X-Git-Url: https://www.ginac.de/ginac.git//ginac.git?p=ginac.git;a=blobdiff_plain;f=doc%2Ftutorial%2Fginac.texi;h=d2fa84eb6af16f58820731d25b2c4a5ce1252af7;hp=347c20db445d9047b5bbcfcd45eaaec74804dfc6;hb=c1e78ae6da1836cb5ca9f2f2967a97b1a37f99b2;hpb=d2df5be8fc866c55ea2d893620883ee070064e33 diff --git a/doc/tutorial/ginac.texi b/doc/tutorial/ginac.texi index 347c20db..d2fa84eb 100644 --- a/doc/tutorial/ginac.texi +++ b/doc/tutorial/ginac.texi @@ -3176,8 +3176,9 @@ $2^n$ @end tex dimensional algebra with generators @samp{e~k} satisfying the identities -@samp{e~i e~j + e~j e~i = B(i, j)} for some symmetric matrix (@code{metric}) -@math{B(i, j)}. Such generators are created by the function +@samp{e~i e~j + e~j e~i = B(i, j)} for some matrix (@code{metric}) +@math{B(i, j)}, which may be non-symmetric. Such generators are created +by the function @example ex clifford_unit(const ex & mu, const ex & metr, unsigned char rl = 0); @@ -3192,6 +3193,15 @@ Clifford algebras (which will commute with each other). Note that the call @code{dirac_gamma(mu)}. The method @code{clifford::get_metric()} returns a metric defining this Clifford number. +If the matrix @math{B(i, j)} is in fact symmetric you may prefer to create +the Clifford algebra units with a call like that + +@example + ex e = clifford_unit(mu, indexed(B, sy_symm(), i, j)); +@end example + +since this may yield some further automatic simplifications. + Individual generators of a Clifford algebra can be accessed in several ways. For example @@ -3333,12 +3343,13 @@ The last provided function is @cindex @code{clifford_moebius_map()} @example ex clifford_moebius_map(const ex & a, const ex & b, const ex & c, - const ex & d, const ex & v, const ex & G); + const ex & d, const ex & v, const ex & G, unsigned char rl = 0); + ex clifford_moebius_map(const ex & M, const ex & v, const ex & G, unsigned char rl = 0); @end example It takes a list or vector @code{v} and makes the Moebius (conformal or linear-fractional) transformation @samp{v -> -(av+b)/(cv+d)} defined by the matrix @samp{[[a, b], [c, d]]}. The last +(av+b)/(cv+d)} defined by the matrix @samp{M = [[a, b], [c, d]]}. The parameter @code{G} defines the metric of the surrounding (pseudo-)Euclidean space. The returned value of this function is a list of components of the resulting vector.