -{ - for ( size_t i=0; i& I, unsigned int p, const cl_I& l, const upvec& u, const vector& lcU) +/** Multivariate Hensel lifting. + * The implementation follows the algorithm in chapter 6 of [GCL]. + * Since we don't have a data type for modular multivariate polynomials, the + * respective operations are done in a GiNaC::ex and the function + * make_modular() is then called to make the coefficient modular p^l. + * + * @param a multivariate polynomial primitive in x + * @param x symbol (equiv. x_1 in [GCL]) + * @param I vector of evaluation points (x_2==a_2,x_3==a_3,...) + * @param p prime number (should not divide lcoeff(a mod I)) + * @param l p^l is the modulus of the lifted univariate field + * @param u vector of modular (mod p^l) factors of a mod I + * @param lcU correct leading coefficient of the univariate factors of a mod I + * @return list GiNaC::lst with lifted factors (multivariate factors of a), + * empty if Hensel lifting did not succeed + */ +static ex hensel_multivar(const ex& a, const ex& x, const vector& I, + unsigned int p, const cl_I& l, const upvec& u, const vector& lcU) { const size_t nu = I.size() + 1; const cl_modint_ring R = find_modint_ring(expt_pos(cl_I(p),l)); @@ -1777,10 +2092,13 @@ ex hensel_multivar(const ex& a, const ex& x, const vector& I, unsigne } } +/** Takes a factorized expression and puts the factors in a lst. The exponents + * of the factors are discarded, e.g. 7*x^2*(y+1)^4 --> {7,x,y+1}. The first + * element of the list is always the numeric coefficient. + */ static ex put_factors_into_lst(const ex& e) { lst result; - if ( is_a(e) ) { result.append(e); return result; @@ -1788,13 +2106,11 @@ static ex put_factors_into_lst(const ex& e) if ( is_a(e) ) { result.append(1); result.append(e.op(0)); - result.append(e.op(1)); return result; } if ( is_a(e) || is_a(e) ) { result.append(1); result.append(e); - result.append(1); return result; } if ( is_a(e) ) { @@ -1806,11 +2122,9 @@ static ex put_factors_into_lst(const ex& e) } if ( is_a(op) ) { result.append(op.op(0)); - result.append(op.op(1)); } if ( is_a(op) || is_a(op) ) { result.append(op); - result.append(1); } } result.prepend(nfac); @@ -1819,25 +2133,19 @@ static ex put_factors_into_lst(const ex& e) throw runtime_error("put_factors_into_lst: bad term."); } -#ifdef DEBUGFACTOR -ostream& operator<<(ostream& o, const vector& v) -{ - for ( size_t i=0; i& d) +/** Checks a set of numbers for whether each number has a unique prime factor. + * + * @param[in] f list of numbers to check + * @return true: if number set is bad, false: if set is okay (has unique + * prime factors) + */ +static bool checkdivisors(const lst& f) { - const int k = f.nops()-2; + const int k = f.nops(); numeric q, r; - d[0] = ex_to(f.op(0) * f.op(f.nops()-1)); - if ( d[0] == 1 && k == 1 && abs(f.op(1)) != 1 ) { - return false; - } - for ( int i=1; i<=k; ++i ) { + vector d(k); + d[0] = ex_to(abs(f.op(0))); + for ( int i=1; i(abs(f.op(i))); for ( int j=i-1; j>=0; --j ) { r = d[j]; @@ -1854,13 +2162,30 @@ static bool checkdivisors(const lst& f, vector& d) return false; } -static bool generate_set(const ex& u, const ex& vn, const exset& syms, const ex& f, const