X-Git-Url: https://www.ginac.de/ginac.git//ginac.git?p=ginac.git;a=blobdiff_plain;f=doc%2Fpowerlaws.tex;h=ade0547d048a51f65f414c08416a3979ea885ee8;hp=1943957ac0e4b38564e1ada165f68616ecacc410;hb=4549628b93b6a795baf8f2dc836838acb88b4ffa;hpb=6053d367c8d626d81885fba6cd439c10a7f9901f diff --git a/doc/powerlaws.tex b/doc/powerlaws.tex index 1943957a..ade0547d 100644 --- a/doc/powerlaws.tex +++ b/doc/powerlaws.tex @@ -151,7 +151,19 @@ Hence & = & x^{ab} \mbox{ q.e.d.} \end{eqnarray} -proof contributed by Adam Strzebonski from Wolfram Research -({\tt adams@wolfram.com}) in newsgroup {\tt sci.math.symbolic}. +Proof contributed by Adam Strzebonski ({\tt adams@wolfram.com}) from +Wolfram Research in newsgroup {\tt sci.math.symbolic}. -\end{document} \ No newline at end of file +\subsubsection{$x$ positive, $a$ real and $b$ arbitrary complex} +We have +\begin{equation} +(x^a)^b = e^{b\log e^{a\log x}}. +\end{equation} +Because $a$ is real and $x$ is positive, $a\log x$ is real. From this +it follows that $\log e^{a\log x} = a\log x$. I.e, we see that +\begin{equation} +(x^a)^b = e^{ba\log x} = x^{ab}. +\end{equation} +Qed. + +\end{document}