]> www.ginac.de Git - ginac.git/blobdiff - ginac/tensor.cpp
Happy New Year!
[ginac.git] / ginac / tensor.cpp
index c7a68bf2c1f602c57b311be4899cbdb20e17b083..2f12154d7023556911ea176c2478d74d3cab45bf 100644 (file)
@@ -3,7 +3,7 @@
  *  Implementation of GiNaC's special tensors. */
 
 /*
- *  GiNaC Copyright (C) 1999-2001 Johannes Gutenberg University Mainz, Germany
+ *  GiNaC Copyright (C) 1999-2019 Johannes Gutenberg University Mainz, Germany
  *
  *  This program is free software; you can redistribute it and/or modify
  *  it under the terms of the GNU General Public License as published by
  *
  *  You should have received a copy of the GNU General Public License
  *  along with this program; if not, write to the Free Software
- *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
+ *  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
  */
 
-#include <stdexcept>
-#include <vector>
-
 #include "tensor.h"
 #include "idx.h"
 #include "indexed.h"
+#include "symmetry.h"
 #include "relational.h"
+#include "operators.h"
 #include "lst.h"
 #include "numeric.h"
+#include "matrix.h"
 #include "archive.h"
 #include "utils.h"
-#include "debugmsg.h"
+
+#include <iostream>
+#include <stdexcept>
+#include <vector>
 
 namespace GiNaC {
 
 GINAC_IMPLEMENT_REGISTERED_CLASS(tensor, basic)
-GINAC_IMPLEMENT_REGISTERED_CLASS(tensdelta, tensor)
-GINAC_IMPLEMENT_REGISTERED_CLASS(tensmetric, tensor)
-GINAC_IMPLEMENT_REGISTERED_CLASS(minkmetric, tensmetric)
-GINAC_IMPLEMENT_REGISTERED_CLASS(tensepsilon, tensor)
+
+GINAC_IMPLEMENT_REGISTERED_CLASS_OPT(tensdelta, tensor,
+  print_func<print_dflt>(&tensdelta::do_print).
+  print_func<print_latex>(&tensdelta::do_print_latex))
+
+GINAC_IMPLEMENT_REGISTERED_CLASS_OPT(tensmetric, tensor,
+  print_func<print_dflt>(&tensmetric::do_print).
+  print_func<print_latex>(&tensmetric::do_print))
+
+GINAC_IMPLEMENT_REGISTERED_CLASS_OPT(minkmetric, tensmetric,
+  print_func<print_dflt>(&minkmetric::do_print).
+  print_func<print_latex>(&minkmetric::do_print_latex))
+
+GINAC_IMPLEMENT_REGISTERED_CLASS_OPT(spinmetric, tensmetric,
+  print_func<print_dflt>(&spinmetric::do_print).
+  print_func<print_latex>(&spinmetric::do_print_latex))
+
+GINAC_IMPLEMENT_REGISTERED_CLASS_OPT(tensepsilon, tensor,
+  print_func<print_dflt>(&tensepsilon::do_print).
+  print_func<print_latex>(&tensepsilon::do_print_latex))
 
 //////////
-// default constructor, destructor, copy constructor assignment operator and helpers
+// constructors
 //////////
 
-tensor::tensor(unsigned ti) : inherited(ti)
+tensor::tensor()
 {
-       debugmsg("tensor constructor from unsigned", LOGLEVEL_CONSTRUCT); \
+       setflag(status_flags::evaluated | status_flags::expanded);
 }
 
-DEFAULT_CTORS(tensor)
-DEFAULT_CTORS(tensdelta)
-DEFAULT_CTORS(tensmetric)
-DEFAULT_DESTROY(minkmetric)
-DEFAULT_DESTROY(tensepsilon)
+DEFAULT_CTOR(tensdelta)
+DEFAULT_CTOR(tensmetric)
 
 minkmetric::minkmetric() : pos_sig(false)
 {
-       debugmsg("minkmetric default constructor", LOGLEVEL_CONSTRUCT);
-       tinfo_key = TINFO_minkmetric;
 }
 
-minkmetric::minkmetric(bool ps) : pos_sig(ps)
+spinmetric::spinmetric()
 {
-       debugmsg("minkmetric constructor from bool", LOGLEVEL_CONSTRUCT);
-       tinfo_key = TINFO_minkmetric;
 }
 
