X-Git-Url: https://www.ginac.de/ginac.git//ginac.git?p=ginac.git;a=blobdiff_plain;f=ginac%2Fclifford.h;h=17c70e1bf523250fa706d0ca72520821b0660486;hp=3fa3627d0dd6b9d131c4d0700ba4e01127650026;hb=7a9e31b4cf6bbdb07cc7364bcd7903e9fc15a995;hpb=ed94ac0dbcf6ee52d58b2399c25f474537f725fa diff --git a/ginac/clifford.h b/ginac/clifford.h index 3fa3627d..17c70e1b 100644 --- a/ginac/clifford.h +++ b/ginac/clifford.h @@ -28,6 +28,8 @@ #include "symbol.h" #include "idx.h" +#include + namespace GiNaC { @@ -35,7 +37,7 @@ namespace GiNaC { * algebra (the Dirac gamma matrices). These objects only carry Lorentz * indices. Spinor indices are hidden. A representation label (an unsigned * 8-bit integer) is used to distinguish elements from different Clifford - * algebras (objects with different labels commute). */ + * algebras (objects with different labels commutate). */ class clifford : public indexed { GINAC_DECLARE_REGISTERED_CLASS(clifford, indexed) @@ -46,8 +48,8 @@ public: clifford(const ex & b, const ex & mu, const ex & metr, unsigned char rl = 0); // internal constructors - clifford(unsigned char rl, const exvector & v, bool discardable = false, const ex & metr = lorentz_g(varidx((new symbol)->setflag(status_flags::dynallocated), 4),varidx((new symbol)->setflag(status_flags::dynallocated), 4))); - clifford(unsigned char rl, std::auto_ptr vp, const ex & metr = lorentz_g(varidx((new symbol)->setflag(status_flags::dynallocated),4),varidx((new symbol)->setflag(status_flags::dynallocated),4))); + clifford(unsigned char rl, const ex & metr, const exvector & v, bool discardable = false); + clifford(unsigned char rl, const ex & metr, std::auto_ptr vp); // functions overriding virtual functions from base classes protected: @@ -60,10 +62,10 @@ protected: // non-virtual functions in this class public: - unsigned char get_representation_label() const {return representation_label;} - ex get_metric() const {return metric;} - ex get_metric(const ex & i, const ex & j) const; - bool same_metric(const ex & other) const; + unsigned char get_representation_label() const { return representation_label; } + ex get_metric() const { return metric; } + ex get_metric(const ex & i, const ex & j) const; + bool same_metric(const ex & other) const; protected: void do_print_dflt(const print_dflt & c, unsigned level) const; @@ -72,7 +74,7 @@ protected: // member variables private: unsigned char representation_label; /**< Representation label to distinguish independent spin lines */ - ex metric; + ex metric; }; @@ -93,13 +95,14 @@ class cliffordunit : public tensor { GINAC_DECLARE_REGISTERED_CLASS(cliffordunit, tensor) - // other constructors + // other constructors protected: - cliffordunit(unsigned ti) : inherited(ti) {} + cliffordunit(unsigned ti) : inherited(ti) {} // functions overriding virtual functions from base classes public: bool contract_with(exvector::iterator self, exvector::iterator other, exvector & v) const; + // non-virtual functions in this class protected: void do_print(const print_context & c, unsigned level) const; @@ -123,7 +126,7 @@ protected: }; -/** This class represents the Dirac gamma5 object which anticommutes with +/** This class represents the Dirac gamma5 object which anticommutates with * all other gammas. */ class diracgamma5 : public tensor { @@ -188,7 +191,7 @@ ex dirac_ONE(unsigned char rl = 0); /** Create a Clifford unit object. * * @param mu Index (must be of class varidx or a derived class) - * @param metr Metric (must be of class tensor or a derived class) + * @param metr Metric (should be of class tensmetric or a derived class, or a symmetric matrix) * @param rl Representation label * @return newly constructed Clifford unit object */ ex clifford_unit(const ex & mu, const ex & metr, unsigned char rl = 0); @@ -225,6 +228,26 @@ ex dirac_gammaR(unsigned char rl = 0); * @param rl Representation label */ ex dirac_slash(const ex & e, const ex & dim, unsigned char rl = 0); +/** Calculate dirac traces over the specified set of representation labels. + * The computed trace is a linear functional that is equal to the usual + * trace only in D = 4 dimensions. In particular, the functional is not + * always cyclic in D != 4 dimensions when gamma5 is involved. + * + * @param e Expression to take the trace of + * @param rls Set of representation labels + * @param trONE Expression to be returned as the trace of the unit matrix */ +ex dirac_trace(const ex & e, const std::set & rls, const ex & trONE = 4); + +/** Calculate dirac traces over the specified list of representation labels. + * The computed trace is a linear functional that is equal to the usual + * trace only in D = 4 dimensions. In