X-Git-Url: https://www.ginac.de/ginac.git//ginac.git?p=ginac.git;a=blobdiff_plain;f=ginac%2Fbasic.cpp;h=483844c0ee0a81bd66b2e5bb03a2d29b23620179;hp=875bf758135c9bd73e60bf6cc58ec108c608028a;hb=aa171175a88728d1e4c3305122fa4e45e45014ec;hpb=6b3768e8c544739ae53321539cb4d1e3112ded1b diff --git a/ginac/basic.cpp b/ginac/basic.cpp index 875bf758..483844c0 100644 --- a/ginac/basic.cpp +++ b/ginac/basic.cpp @@ -2,78 +2,115 @@ * * Implementation of GiNaC's ABC. */ +/* + * GiNaC Copyright (C) 1999-2003 Johannes Gutenberg University Mainz, Germany + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + */ + #include -#include #include +#ifdef DO_GINAC_ASSERT +# include +#endif -#include "ginac.h" +#include "basic.h" +#include "ex.h" +#include "numeric.h" +#include "power.h" +#include "symbol.h" +#include "lst.h" +#include "ncmul.h" +#include "relational.h" +#include "operators.h" +#include "wildcard.h" +#include "archive.h" #include "utils.h" +namespace GiNaC { + +GINAC_IMPLEMENT_REGISTERED_CLASS_OPT(basic, void, + print_func(&basic::do_print). + print_func(&basic::do_print_tree). + print_func(&basic::do_print_python_repr)) + ////////// -// default constructor, destructor, copy constructor assignment operator and helpers +// default constructor, destructor, copy constructor and assignment operator ////////// // public -#ifndef INLINE_BASIC_CONSTRUCTORS -basic::basic() : flags(0), refcount(0), tinfo_key(TINFO_BASIC) +/** basic copy constructor: implicitly assumes that the other class is of + * the exact same type (as it's used by duplicate()), so it can copy the + * tinfo_key and the hash value. */ +basic::basic(const basic & other) : tinfo_key(other.tinfo_key), flags(other.flags & ~status_flags::dynallocated), hashvalue(other.hashvalue), refcount(0) { - debugmsg("basic default constructor",LOGLEVEL_CONSTRUCT); - // nothing to do + GINAC_ASSERT(typeid(*this) == typeid(other)); } -basic::~basic() +/** basic assignment operator: the other object might be of a derived class. */ +const basic & basic::operator=(const basic & other) { - debugmsg("basic destructor",LOGLEVEL_DESTRUCT); - destroy(0); - ASSERT((!(flags & status_flags::dynallocated))||(refcount==0)); -} - -basic::basic(basic const & other) : flags(0), refcount(0), tinfo_key(TINFO_BASIC) -{ - debugmsg("basic copy constructor",LOGLEVEL_CONSTRUCT); - copy(other); -} -#endif - -basic const & basic::operator=(basic const & other) -{ - debugmsg("basic operator=",LOGLEVEL_ASSIGNMENT); - if (this != &other) { - destroy(1); - copy(other); - } - return *this; + unsigned fl = other.flags & ~status_flags::dynallocated; + if (tinfo_key != other.tinfo_key) { + // The other object is of a derived class, so clear the flags as they + // might no longer apply (especially hash_calculated). Oh, and don't + // copy the tinfo_key: it is already set correctly for this object. + flags = 0; + } else { + // The objects are of the exact same class, so copy the hash value. + hashvalue = other.hashvalue; + } + flags = fl; + refcount = 0; + return *this; } // protected -#if 0 -void basic::copy(basic const & other) -{ - flags=other.flags & ~ status_flags::dynallocated; - hashvalue=other.hashvalue; - tinfo_key=other.tinfo_key; -} -#endif +// none (all inlined) ////////// // other constructors ////////// -#ifndef INLINE_BASIC_CONSTRUCTORS -basic::basic(unsigned ti) : flags(0), refcount(0), tinfo_key(ti) -{ - debugmsg("basic constructor with tinfo_key",LOGLEVEL_CONSTRUCT); - // nothing to do -} -#endif +// none (all inlined) ////////// -// functions overriding virtual functions from bases classes +// archiving ////////// -// none +/** Construct object from archive_node. */ +basic::basic(const archive_node &n, lst &sym_lst) : flags(0), refcount(0) +{ + // Reconstruct tinfo_key from class name + std::string class_name; + if (n.find_string("class", class_name)) + tinfo_key = find_tinfo_key(class_name); + else + throw (std::runtime_error("archive node contains no class name")); +} + +/** Unarchive the object. */ +DEFAULT_UNARCHIVE(basic) + +/** Archive the object. */ +void basic::archive(archive_node &n) const +{ + n.add_string("class", class_name()); +} ////////// // new