-void minkmetric::copy(const minkmetric & other)
+minkmetric::minkmetric(bool ps) : pos_sig(ps)
 {
-       inherited::copy(other);
-       pos_sig = other.pos_sig;
 }
 
 tensepsilon::tensepsilon() : minkowski(false), pos_sig(false)
 {
-       debugmsg("tensepsilon default constructor", LOGLEVEL_CONSTRUCT);
-       tinfo_key = TINFO_tensepsilon;
 }
 
 tensepsilon::tensepsilon(bool mink, bool ps) : minkowski(mink), pos_sig(ps)
 {
-       debugmsg("tensepsilon constructor from bool,bool", LOGLEVEL_CONSTRUCT);
-       tinfo_key = TINFO_tensepsilon;
-}
-
-void tensepsilon::copy(const tensepsilon & other)
-{
-       inherited::copy(other);
-       minkowski = other.minkowski;
-       pos_sig = other.pos_sig;
 }
 
 //////////
 // archiving
 //////////
 
-DEFAULT_ARCHIVING(tensor)
-DEFAULT_ARCHIVING(tensdelta)
-DEFAULT_ARCHIVING(tensmetric)
-DEFAULT_UNARCHIVE(minkmetric)
-DEFAULT_UNARCHIVE(tensepsilon)
-
-minkmetric::minkmetric(const archive_node &n, const lst &sym_lst) : inherited(n, sym_lst)
+void minkmetric::read_archive(const archive_node& n, lst& sym_lst)
 {
-       debugmsg("minkmetric constructor from archive_node", LOGLEVEL_CONSTRUCT);
+       inherited::read_archive(n, sym_lst);
        n.find_bool("pos_sig", pos_sig);
 }
+GINAC_BIND_UNARCHIVER(minkmetric);
 
 void minkmetric::archive(archive_node &n) const
 {
@@ -115,12 +109,13 @@ void minkmetric::archive(archive_node &n) const
        n.add_bool("pos_sig", pos_sig);
 }
 
-tensepsilon::tensepsilon(const archive_node &n, const lst &sym_lst) : inherited(n, sym_lst)
+void tensepsilon::read_archive(const archive_node& n, lst& sym_lst)
 {
-       debugmsg("tensepsilon constructor from archive_node", LOGLEVEL_CONSTRUCT);
+       inherited::read_archive(n, sym_lst);
        n.find_bool("minkowski", minkowski);
        n.find_bool("pos_sig", pos_sig);
 }
+GINAC_BIND_UNARCHIVER(tensepsilon);
 
 void tensepsilon::archive(archive_node &n) const
 {
@@ -129,17 +124,38 @@ void tensepsilon::archive(archive_node &n) const
        n.add_bool("pos_sig", pos_sig);
 }
 
+GINAC_BIND_UNARCHIVER(tensdelta);
+GINAC_BIND_UNARCHIVER(tensmetric);
+GINAC_BIND_UNARCHIVER(spinmetric);
+
 //////////
-// functions overriding virtual functions from bases classes
+// functions overriding virtual functions from base classes
 //////////
 
 DEFAULT_COMPARE(tensor)
 DEFAULT_COMPARE(tensdelta)
 DEFAULT_COMPARE(tensmetric)
+DEFAULT_COMPARE(spinmetric)
+
+bool tensdelta::info(unsigned inf) const
+{
+       if(inf == info_flags::real)
+               return true;
+
+       return false;
+}
+
+bool tensmetric::info(unsigned inf) const
+{
+       if(inf == info_flags::real)
+               return true;
+
+       return false;
+}
 
 int minkmetric::compare_same_type(const basic & other) const
 {
-       GINAC_ASSERT(is_of_type(other, minkmetric));
+       GINAC_ASSERT(is_a<minkmetric>(other));
        const minkmetric &o = static_cast<const minkmetric &>(other);
 
        if (pos_sig != o.pos_sig)
@@ -148,9 +164,17 @@ int minkmetric::compare_same_type(const basic & other) const
                return inherited::compare_same_type(other);
 }
 