numeric& modulus, vector& a, vector& d) +/** Generates a set of evaluation points for a multivariate polynomial. + * The set fulfills the following conditions: + * 1. lcoeff(evaluated_polynomial) does not vanish + * 2. factors of lcoeff(evaluated_polynomial) have each a unique prime factor + * 3. evaluated_polynomial is square free + * See [Wan] for more details. + * + * @param[in] u multivariate polynomial to be factored + * @param[in] vn leading coefficient of u in x (x==first symbol in syms) + * @param[in] syms set of symbols that appear in u + * @param[in] f lst containing the factors of the leading coefficient vn + * @param[in,out] modulus integer modulus for random number generation (i.e. |a_i| < modulus) + * @param[out] u0 returns the evaluated (univariate) polynomial + * @param[out] a returns the valid evaluation points. must have initial size equal + * number of symbols-1 before calling generate_set + */ +static void generate_set(const ex& u, const ex& vn, const exset& syms, const lst& f, + numeric& modulus, ex& u0, vector& a) { - // computation of d is actually not necessary const ex& x = *syms.begin(); - bool trying = true; - do { - ex u0 = u; + while ( true ) { + ++modulus; + // generate a set of integers ... + u0 = u; ex vna = vn; ex vnatry; exset::const_iterator s = syms.begin(); @@ -1869,71 +2194,71 @@ static bool generate_set(const ex& u, const ex& vn, const exset& syms, const ex& do { a[i] = mod(numeric(rand()), 2*modulus) - modulus; vnatry = vna.subs(*s == a[i]); + // ... for which the leading coefficient doesn't vanish ... } while ( vnatry == 0 ); vna = vnatry; u0 = u0.subs(*s == a[i]); ++s; } - if ( gcd(u0,u0.diff(ex_to(x))) != 1 ) { + // ... for which u0 is square free ... + ex g = gcd(u0, u0.diff(ex_to(x))); + if ( !is_a(g) ) { continue; } - if ( is_a(vn) ) { - trying = false; - } - else { - lst fnum; - lst::const_iterator i = ex_to(f).begin(); - fnum.append(*i++); - bool problem = false; - while ( i!=ex_to(f).end() ) { - ex fs = *i; - if ( !is_a(fs) ) { + if ( !is_a(vn) ) { + // ... and for which the evaluated factors have each an unique prime factor + lst fnum = f; + fnum.let_op(0) = fnum.op(0) * u0.content(x); + for ( size_t i=1; i(fnum.op(i)) ) { s = syms.begin(); ++s; - for ( size_t j=0; j=p.ldegree(x); --i ) { - cont = gcd(cont, p.coeff(x,ex_to(i).to_int())); - if ( cont == 1 ) break; - } - ex pp = expand(normal(p / cont)); + // make polynomial primitive + ex unit, cont, pp; + poly.unitcontprim(x, unit, cont, pp); if ( !is_a(cont) ) { - return factor(cont) * factor(pp); + return factor_sqrfree(cont) * factor_sqrfree(pp); } - /* factor leading coefficient */ - pp = pp.collect(x); - ex vn = pp.lcoeff(x); - pp = pp.expand(); + // factor leading coefficient + ex vn = pp.collect(x).lcoeff(x); ex vnlst; if ( is_a(vn) ) { vnlst = lst(vn); @@ -1943,200 +2268,139 @@ static ex factor_multivariate(const ex& poly, const exset& syms) vnlst = put_factors_into_lst(vnfactors); } - const numeric maxtrials = 3; - numeric modulus = (vnlst.nops()-1 > 3) ? vnlst.nops()-1 : 3; - numeric minimalr = -1; + const unsigned int maxtrials = 3; + numeric modulus = (vnlst.nops() > 3) ? vnlst.nops() : 