virtual functions which can be overridden by derived classes @@ -81,311 +118,762 @@ basic::basic(unsigned ti) : flags(0), refcount(0), tinfo_key(ti) // public -basic * basic::duplicate() const +/** Output to stream. This performs double dispatch on the dynamic type of + * *this and the dynamic type of the supplied print context. + * @param c print context object that describes the output formatting + * @param level value that is used to identify the precedence or indentation + * level for placing parentheses and formatting */ +void basic::print(const print_context & c, unsigned level) const { - debugmsg("basic duplicate",LOGLEVEL_DUPLICATE); - return new basic(*this); + print_dispatch(get_class_info(), c, level); } -bool basic::info(unsigned inf) const +/** Like print(), but dispatch to the specified class. Can be used by + * implementations of print methods to dispatch to the method of the + * superclass. + * + * @see basic::print */ +void basic::print_dispatch(const registered_class_info & ri, const print_context & c, unsigned level) const { - return false; // all possible properties are false for basic objects + // Double dispatch on object type and print_context type + const registered_class_info * reg_info = &ri; + const print_context_class_info * pc_info = &c.get_class_info(); + +next_class: + const std::vector & pdt = reg_info->options.get_print_dispatch_table(); + +next_context: + unsigned id = pc_info->options.get_id(); + if (id >= pdt.size() || !(pdt[id].is_valid())) { + + // Method not found, try parent print_context class + const print_context_class_info * parent_pc_info = pc_info->get_parent(); + if (parent_pc_info) { + pc_info = parent_pc_info; + goto next_context; + } + + // Method still not found, try parent class + const registered_class_info * parent_reg_info = reg_info->get_parent(); + if (parent_reg_info) { + reg_info = parent_reg_info; + pc_info = &c.get_class_info(); + goto next_class; + } + + // Method still not found. This shouldn't happen because basic (the + // base class of the algebraic hierarchy) registers a method for + // print_context (the base class of the print context hierarchy), + // so if we end up here, there's something wrong with the class + // registry. + throw (std::runtime_error(std::string("basic::print(): method for ") + class_name() + "/" + c.class_name() + " not found")); + + } else { + + // Call method + pdt[id](*this, c, level); + } } -int basic::nops() const +/** Default output to stream. */ +void basic::do_print(const print_context & c, unsigned level) const { - return 0; + c.s << "[" << class_name() << " object]"; } -ex basic::op(int const i) const +/** Tree output to stream. */ +void basic::do_print_tree(const print_tree & c, unsigned level) const { - return (const_cast(this))->let_op(i); + c.s << std::string(level, ' ') << class_name() + << std::hex << ", hash=0x" << hashvalue << ", flags=0x" << flags << std::dec + << ", nops=" << nops() + << std::endl; + for (size_t i=0; i(*index.bp).to_int()); - } - throw(std::invalid_argument("non-numeric indices not supported by this type")); + this->print(std::cerr); + std::cerr << std::endl; } -ex basic::operator[](int const i) const +/** Little wrapper around printtree to be called within a debugger. + * + * @see basic::dbgprint */ +void basic::dbgprinttree() const { - return op(i); + this->print(print_tree(std::cerr)); } -bool basic::has(ex const & other) const +/** Return relative operator precedence (for parenthezing output). */ +unsigned basic::precedence() const { - ASSERT(other.bp!