+bool minkmetric::info(unsigned inf) const
+{
+       if(inf == info_flags::real)
+               return true;
+
+       return false;
+}
+
 int tensepsilon::compare_same_type(const basic & other) const
 {
-       GINAC_ASSERT(is_of_type(other, tensepsilon));
+       GINAC_ASSERT(is_a<tensepsilon>(other));
        const tensepsilon &o = static_cast<const tensepsilon &>(other);
 
        if (minkowski != o.minkowski)
@@ -161,32 +185,64 @@ int tensepsilon::compare_same_type(const basic & other) const
                return inherited::compare_same_type(other);
 }
 
-DEFAULT_PRINT(tensdelta, "delta")
+bool tensepsilon::info(unsigned inf) const
+{
+       if(inf == info_flags::real)
+               return true;
+
+       return false;
+}
+
+bool spinmetric::info(unsigned inf) const
+{
+       if(inf == info_flags::real)
+               return true;
+
+       return false;
+}
+
+DEFAULT_PRINT_LATEX(tensdelta, "delta", "\\delta")
 DEFAULT_PRINT(tensmetric, "g")
-DEFAULT_PRINT(minkmetric, "eta")
-DEFAULT_PRINT(tensepsilon, "eps")
+DEFAULT_PRINT_LATEX(minkmetric, "eta", "\\eta")
+DEFAULT_PRINT_LATEX(spinmetric, "eps", "\\varepsilon")
+DEFAULT_PRINT_LATEX(tensepsilon, "eps", "\\varepsilon")
 
 /** Automatic symbolic evaluation of an indexed delta tensor. */
 ex tensdelta::eval_indexed(const basic & i) const
 {
-       GINAC_ASSERT(is_of_type(i, indexed));
+       GINAC_ASSERT(is_a<indexed>(i));
        GINAC_ASSERT(i.nops() == 3);
-       GINAC_ASSERT(is_ex_of_type(i.op(0), tensdelta));
-
-       const idx & i1 = ex_to_idx(i.op(1));
-       const idx & i2 = ex_to_idx(i.op(2));
+       GINAC_ASSERT(is_a<tensdelta>(i.op(0)));
+
+       const idx & i1 = ex_to<idx>(i.op(1));
+       const idx & i2 = ex_to<idx>(i.op(2));
+
+       // The dimension of the indices must be equal, otherwise we use the minimal
+       // dimension
+       if (!i1.get_dim().is_equal(i2.get_dim())) {
+               ex min_dim = i1.minimal_dim(i2);
+               exmap m;
+               m[i1] = i1.replace_dim(min_dim);
+               m[i2] = i2.replace_dim(min_dim);
+               return i.subs(m, subs_options::no_pattern);
+       }
 
-       // Trace of delta tensor is the dimension of the space
-       if (is_dummy_pair(i1, i2))
-               return i1.get_dim();
+       // Trace of delta tensor is the (effective) dimension of the space
+       if (is_dummy_pair(i1, i2)) {
+               try {
+                       return i1.minimal_dim(i2);
+               } catch (std::exception &e) {
+                       return i.hold();
+               }
+       }
 
        // Numeric evaluation
        if (static_cast<const indexed &>(i).all_index_values_are(info_flags::integer)) {
-               int n1 = ex_to_numeric(i1.get_value()).to_int(), n2 = ex_to_numeric(i2.get_value()).to_int();
+               int n1 = ex_to<numeric>(i1.get_value()).to_int(), n2 = ex_to<numeric>(i2.get_value()).to_int();
                if (n1 == n2)
-                       return _ex1();
+                       return _ex1;
                else
-                       return _ex0();
+                       return _ex0;
        }
 
