X-Git-Url: https://www.ginac.de/ginac.git//ginac.git?p=ginac.git;a=blobdiff_plain;f=doc%2Ftutorial%2Fginac.texi;h=eaae40afd3eb0038f6e56b62a57732c2637e5146;hp=04ab4b4056c20112d3316ecafee7a949e297a029;hb=9c1cf297cde7fb7d7cd863684c1754c3d140f93f;hpb=a991a479a18fe84a2d32d047ad9222584f448eca diff --git a/doc/tutorial/ginac.texi b/doc/tutorial/ginac.texi index 04ab4b40..eaae40af 100644 --- a/doc/tutorial/ginac.texi +++ b/doc/tutorial/ginac.texi @@ -4956,10 +4956,10 @@ Arguments equal to zero get considered, too. Riemann's zeta function @code{zeta} evaluates also for negative integers and positive even integers. For example: @example -> Li({3,1},{x,1}); +> Li(@{3,1@},@{x,1@}); S(2,2,x) -> H({-3,2},1); --zeta({3,2},{-1,-1}) +> H(@{-3,2@},1); +-zeta(@{3,2@},@{-1,-1@}) > S(3,1,1); 1/90*Pi^4 @end example @@ -4972,10 +4972,10 @@ quickly be messed up, for example. Therefore GiNaC offers a C++ function @code{Li} (@code{eval()} already cares for the possible downgrade): @example -> convert_H_to_Li({0,-2,-1,3},x); -Li({3,1,3},{-x,1,-1}) -> convert_H_to_Li({2,-1,0},x); --Li({2,1},{x,-1})*log(x)+2*Li({3,1},{x,-1})+Li({2,2},{x,-1}) +> convert_H_to_Li(@{0,-2,-1,3@},x); +Li(@{3,1,3@},@{-x,1,-1@}) +> convert_H_to_Li(@{2,-1,0@},x); +-Li(@{2,1@},@{x,-1@})*log(x)+2*Li(@{3,1@},@{x,-1@})+Li(@{2,2@},@{x,-1@}) @end example Every function apart from the multiple polylogarithm @code{Li} can be numerically evaluated for @@ -4990,7 +4990,7 @@ $x_1x_2\cdots x_i < 1$ holds. @example > Digits=100; 100 -> evalf(zeta({3,1,3,1})); +> evalf(zeta(@{3,1,3,1@})); 0.005229569563530960100930652283899231589890420784634635522547448972148869544... @end example