X-Git-Url: https://www.ginac.de/ginac.git//ginac.git?p=ginac.git;a=blobdiff_plain;f=doc%2Fpowerlaws.tex;h=1943957ac0e4b38564e1ada165f68616ecacc410;hp=75ce8c92e0919e76e3ba80c7e7e53616eeefd3f7;hb=e8099a0ac2352ff958142455048ef872a1d97852;hpb=5c0989497994b35faa9c17b18f936c21dbb22d78 diff --git a/doc/powerlaws.tex b/doc/powerlaws.tex index 75ce8c92..1943957a 100644 --- a/doc/powerlaws.tex +++ b/doc/powerlaws.tex @@ -7,7 +7,7 @@ \subsection{Definitions} Definitions for power and log: -\begin{equation} +\begin{equation}\label{powerdef} x^a \equiv e^{a \ln x} \end{equation} \begin{equation} @@ -19,18 +19,20 @@ x^a \equiv e^{a \ln x} \begin{equation} e^x e^y = e^{x+y} \end{equation} -for arbitrary complex $x$ and $y$ +for arbitrary complex \(x\) and \(y\) (with~(\ref{powerdef}) we obtain +the rule \(x^ax^b=x^{a+b}\) since \(x^ax^b\equiv e^{a\ln x}e^{b\ln x} = +e^{(a+b)\ln x}\equiv x^{a+b}\) for arbitrary complex \(a,b,x\)) \begin{equation} x^{-a} = \frac{1}{x^a} \end{equation} -for arbitrary complex $x$ and $a$ +for arbitrary complex \(x\) and \(a\) -\subsection{$(ax)^b=a^b x^b$} +\subsection{\((ax)^b=a^b x^b\)} -\subsubsection{$b$ integer, $x$ and $a$ arbitrary complex} +\subsubsection{\(b\) integer, \(x\) and \(a\) arbitrary complex} -assume $b>0$ +assume \(b>0\) \begin{eqnarray} (ax)^b & = & \underbrace{(ax) \cdots (ax)}_{b \times} @@ -41,7 +43,7 @@ assume $b>0$ & = & a^b x^b \mbox{ q.e.d.} \end{eqnarray} -if $b<0$ (so $b=-|b|$) +if \(b<0\) (so \(b=-|b|\)) \begin{eqnarray} (ax)^b & = & \frac{1}{(ax)^{|b|}} \nonumber\\ @@ -52,7 +54,7 @@ if $b<0$ (so $b=-|b|$) & = & a^b x^b \end{eqnarray} -\subsubsection{$a>0$, $x$ and $b$ arbitrary complex} +\subsubsection{\(a>0\), \(x\) and \(b\) arbitrary complex} \begin{eqnarray} (ax)^b & = & e^{b \ln(ax)} @@ -60,7 +62,7 @@ if $b<0$ (so $b=-|b|$) & = & e^{b (\ln |ax| + i \arg(ax))} \end{eqnarray} -if $a$ is real and positive: +if \(a\) is real and positive: \begin{equation} \ln |ax| = \ln |a| + \ln |x| = \ln a + \ln |x| \end{equation} @@ -81,11 +83,11 @@ e^{b (\ln a + \ln |x| + i \arg(x))} & = & a^b x^b \mbox{ q.e.d.} \end{eqnarray} -\subsection{$(x^a)^b = x^{ab}$} +\subsection{\((x^a)^b = x^{ab}\)} -\subsubsection{$b$ integer, $x$ and $a$ arbitrary complex} +\subsubsection{\(b\) integer, \(x\) and \(a\) arbitrary complex} -assume $b>0$ +assume \(b>0\) \begin{eqnarray} (x^a)^b & = & \underbrace{(x^a) \cdots (x^a)}_{b \times} @@ -99,7 +101,7 @@ assume $b>0$ & = & x^{ab} \mbox{ q.e.d.} \end{eqnarray} -if $b<0$ (so $b=-|b|$) +if \(b<0\) (so \(b=-|b|\)) \begin{eqnarray} (x^a)^b & = & \frac{1}{(x^a)^{|b|}} \nonumber\\ @@ -110,13 +112,13 @@ if $b<0$ (so $b=-|b|$) & = & x^{ab} \end{eqnarray} -\subsubsection{$-1 < a \le 1$, $x$ and $b$ arbitrary complex} +\subsubsection{\(-1 < a \le 1\), \(x\) and \(b\) arbitrary complex} We have \begin{equation} x^a=e^{a \ln|x| + ia\arg(x)} \end{equation} -if $a$ is real +if \(a\) is real \begin{equation} |x^a|=e^{a\ln|x|} \end{equation} @@ -124,19 +126,19 @@ and \begin{equation} \arg(x^a)-a\arg(x)=2k\pi \end{equation} -now if $-1 < a \le 1$, then $-\pi < a\arg(x) \le \pi$, -and so $k=0$, i.e. +now if \(-1 < a \le 1\), then \(-\pi < a\arg(x) \le \pi\), +and so \(k=0\), i.e. \begin{equation} \arg(x^a)=a\arg(x) \end{equation} -(Note that for $a=-1$ this may not be true, as $-1 \arg(x)$ may be equal to $-\pi$.) +(Note that for \(a=-1\) this may not be true, as \(-1 \arg(x)\) may be equal to \(-\pi\).) So \begin{eqnarray} \ln(x^a) & = & \ln|x^a| + i\arg(x^a) \nonumber\\ & = & \ln (e^{a\ln|x|})+ia\arg(x) \nonumber\\ -& = & a \ln |x| + ia\arg(x) \mbox{ (because $a\ln|x|$ is real)} +& = & a \ln |x| + ia\arg(x) \mbox{ (because \(a\ln|x|\) is real)} \nonumber\\ & = & a\ln x \end{eqnarray}