        // No further simplifications
@@ -196,14 +252,24 @@ ex tensdelta::eval_indexed(const basic & i) const
 /** Automatic symbolic evaluation of an indexed metric tensor. */
 ex tensmetric::eval_indexed(const basic & i) const
 {
-       GINAC_ASSERT(is_of_type(i, indexed));
+       GINAC_ASSERT(is_a<indexed>(i));
        GINAC_ASSERT(i.nops() == 3);
-       GINAC_ASSERT(is_ex_of_type(i.op(0), tensmetric));
-       GINAC_ASSERT(is_ex_of_type(i.op(1), varidx));
-       GINAC_ASSERT(is_ex_of_type(i.op(2), varidx));
-
-       const varidx & i1 = ex_to_varidx(i.op(1));
-       const varidx & i2 = ex_to_varidx(i.op(2));
+       GINAC_ASSERT(is_a<tensmetric>(i.op(0)));
+       GINAC_ASSERT(is_a<varidx>(i.op(1)));
+       GINAC_ASSERT(is_a<varidx>(i.op(2)));
+
+       const varidx & i1 = ex_to<varidx>(i.op(1));
+       const varidx & i2 = ex_to<varidx>(i.op(2));
+
+       // The dimension of the indices must be equal, otherwise we use the minimal
+       // dimension
+       if (!i1.get_dim().is_equal(i2.get_dim())) {
+               ex min_dim = i1.minimal_dim(i2);
+               exmap m;
+               m[i1] = i1.replace_dim(min_dim);
+               m[i2] = i2.replace_dim(min_dim);
+               return i.subs(m, subs_options::no_pattern);
+       }
 
        // A metric tensor with one covariant and one contravariant index gets
        // replaced by a delta tensor
@@ -217,40 +283,71 @@ ex tensmetric::eval_indexed(const basic & i) const
 /** Automatic symbolic evaluation of an indexed Lorentz metric tensor. */
 ex minkmetric::eval_indexed(const basic & i) const
 {
-       GINAC_ASSERT(is_of_type(i, indexed));
+       GINAC_ASSERT(is_a<indexed>(i));
        GINAC_ASSERT(i.nops() == 3);
-       GINAC_ASSERT(is_ex_of_type(i.op(0), minkmetric));
-       GINAC_ASSERT(is_ex_of_type(i.op(1), varidx));
-       GINAC_ASSERT(is_ex_of_type(i.op(2), varidx));
+       GINAC_ASSERT(is_a<minkmetric>(i.op(0)));
+       GINAC_ASSERT(is_a<varidx>(i.op(1)));
+       GINAC_ASSERT(is_a<varidx>(i.op(2)));
 
-       const varidx & i1 = ex_to_varidx(i.op(1));
-       const varidx & i2 = ex_to_varidx(i.op(2));
+       const varidx & i1 = ex_to<varidx>(i.op(1));
+       const varidx & i2 = ex_to<varidx>(i.op(2));
 
        // Numeric evaluation
        if (static_cast<const indexed &>(i).all_index_values_are(info_flags::nonnegint)) {
-               int n1 = ex_to_numeric(i1.get_value()).to_int(), n2 = ex_to_numeric(i2.get_value()).to_int();
+               int n1 = ex_to<numeric>(i1.get_value()).to_int(), n2 = ex_to<numeric>(i2.get_value()).to_int();
                if (n1 != n2)
-                       return _ex0();
+                       return _ex0;
                else if (n1 == 0)
-                       return pos_sig ? _ex_1() : _ex1();
+                       return pos_sig ? _ex_1 : _ex1;
                else
-                       return pos_sig ? _ex1() : _ex_1();
+                       return pos_sig ? _ex1 : _ex_1;
        }
 
        // Perform the usual evaluations of a metric tensor
        return inherited::eval_indexed(i);
 }
 
+/** Automatic symbolic evaluation of an indexed metric tensor. */
+ex spinmetric::eval_indexed(const basic & i) const
+{
+       GINAC_ASSERT(is_a<indexed>(i));
+       GINAC_ASSERT(i.nops() == 3);
+       GINAC_ASSERT(is_a<spinmetric>(i.op(0)));
+       GINAC_ASSERT(is_a<spinidx>(i.op(1)));
+       GINAC_ASSERT(is_a<spinidx>(i.op(2)));
+
+       const spinidx & i1 = ex_to<spinidx>(i.op(1));
+       const spinidx & i2 = ex_to<spinidx>(i.op(2));
+
+       // Convolutions are zero
+       if (!(static_cast<const indexed &>(i).get_dummy_indices().empty()))
+               return _ex0;
+
+       // Numeric evaluation
+       if (static_cast<const indexed &>(i).all_index_values_are(info_flags::nonnegint)) {
+               int n1 = ex_to<numeric>(i1.get_value()).to_int(), n2 = ex_to<numeric>(i2.get_value()).to_int();
+               if (n1 == n2)
+                       return _ex0;
+               else if (n1 < n2)
+                       return _ex1;
+               else
+                       return _ex_1;
+       }
+
+       // No further simplifications
+       return i.hold();
+}
+
 /** Automatic symbolic evaluation of an indexed epsilon tensor. */
 ex tensepsilon::eval_indexed(const basic & i) const
 {
-       GINAC_ASSERT(is_of_type(i, indexed));
+       GINAC_ASSERT(is_a<indexed>(i));
        GINAC_ASSERT(i.nops() > 1);
-       GINAC_ASSERT(is_ex_of_type(i.op(0), tensepsilon));
+       GINAC_ASSERT(is_a<tensepsilon>(i.op(0)));
 