=0); - if (is_equal(*other.bp)) return true; - if (nops()>0) { - for (int i=0; ihold(); + if (is_exactly_a(index)) + return op(static_cast(ex_to(index).to_int())); + + throw(std::invalid_argument(std::string("non-numeric indices not supported by ") + class_name())); } -ex basic::evalf(int level) const +ex basic::operator[](size_t i) const { - return *this; + return op(i); } -ex basic::subs(lst const & ls, lst const & lr) const +ex & basic::operator[](const ex & index) { - return *this; + if (is_exactly_a(index)) + return let_op(ex_to(index).to_int()); + + throw(std::invalid_argument(std::string("non-numeric indices not supported by ") + class_name())); } -exvector basic::get_indices(void) const +ex & basic::operator[](size_t i) { - return exvector(); // return an empty exvector + return let_op(i); } -ex basic::simplify_ncmul(exvector const & v) const +/** Test for occurrence of a pattern. An object 'has' a pattern if it matches + * the pattern itself or one of the children 'has' it. As a consequence + * (according to the definition of children) given e=x+y+z, e.has(x) is true + * but e.has(x+y) is false. */ +bool basic::has(const ex & pattern) const { - return simplified_ncmul(v); + lst repl_lst; + if (match(pattern, repl_lst)) + return true; + for (size_t i=0; isetflag(status_flags::dynallocated); + copy->clearflag(status_flags::hash_calculated | status_flags::expanded); + for (size_t i=0; ilet_op(i) = f(copy->op(i)); + return *copy; +} -int basic::compare_same_type(basic const & other) const +/** Return degree of highest power in object s. */ +int basic::degree(const ex & s) const { - return compare_pointers(this, &other); + return is_equal(ex_to(s)) ? 1 : 0; } -bool basic::is_equal_same_type(basic const & other) const +/** Return degree of lowest power in object s. */ +int basic::ldegree(const ex & s) const { - return compare_same_type(other)==0; + return is_equal(ex_to(s)) ? 1 : 0; } -unsigned basic::return_type(void) const +/** Return coefficient of degree n in object s. */ +ex basic::coeff(const ex & s, int n) const { - return return_types::commutative; + if (is_equal(ex_to(s))) + return n==1 ? _ex1 : _ex0; + else + return n==0 ? *this : _ex0; } -unsigned basic::return_type_tinfo(void) const +/** Sort expanded expression in terms of powers of some object(s). + * @param s object(s) to sort in + * @param distributed recursive or distributed form (only used when s is a list) */ +ex basic::collect(const ex & s, bool distributed) const { - return tinfo(); + ex x; + if (is_a(s)) { + + // List of objects specified + if (s.nops() == 0) + return *this; + if (s.nops() == 1) + return collect(s.op(0)); + + else if (distributed) { + + // Get lower/upper degree of all symbols in list + size_t num = s.nops(); + struct sym_info { + ex sym; + int ldeg, deg; + int cnt; // current degree, 'counter' + ex coeff; // coefficient for degree 'cnt' + }; + sym_info *si = new sym_info[num]; + ex c = *this; + for (size_t i=0; ildegree(si[i].sym); + si[i].deg = this->degree(si[i].sym); + c = si[i].coeff = c.coeff(si[i].sym, si[i].cnt); + } + + while (true) { + + // Calculate coeff*x1^c1*...*xn^cn + ex y = _ex1; + for (size_t i=0; ildegree(s); n<=this->degree(s); ++n) + x += this->coeff(s,n)*power(s,n); + } + + // correct for lost fractional arguments and return + return x + (*this - x).expand(); +} + +/** Perform automatic non-interruptive term rewriting rules. */ +ex basic::eval(int level) const +{ + // There is nothing to do for basic objects: + return hold(); } -unsigned basic::calchash(void) const +/** Function object to be applied by basic::evalf(). */ +struct evalf_map_function : public map_function { + int level; + evalf_map_function(int l) : level(l) {} + ex operator()(const ex & e) { return evalf(e, level); } +}; + +/** Evaluate object numerically. */ +ex basic::evalf(int level) const { - unsigned v=golden_ratio_hash(tinfo()); - for (int i=0; i(this))->let_op(i).gethash(); - } + if (nops() == 0) + return *this; + else { + if (level == 1) + return *this; + else if (level == -max_recursion_level) + throw(std::runtime_error("max recursion level reached")); + else { + evalf_map_function map_evalf(level - 1); + return map(map_evalf); + } + } +} - v = v & 0x7FFFFFFFU; - - // store calculated hash value only if object is already evaluated - if (flags & status_flags::evaluated) { - setflag(status_flags::hash_calculated); - hashvalue=v; - } +/** Function object to be applied by basic::evalm(). */ +struct evalm_map_function : public map_function { + ex operator()(const ex & e) { return evalm(e); } +} map_evalm; - return v; +/** Evaluate sums, products and integer powers of matrices. */ +ex basic::evalm() const +{ + if (nops() == 0) + return *this; + else + return map(map_evalm); } -ex