3; vector a(syms.size()-1, 0); - vector d((vnlst.nops()-1)/2+1, 0); + // try now to factorize until we are successful while ( true ) { - numeric trialcount = 0; + + unsigned int trialcount = 0; + unsigned int prime; + int factor_count = 0; + int min_factor_count = -1; ex u, delta; - unsigned int prime = 3; - size_t factor_count = 0; - ex ufac; - ex ufaclst; + ex ufac, ufaclst; + + // try several evaluation points to reduce the number of factors while ( trialcount < maxtrials ) { - bool problem = generate_set(pp, vn, syms, vnlst, modulus, a, d); - if ( problem ) { - ++modulus; - continue; - } - u = pp; - s = syms.begin(); - ++s; - for ( size_t i=0; i(u.lcoeff(x)), prime) != 0 ) { - umodpoly modpoly; - umodpoly_from_ex(modpoly, u, x, R); - if ( squarefree(modpoly) ) break; - } - prime = next_prime(prime); - R = find_modint_ring(prime); - } - ufac = factor(u); + // generate a set of valid evaluation points + generate_set(pp, vn, syms, ex_to(vnlst), modulus, u, a); + + ufac = factor_univariate(u, x, prime); ufaclst = put_factors_into_lst(ufac); - factor_count = (ufaclst.nops()-1)/2; - - // veto factorization for which gcd(u_i, u_j) != 1 for all i,j - upvec tryu; - for ( size_t i=0; i<(ufaclst.nops()-1)/2; ++i ) { - umodpoly newu; - umodpoly_from_ex(newu, ufaclst.op(i*2+1), x, R); - tryu.push_back(newu); - } - bool veto = false; - for ( size_t i=0; i factor_count ) { - minimalr = factor_count; + else if ( min_factor_count > factor_count ) { + // new minimum, reset trial counter + min_factor_count = factor_count; trialcount = 0; } - if ( minimalr <= 1 ) { - return poly; - } - } - - vector ftilde((vnlst.nops()-1)/2+1); - ftilde[0] = ex_to(vnlst.op(0)); - for ( size_t i=1; i(ft); - } - - vector used_flag((vnlst.nops()-1)/2+1, false); - vector D(factor_count, 1); - for ( size_t i=0; i<=factor_count; ++i ) { - numeric prefac; - if ( i == 0 ) { - prefac = ex_to(ufaclst.op(0)); - ftilde[0] = ftilde[0] / prefac; - vnlst.let_op(0) = vnlst.op(0) / prefac; - continue; - } - else { - prefac = ex_to(ufaclst.op(2*(i-1)+1).lcoeff(x)); - } - for ( size_t j=(vnlst.nops()-1)/2+1; j>0; --j ) { - if ( abs(ftilde[j-1]) == 1 ) { - used_flag[j-1] = true; - continue; - } - numeric g = gcd(prefac, ftilde[j-1]); - if ( g != 1 ) { - prefac = prefac / g; - numeric count = abs(iquo(g, ftilde[j-1])); - used_flag[j-1] = true; - if ( i > 0 ) { - if ( j == 1 ) { - D[i-1] = D[i-1] * pow(vnlst.op(0), count); - } - else { - D[i-1] = D[i-1] * pow(vnlst.op(2*(j-2)+1), count); - } - } - else { - ftilde[j-1] = ftilde[j-1] / prefac; - break; - } - ++j; - } - } - } - - bool some_factor_unused = false; - for ( size_t i=0; i C(factor_count); - if ( delta == 1 ) { - for ( size_t i=0; i(vn) ) { + // easy case + for ( size_t i=1; i ftilde(vnlst.nops()-1); + for ( size_t i=0; i(ft); + } + // calculate D and C + vector used_flag(ftilde.size(), false); + vector D(factor_count, 1); + if ( delta == 1 ) { + for ( int i=0; i(ufaclst.op(i+1).lcoeff(x)); + for ( int j=ftilde.size()-1; j>=0; --j ) { + int count = 0; + while ( irem(prefac, ftilde[j]) == 0 ) { + prefac = iquo(prefac, ftilde[j]); + ++count; + } + if ( count ) { + used_flag[j] = true; + D[i] = D[i] * pow(vnlst.op(j+1), count); + } + } + C[i] = D[i] * prefac; } - else { - ui = ufaclst.op(2*(i-1)+1); + } + else { + for ( int i=0; i(ufaclst.op(i+1).lcoeff(x)); + for ( int j=ftilde.size()-1; j>=0; --j ) { + int count = 0; + while ( irem(prefac, ftilde[j]) == 0 ) { + prefac = iquo(prefac, ftilde[j]); + ++count; + } + while ( irem(ex_to(delta)*prefac, ftilde[j]) == 0 ) { + numeric g = gcd(prefac, ex_to(ftilde[j])); + prefac = iquo(prefac, g); + delta = delta / (ftilde[j]/g); + ufaclst.let_op(i+1) = ufaclst.op(i+1) * (ftilde[j]/g); + ++count; + } + if ( count ) { + used_flag[j] = true; + D[i] = D[i] * pow(vnlst.op(j+1), count); + } + } + C[i] = D[i] * prefac; } - while ( true ) { - ex d = gcd(ui.lcoeff(x), Dtilde); - C[i] = D[i] * ( ui.lcoeff(x) / d ); - ui = ui * ( Dtilde[i] / d ); - delta = delta / ( Dtilde[i] / d ); - if ( delta == 1 ) break; - ui = delta * ui; - C[i] = delta * C[i]; - pp = pp * pow(delta, D.size()-1); + } + // check if something went wrong + bool some_factor_unused = false; + for ( size_t i=0; i epv; s = syms.begin(); @@ -2147,37 +2411,32 @@ static ex factor_multivariate(const ex& poly, const exset& syms) epv.push_back(ep); } - // calc bound B - ex maxcoeff; - for ( int i=u.degree(x); i>=u.ldegree(x); --i ) { - maxcoeff += pow(abs(u.coeff(x, i)),2); - } - cl_I normmc = ceiling1(the(cln::sqrt(ex_to(maxcoeff).to_cl_N()))); - unsigned int maxdegree = 0; - for ( size_t i=0; i (int)maxdegree ) { - maxdegree = ufaclst[2*i+1].degree(x); + // calc bound p^l + int maxdeg = 0; + for ( int i=1; i<=factor_count; ++i ) { + if ( ufaclst.op(i).degree(x) > maxdeg ) { + maxdeg = ufaclst[i].degree(x); } } - cl_I B = normmc * expt_pos(cl_I(2), maxdegree); + cl_I B = 2*calc_bound(u, x, maxdeg); cl_I l = 1; cl_I pl = prime; while ( pl < B ) { l = l + 1; pl = pl * prime; } - - upvec uvec; + + // set up modular factors (mod p^l) cl_modint_ring R = find_modint_ring(expt_pos(cl_I(prime),l)); - for ( size_t i=0; i<(ufaclst.nops()-1)/2; ++i ) { - umodpoly newu; - umodpoly_from_ex(newu, ufaclst.op(i*2+1), x, R); - uvec.push_back(newu); + upvec modfactors(ufaclst.nops()-1); + for ( size_t i=1; i 0 ) { + // pull out direct factors int ld = poly.ldegree(x); ex res = factor_univariate(expand(poly/pow(x, ld)), x); return res * pow(x,ld); @@ -2227,6 +2492,9 @@ static ex factor_sqrfree(const ex& poly) return res; } +/** Map used by factor() when factor_options::all is given to access all + * subexpressions and to call factor() on them. + */ struct apply_factor_map : public map_function { unsigned options; apply_factor_map(unsigned options_) : options(options_) { } @@ -2255,6 +2523,10 @@ struct apply_factor_map : public map_function { } // anonymous namespace +/** Interface function to the outside world. It checks the arguments, tries a + * square free factorization, and then calls factor_sqrfree to do the hard + * work. + */ ex factor(const ex& poly, unsigned options) { // check arguments @@ -2280,7 +2552,7 @@ ex factor(const ex& poly, unsigned options) } // make poly square free - ex sfpoly = sqrfree(poly, syms); + ex sfpoly = sqrfree(poly.expand(), syms); // factorize the square free components if ( is_a(sfpoly) ) {