        // Convolutions are zero
-       if (static_cast<const indexed &>(i).get_dummy_indices().size() != 0)
-               return _ex0();
+       if (!(static_cast<const indexed &>(i).get_dummy_indices().empty()))
+               return _ex0;
 
        // Numeric evaluation
        if (static_cast<const indexed &>(i).all_index_values_are(info_flags::nonnegint)) {
@@ -259,21 +356,25 @@ ex tensepsilon::eval_indexed(const basic & i) const
                // a canonic order but we can't assume what exactly that order is)
                std::vector<int> v;
                v.reserve(i.nops() - 1);
-               for (unsigned j=1; j<i.nops(); j++)
-                       v.push_back(ex_to_numeric(ex_to_idx(i.op(j)).get_value()).to_int());
-               int sign = permutation_sign(v);
+               for (size_t j=1; j<i.nops(); j++)
+                       v.push_back(ex_to<numeric>(ex_to<idx>(i.op(j)).get_value()).to_int());
+               int sign = permutation_sign(v.begin(), v.end());
 
                // In a Minkowski space, check for covariant indices
                if (minkowski) {
-                       for (unsigned j=1; j<i.nops(); j++) {
+                       for (size_t j=1; j<i.nops(); j++) {
                                const ex & x = i.op(j);
-                               if (!is_ex_of_type(x, varidx))
+                               if (!is_a<varidx>(x)) {
                                        throw(std::runtime_error("indices of epsilon tensor in Minkowski space must be of type varidx"));
-                               if (ex_to_varidx(x).is_covariant())
-                                       if (ex_to_idx(x).get_value().is_zero())
+                               }
+                               if (ex_to<varidx>(x).is_covariant()) {
+                                       if (ex_to<idx>(x).get_value().is_zero()) {
                                                sign = (pos_sig ? -sign : sign);
-                                       else
+                                       }
+                                       else {
                                                sign = (pos_sig ? sign : -sign);
+                                       }
+                               }
                        }
                }
 
@@ -284,39 +385,41 @@ ex tensepsilon::eval_indexed(const basic & i) const
        return i.hold();
 }
 
-/** Contraction of an indexed delta tensor with something else. */
-bool tensdelta::contract_with(exvector::iterator self, exvector::iterator other, exvector & v) const
+bool tensor::replace_contr_index(exvector::iterator self, exvector::iterator other) const
 {
-       GINAC_ASSERT(is_ex_of_type(*self, indexed));
-       GINAC_ASSERT(is_ex_of_type(*other, indexed));
-       GINAC_ASSERT(self->nops() == 3);
-       GINAC_ASSERT(is_ex_of_type(self->op(0), tensdelta));
-
-       // Try to contract first index
-       const idx *self_idx = &ex_to_idx(self->op(1));
-       const idx *free_idx = &ex_to_idx(self->op(2));
+       // Try to contract the first index
+       const idx *self_idx = &ex_to<idx>(self->op(1));
+       const idx *free_idx = &ex_to<idx>(self->op(2));
        bool first_index_tried = false;
 
 again:
        if (self_idx->is_symbolic()) {
-               for (int i=1; i<other->nops(); i++) {
-                       const idx &other_idx = ex_to_idx(other->op(i));
+               for (size_t i=1; i<other->nops(); i++) {
+                       if (! is_a<idx>(other->op(i)))
+                               continue;
+                       const idx &other_idx = ex_to<idx>(other->op(i));
                        if (is_dummy_pair(*self_idx, other_idx)) {
 
