@@ -119,7 +119,7 @@ for example \$0, \$1 etc.
.SS LAST PRINTED EXPRESSIONS
ginsh provides the three special symbols
.RS
-", "" and """
+%, %% and %%%
.RE
that refer to the last, second last, and third last printed expression, respectively.
These are handy if you want to use the results of previous computations in a new
@@ -144,9 +144,6 @@ unary minus
.B *
multiplication
.TP
-.B %
-non-commutative multiplication
-.TP
.B /
division
.TP
@@ -243,6 +240,9 @@ detail here. Please refer to the GiNaC documentation.
.BI collect_distributed( expression ", " list )
\- collects coefficients of like powers (result in distributed form)
.br
+.BI collect_common_factors( expression )
+\- collects common factors from the terms of sums
+.br
.BI content( expression ", " symbol )
\- content part of a polynomial
.br
@@ -345,6 +345,9 @@ detail here. Please refer to the GiNaC documentation.
.BI series( expression ", " relation-or-symbol ", " order )
\- series expansion
.br
+.BI sprem( expression ", " expression ", " symbol )
+\- sparse pseudo-remainder of polynomials
+.br
.BI sqrfree( "expression [" ", " symbol-list] )
\- square-free factorization of a polynomial
.br
@@ -407,6 +410,21 @@ This is useful for debugging and for learning about GiNaC internals.
.PP
The command
.RS
+.BI print_latex( expression );
+.RE
+prints a LaTeX representation of the given
+.IR expression .
+.PP
+The command
+.RS
+.BI print_csrc( expression );
+.RE
+prints the given
+.I expression
+in a way that can be used in a C or C++ program.
+.PP
+The command
+.RS
.BI iprint( expression );
.RE
prints the given
@@ -458,7 +476,7 @@ x
[[\-x+x^2\-2,(x+1)^2],[c,d]]
> determinant(M);
\-2*d\-2*x*c\-x^2*c\-x*d+x^2*d\-c
-> collect(", x);
+> collect(%, x);
(\-d\-2*c)*x+(d\-c)*x^2\-2*d\-c
> solve quantum field theory;
parse error at quantum
@@ -492,7 +510,7 @@ C++ programming language
.PP
CLN \- A Class Library for Numbers, Bruno Haible