particular, the functional is not + * always cyclic in D != 4 dimensions when gamma5 is involved. + * + * @param e Expression to take the trace of + * @param rll List of representation labels + * @param trONE Expression to be returned as the trace of the unit matrix */ +ex dirac_trace(const ex & e, const lst & rll, const ex & trONE = 4); + /** Calculate the trace of an expression containing gamma objects with * a specified representation label. The computed trace is a linear * functional that is equal to the usual trace only in D = 4 dimensions. @@ -241,32 +264,67 @@ ex dirac_trace(const ex & e, unsigned char rl = 0, const ex & trONE = 4); * to check two expressions for equality. */ ex canonicalize_clifford(const ex & e); -/** Automorphism of the Clifford algebra, simply changes signs of all +/** Automorphism of the Clifford algebra, simply changes signs of all * clifford units. */ -ex clifford_prime (const ex &e) ; +ex clifford_prime(const ex & e); -/** Main anti-automorphism of the Clifford algebra: make reversion - * and changes signs of all clifford units*/ -inline ex clifford_bar(const ex &e) { return clifford_prime(e.conjugate());}; +/** Main anti-automorphism of the Clifford algebra: makes reversion + * and changes signs of all clifford units. */ +inline ex clifford_bar(const ex & e) { return clifford_prime(e.conjugate()); } -/** Reversion of the Clifford algebra, coinsides with the conjugate() */ -inline ex clifford_star(const ex &e) { return e.conjugate();}; +/** Reversion of the Clifford algebra, coincides with the conjugate(). */ +inline ex clifford_star(const ex & e) { return e.conjugate(); } -ex delete_ONE (const ex &e); +/** Replaces all dirac_ONE's in e with 1 (effectively removing them). */ +ex remove_dirac_ONE(const ex & e); -/** Calculation of the norm in the Clifford algebra */ -ex clifford_norm(const ex &e) ; +/** Calculation of the norm in the Clifford algebra. */ +ex clifford_norm(const ex & e); -/** Calculation of the inverse in the Clifford algebra */ -ex clifford_inverse(const ex &e) ; +/** Calculation of the inverse in the Clifford algebra. */ +ex clifford_inverse(const ex & e); -/** List or vector conversion into the Clifford vector +/** List or vector conversion into the Clifford vector. + * * @param v List or vector of coordinates * @param mu Index (must be of class varidx or a derived class) - * @param metr Metric (must be of class tensor or a derived class) + * @param metr Metric (should be of class tensmetric or a derived class, or a symmetric matrix) * @param rl Representation label * @return Clifford vector with given components */ -ex lst_to_clifford(const ex &v, const ex &mu, const ex &metr, unsigned char rl = 0) ; +ex lst_to_clifford(const ex & v, const ex & mu, const ex & metr, unsigned char rl = 0); + +/** An inverse function to lst_to_clifford(). For given Clifford vector extracts + * its components with respect to given Clifford unit. Obtained components may + * contain Clifford units with a different metric. Extraction is based on + * the algebraic formula (e * c.i + c.i * e)/ pow(e.i, 2) for non-degenerate cases + * (i.e. neither pow(e.i, 2) = 0). + * + * @param e Clifford expression to be decomposed into components + * @param c Clifford unit defining the metric for splitting (should have numeric dimension of indices) + * @param algebraic Use algebraic or symbolic algorithm for extractions */ +lst clifford_to_lst(const ex & e, const ex & c, bool algebraic=true); + +/** Calculations of Moebius transformations (conformal map) defined by a 2x2 Clifford matrix + * (a b\\c d) in linear spaces with arbitrary signature. The expression is + * (a * x + b)/(c * x + d), where x is a vector build from list v with metric G. + * (see Jan Cnops. An introduction to {D}irac operators on manifolds, v.24 of + * Progress in Mathematical Physics. Birkhauser Boston Inc., Boston, MA, 2002.) + * + * @param a (1,1) entry of the defining matrix + * @param b (1,2) entry of the defining matrix + * @param c (2,1) entry of the defining matrix + * @param d (2,2) entry of the defining matrix + * @param v Vector to be transformed + * @param G Metric of the surrounding space */ +ex clifford_moebius_map(const ex & a, const ex & b, const ex & c, const ex & d, const ex & v, const ex & G); + +/** The second form of Moebius transformations defined by a 2x2 Clifford matrix M + * This function takes the transformation matrix M as a single entity. + * + * @param M the defining matrix + * @param v Vector to be transformed + * @param G Metric of the surrounding space */ +ex clifford_moebius_map(const ex & M, const ex & v, const ex & G); } // namespace GiNaC