-                               // Contraction found, remove delta tensor and substitute
-                               // index in second object
-                               *self = _ex1();
-                               *other = other->subs(other_idx == *free_idx);
-                               return true;
+                               // Contraction found, remove this tensor and substitute the
+                               // index in the second object
+                               try {
+                                       // minimal_dim() throws an exception when index dimensions are not comparable
+                                       ex min_dim = self_idx->minimal_dim(other_idx);
+                                       *other = other->subs(other_idx == free_idx->replace_dim(min_dim));
+                                       *self = _ex1; // *other is assigned first because assigning *self invalidates free_idx
+                                       return true;
+                               } catch (std::exception &e) {
+                                       return false;
+                               }
                        }
                }
        }
 
        if (!first_index_tried) {
 
-               // No contraction with first index found, try second index
-               self_idx = &ex_to_idx(self->op(2));
-               free_idx = &ex_to_idx(self->op(1));
+               // No contraction with the first index found, try the second index
+               self_idx = &ex_to<idx>(self->op(2));
+               free_idx = &ex_to<idx>(self->op(1));
                first_index_tried = true;
                goto again;
        }
@@ -324,34 +427,99 @@ again:
        return false;
 }
 
+/** Contraction of an indexed delta tensor with something else. */
+bool tensdelta::contract_with(exvector::iterator self, exvector::iterator other, exvector & v) const
+{
+       GINAC_ASSERT(is_a<indexed>(*self));
+       GINAC_ASSERT(is_a<indexed>(*other));
+       GINAC_ASSERT(self->nops() == 3);
+       GINAC_ASSERT(is_a<tensdelta>(self->op(0)));
+
+       // Replace the dummy index with this tensor's other index and remove
+       // the tensor (this is valid for contractions with all other tensors)
+       return replace_contr_index(self, other);
+}
+
 /** Contraction of an indexed metric tensor with something else. */
 bool tensmetric::contract_with(exvector::iterator self, exvector::iterator other, exvector & v) const
 {
-       GINAC_ASSERT(is_ex_of_type(*self, indexed));
-       GINAC_ASSERT(is_ex_of_type(*other, indexed));
+       GINAC_ASSERT(is_a<indexed>(*self));
+       GINAC_ASSERT(is_a<indexed>(*other));
        GINAC_ASSERT(self->nops() == 3);
-       GINAC_ASSERT(is_ex_of_type(self->op(0), tensmetric));
+       GINAC_ASSERT(is_a<tensmetric>(self->op(0)));
 
        // If contracting with the delta tensor, let the delta do it
        // (don't raise/lower delta indices)
-       if (is_ex_of_type(other->op(0), tensdelta))
+       if (is_a<tensdelta>(other->op(0)))
+               return false;
+
+       // Replace the dummy index with this tensor's other index and remove
+       // the tensor
+       return replace_contr_index(self, other);
+}
+
+/** Contraction of an indexed spinor metric with something else. */
+bool spinmetric::contract_with(exvector::iterator self, exvector::iterator other, exvector & v) const
+{
+       GINAC_ASSERT(is_a<indexed>(*self));
+       GINAC_ASSERT(is_a<indexed>(*other));
+       GINAC_ASSERT(self->nops() == 3);
+       GINAC_ASSERT(is_a<spinmetric>(self->op(0)));
+
+       // Contractions between spinor metrics
+       if (is_a<spinmetric>(other->op(0))) {
+               const idx &self_i1 = ex_to<idx>(self->op(1));
+               const idx &self_i2 = ex_to<idx>(self->op(2));
+               const idx &other_i1 = ex_to<idx>(other->op(1));
+               const idx &other_i2 = ex_to<idx>(other->op(2));
+
+               if (is_dummy_pair(self_i1, other_i1)) {
+                       if (is_dummy_pair(self_i2, other_i2))
+                               *self = _ex2;
+                       else
+                               *self = delta_tensor(self_i2, other_i2);
+                       *other = _ex1;
+                       return true;
+               } else if (is_dummy_pair(self_i1, other_i2)) {
+                       if (is_dummy_pair(self_i2, other_i1))
+                               *self = _ex_2;
+                       else
+                               *self = -delta_tensor(self_i2, other_i1);
+                       *other = _ex1;
+                       return true;
+               } else if (is_dummy_pair(self_i2, other_i1)) {
+                       *self = -delta_tensor(self_i1, other_i2);
+                       *other = _ex1;
+                       return true;
+               } else if (is_dummy_pair(self_i2, other_i2)) {
+                       *self = delta_tensor(self_i1, other_i1);
+                       *other = _ex1;
+                       return true;
+               }
+       }
+
+       // If contracting with the delta tensor, let the delta do it
+       // (don't raise/lower delta indices)
+       if (is_a<tensdelta>(other->op(0)))
                return false;
 