basic::expand(unsigned options) const +/** Perform automatic symbolic evaluations on indexed expression that + * contains this object as the base expression. */ +ex basic::eval_indexed(const basic & i) const + // this function can't take a "const ex & i" because that would result + // in an infinite eval() loop { - return this->setflag(status_flags::expanded); + // There is nothing to do for basic objects + return i.hold(); } -////////// -// non-virtual functions in this class -////////// +/** Add two indexed expressions. They are guaranteed to be of class indexed + * (or a subclass) and their indices are compatible. This function is used + * internally by simplify_indexed(). + * + * @param self First indexed expression; it's base object is *this + * @param other Second indexed expression + * @return sum of self and other + * @see ex::simplify_indexed() */ +ex basic::add_indexed(const ex & self, const ex & other) const +{ + return self + other; +} -// public +/** Multiply an indexed expression with a scalar. This function is used + * internally by simplify_indexed(). + * + * @param self Indexed expression; it's base object is *this + * @param other Numeric value + * @return product of self and other + * @see ex::simplify_indexed() */ +ex basic::scalar_mul_indexed(const ex & self, const numeric & other) const +{ + return self * other; +} -ex basic::subs(ex const & e) const -{ - // accept 2 types of replacement expressions: - // - symbol==ex - // - lst(symbol1==ex1,symbol2==ex2,...) - // convert to subs(lst(symbol1,symbol2,...),lst(ex1,ex2,...)) - // additionally, idx can be used instead of symbol - if (e.info(info_flags::relation_equal)) { - return subs(lst(e)); - } - if (!e.info(info_flags::list)) { - throw(std::invalid_argument("basic::subs(ex): argument must be a list")); - } - lst ls; - lst lr; - for (int i=0; i(pattern)) { + + // Wildcard matches anything, but check whether we already have found + // a match for that wildcard first (if so, it the earlier match must + // be the same expression) + for (lst::const_iterator it = repl_lst.begin(); it != repl_lst.end(); ++it) { + if (it->op(0).is_equal(pattern)) + return is_equal(ex_to(it->op(1))); + } + repl_lst.append(pattern == *this); + return true; - if (typeid_this==typeid_other) { - return compare_same_type(other); - } + } else { - // special rule: sort numeric() to end - if (typeid_this==typeid_numeric) return 1; - if (typeid_other==typeid_numeric) return -1; + // Expression must be of the same type as the pattern + if (tinfo() != ex_to(pattern).tinfo()) + return false; - // otherwise: sort according to type_info order (arbitrary, but well defined) - return typeid_this.before(typeid_other) ? -1 : 1; + // Number of subexpressions must match + if (nops() != pattern.nops()) + return false; + + // No subexpressions? Then just compare the objects (there can't be + // wildcards in the pattern) + if (nops() == 0) + return is_equal_same_type(ex_to(pattern)); + + // Check whether attributes that are not subexpressions match + if (!match_same_type(ex_to(pattern))) + return false; + + // Otherwise the subexpressions must match one-to-one + for (size_t i=0; isecond; + } else { + for (it = m.begin(); it != m.end(); ++it) { + lst repl_lst; + if (match(ex_to(it->first), repl_lst)) + return it->second.subs(repl_lst, options | subs_options::no_pattern); // avoid infinite recursion when re-substituting the wildcards + } + } - if (hash_thishash_other) return 1; + return *this; +} - unsigned typeid_this = tinfo(); - unsigned typeid_other = other.tinfo(); +/** Substitute a set of objects by arbitrary expressions. The ex returned + * will already be evaluated. */ +ex basic::subs(const exmap & m, unsigned options) const +{ + size_t num = nops(); + if (num) { - if (typeid_thisprintraw(cout); - cout << " and "; - other.printraw(cout); - cout << endl; - */ - return -1; - } - if (typeid_this>typeid_other) { - /* - cout << "hash collision, different types: " - << *this << " and " << other << endl; - this->printraw(cout); - cout << " and "; - other.printraw(cout); - cout << endl; - */ - return 1; - } + // Substitute in subexpressions + for (size_t i=0; isetflag(status_flags::dynallocated); + copy->clearflag(status_flags::hash_calculated | status_flags::expanded); - int cmpval=compare_same_type(other); - if ((cmpval!