X-Git-Url: https://www.ginac.de/ginac.git//ginac.git?p=ginac.git;a=blobdiff_plain;f=doc%2Ftutorial%2Fginac.texi;h=555b2d66e5b14b3cba251507952cecc1f95c5606;hp=cda94b20955f2d5d7e039adb02c8f415110b60ef;hb=67467d256b44f5e08498ca81c946d9ffaa25d1e2;hpb=da211dc876958abc2563de16aff673296053505e diff --git a/doc/tutorial/ginac.texi b/doc/tutorial/ginac.texi index cda94b20..555b2d66 100644 --- a/doc/tutorial/ginac.texi +++ b/doc/tutorial/ginac.texi @@ -921,7 +921,12 @@ To get an idea about what kinds of symbolic composites may be built we have a look at the most important classes in the class hierarchy and some of the relations among the classes: +@ifnotinfo @image{classhierarchy} +@end ifnotinfo +@ifinfo + +@end ifinfo The abstract classes shown here (the ones without drop-shadow) are of no interest for the user. They are used internally in order to avoid code @@ -8551,7 +8556,12 @@ addition and multiplication, one container for exponentiation with base and exponent and some atomic leaves of symbols and numbers in this fashion: +@ifnotinfo @image{repnaive} +@end ifnotinfo +@ifinfo + +@end ifinfo @cindex pair-wise representation However, doing so results in a rather deeply nested tree which will @@ -8562,7 +8572,12 @@ spirit we can store the multiplication as a sequence of terms, each having a numeric exponent and a possibly complicated base, the tree becomes much more flat: +@ifnotinfo @image{reppair} +@end ifnotinfo +@ifinfo + +@end ifinfo The number @code{3} above the symbol @code{d} shows that @code{mul} objects are treated similarly where the coefficients are interpreted as @@ -8584,7 +8599,12 @@ $2d^3 \left( 4a + 5b - 3 \right)$: @math{2*d^3*(4*a+5*b-3)}: @end ifnottex +@ifnotinfo @image{repreal} +@end ifnotinfo +@ifinfo + +@end ifinfo @cindex radical This also allows for a better handling of numeric radicals, since