=0)&&(hash_this<0x80000000U)) { - /* - cout << "hash collision, same type: " - << *this << " and " << other << endl; - this->printraw(cout); - cout << " and "; - other.printraw(cout); - cout << endl; - */ - } - return cmpval; + // Substitute the changed operand + copy->let_op(i++) = subsed_op; + + // Substitute the other operands + for (; ilet_op(i) = op(i).subs(m, options); + + // Perform substitutions on the new object as a whole + return copy->subs_one_level(m, options); + } + } + } + + // Nothing changed or no subexpressions + return subs_one_level(m, options); +} + +/** Default interface of nth derivative ex::diff(s, n). It should be called + * instead of ::derivative(s) for first derivatives and for nth derivatives it + * just recurses down. + * + * @param s symbol to differentiate in + * @param nth order of differentiation + * @see ex::diff */ +ex basic::diff(const symbol & s, unsigned nth) const +{ + // trivial: zeroth derivative + if (nth==0) + return ex(*this); + + // evaluate unevaluated *this before differentiating + if (!(flags & status_flags::evaluated)) + return ex(*this).diff(s, nth); + + ex ndiff = this->derivative(s); + while (!ndiff.is_zero() && // stop differentiating zeros + nth>1) { + ndiff = ndiff.diff(s); + --nth; + } + return ndiff; } -bool basic::is_equal(basic const & other) const +/** Return a vector containing the free indices of an expression. */ +exvector basic::get_free_indices() const { - unsigned hash_this = gethash(); - unsigned hash_other = other.gethash(); + return exvector(); // return an empty exvector +} - if (hash_this!=hash_other) return false; +ex basic::eval_ncmul(const exvector & v) const +{ + return hold_ncmul(v); +} - unsigned typeid_this = tinfo(); - unsigned typeid_other = other.tinfo(); +// protected - if (typeid_this!=typeid_other) return false; +/** Function object to be applied by basic::derivative(). */ +struct derivative_map_function : public map_function { + const symbol &s; + derivative_map_function(const symbol &sym) : s(sym) {} + ex operator()(const ex & e) { return diff(e, s); } +}; - ASSERT(typeid(*this)==typeid(other)); +/** Default implementation of ex::diff(). It maps the operation on the + * operands (or returns 0 when the object has no operands). + * + * @see ex::diff */ +ex basic::derivative(const symbol & s) const +{ + if (nops() == 0) + return _ex0; + else { + derivative_map_function map_derivative(s); + return map(map_derivative); + } +} - return is_equal_same_type(other); +/** Returns order relation between two objects of same type. This needs to be + * implemented by each class. It may never return anything else than 0, + * signalling equality, or +1 and -1 signalling inequality and determining + * the canonical ordering. (Perl hackers will wonder why C++ doesn't feature + * the spaceship operator <=> for denoting just this.) */ +int basic::compare_same_type(const basic & other) const +{ + return compare_pointers(this, &other); } -// protected +/** Returns true if two objects of same type are equal. Normally needs + * not be reimplemented as long as it wasn't overwritten by some parent + * class, since it just calls compare_same_type(). The reason why this + * function exists is that sometimes it is easier to determine equality + * than an order relation and then it can be overridden. */ +bool basic::is_equal_same_type(const basic & other) const +{ + return compare_same_type(other)==0; +} -basic const & basic::hold(void) const +/** Returns true if the attributes of two objects are similar enough for + * a match. This function must not match subexpressions (this is already + * done by basic::match()). Only attributes not accessible by op() should + * be compared. This is also the reason why this function doesn't take the + * wildcard replacement list from match() as an argument: only subexpressions + * are subject to wildcard matches. Also, this function only needs to be + * implemented for container classes because is_equal_same_type() is + * automatically used instead of match_same_type() if nops() == 0. + * + * @see basic::match */ +bool basic::match_same_type(const basic & other) const { - return setflag(status_flags::evaluated); + // The default is to only consider subexpressions, but not any other + // attributes + return true; } -void basic::ensure_if_modifiable(void) const +unsigned basic::return_type() const { - if (refcount>1) { - throw(std::runtime_error("cannot modify multiply referenced object")); - } + return return_types::commutative; } -////////// -// static member variables -////////// +unsigned basic::return_type_tinfo() const +{ + return tinfo(); +} -// protected +/** Compute the hash value of an object and if it makes sense to store it in + * the objects status_flags, do so. The method inherited from class basic + * computes a hash value based on the type and hash values of possible + * members. For this reason it is well suited for container classes but + * atomic classes should override this implementation because otherwise they + * would all end up with the same hashvalue. */ +unsigned basic::calchash() const +{ + unsigned v = golden_ratio_hash(tinfo()); + for (size_t i=0; iop(i).gethash(); + } + + // store calculated hash value only if object is already evaluated + if (flags & status_flags::evaluated) { + setflag(status_flags::hash_calculated); + hashvalue = v; + } + + return v; +} + +/** Function object to be applied by basic::expand(). */ +struct expand_map_function : public map_function { + unsigned options; + expand_map_function(unsigned o) : options(o) {} + ex operator()(const ex & e) { return expand(e, options); } +}; + +/** Expand expression, i.e. multiply it out and return the result as a new + * expression. */ +ex basic::expand(unsigned options) const +{ + if (nops() == 0) + return (options == 0) ? setflag(status_flags::expanded) : *this; + else { + expand_map_function map_expand(options); + return ex_to(map(map_expand)).setflag(options == 0 ? status_flags::expanded : 0); + } +} -unsigned basic::precedence=70; -unsigned basic::delta_indent=4; ////////// -// global constants +// non-virtual functions in this class ////////// -const basic some_basic; -type_info const & typeid_basic=typeid(some_basic); +// public + +/** Compare objects syntactically to establish canonical ordering. + * All compare functions return: -1 for *this less than other, 0 equal, + * 1 greater. */ +int basic::compare(const basic & other) const +{ + const unsigned hash_this = gethash(); + const unsigned hash_other = other.gethash(); + if (hash_thishash_other) return 1; + + const unsigned typeid_this = tinfo(); + const unsigned typeid_other = other.tinfo(); + if (typeid_this==typeid_other) { + GINAC_ASSERT(typeid(*this)==typeid(other)); +// int cmpval = compare_same_type(other); +// if (cmpval!=0) { +// std::cout << "hash collision, same type: " +// << *this << " and " << other << std::endl; +// this->print(print_tree(std::cout)); +// std::cout << " and "; +// other.print(print_tree(std::cout)); +// std::cout << std::endl; +// } +// return cmpval; + return compare_same_type(other); + } else { +// std::cout << "hash collision, different types: " +// << *this << " and " << other << std::endl; +// this->print(print_tree(std::cout)); +// std::cout << " and "; +// other.print(print_tree(std::cout)); +// std::cout << std::endl; + return (typeid_thisgethash()!=other.gethash()) + return false; + if (this->tinfo()!=other.tinfo()) + return false; + + GINAC_ASSERT(typeid(*this)==typeid(other)); + + return is_equal_same_type(other); +} + +// protected + +/** Stop further evaluation. + * + * @see basic::eval */ +const basic & basic::hold() const +{ + return setflag(status_flags::evaluated); +} + +/** Ensure the object may be modified without hurting others, throws if this + * is not the case. */ +void basic::ensure_if_modifiable() const +{ + if (refcount > 1) + throw(std::runtime_error("cannot modify multiply referenced object")); + clearflag(status_flags::hash_calculated | status_flags::evaluated); +} ////////// // global variables ////////// -int max_recursion_level=1024; +int max_recursion_level = 1024; + +} // namespace GiNaC