        // Try to contract first index
-       const idx *self_idx = &ex_to_idx(self->op(1));
-       const idx *free_idx = &ex_to_idx(self->op(2));
+       const idx *self_idx = &ex_to<idx>(self->op(1));
+       const idx *free_idx = &ex_to<idx>(self->op(2));
        bool first_index_tried = false;
+       int sign = 1;
 
 again:
        if (self_idx->is_symbolic()) {
-               for (int i=1; i<other->nops(); i++) {
-                       const idx &other_idx = ex_to_idx(other->op(i));
+               for (size_t i=1; i<other->nops(); i++) {
+                       const idx &other_idx = ex_to<idx>(other->op(i));
                        if (is_dummy_pair(*self_idx, other_idx)) {
 
                                // Contraction found, remove metric tensor and substitute
-                               // index in second object
-                               *self = _ex1();
+                               // index in second object (assign *self last because this
+                               // invalidates free_idx)
                                *other = other->subs(other_idx == *free_idx);
+                               *self = (static_cast<const spinidx *>(self_idx)->is_covariant() ? sign : -sign);
                                return true;
                        }
                }
@@ -360,83 +528,151 @@ again:
        if (!first_index_tried) {
 
                // No contraction with first index found, try second index
-               self_idx = &ex_to_idx(self->op(2));
-               free_idx = &ex_to_idx(self->op(1));
+               self_idx = &ex_to<idx>(self->op(2));
+               free_idx = &ex_to<idx>(self->op(1));
                first_index_tried = true;
+               sign = -sign;
                goto again;
        }
 
        return false;
 }
 
+/** Contraction of epsilon tensor with something else. */
+bool tensepsilon::contract_with(exvector::iterator self, exvector::iterator other, exvector & v) const
+{
+       GINAC_ASSERT(is_a<indexed>(*self));
+       GINAC_ASSERT(is_a<indexed>(*other));
+       GINAC_ASSERT(is_a<tensepsilon>(self->op(0)));
+       size_t num = self->nops() - 1;
+
+       if (is_exactly_a<tensepsilon>(other->op(0)) && num+1 == other->nops()) {
+
+               // Contraction of two epsilon tensors is a determinant
+               bool variance = is_a<varidx>(self->op(1));
+               matrix M(num, num);
+               for (size_t i=0; i<num; i++) {
+                       for (size_t j=0; j<num; j++) {
+                               if (minkowski)
+                                       M(i, j) = lorentz_g(self->op(i+1), other->op(j+1), pos_sig);
+                               else if (variance)
+                                       M(i, j) = metric_tensor(self->op(i+1), other->op(j+1));
+                               else
+                                       M(i, j) = delta_tensor(self->op(i+1), other->op(j+1));
+                       }
+               }
+               int sign = minkowski ? -1 : 1;
+               *self = sign * M.determinant().simplify_indexed();
+               *other = _ex1;
+               return true;
+       }
+
+       return false;
+}
+
 //////////
 // global functions
 //////////
 
 ex delta_tensor(const ex & i1, const ex & i2)
 {
-       if (!is_ex_of_type(i1, idx) || !is_ex_of_type(i2, idx))
+       static ex delta = dynallocate<tensdelta>();
+
+       if (!is_a<idx>(i1) || !is_a<idx>(i2))
                throw(std::invalid_argument("indices of delta tensor must be of type idx"));
 
-       return indexed(tensdelta(), indexed::symmetric, i1, i2);
+       return indexed(delta, symmetric2(), i1, i2);
 }
 
 ex metric_tensor(const ex & i1, const ex & i2)
 {
-       if (!is_ex_of_type(i1, varidx) || !is_ex_of_type(i2, varidx))
+       static ex metric = dynallocate<tensmetric>();
+
+       if (!is_a<varidx>(i1) || !is_a<varidx>(i2))
                throw(std::invalid_argument("indices of metric tensor must be of type varidx"));
 
-       return indexed(tensmetric(), indexed::symmetric, i1, i2);
+       return indexed(metric, symmetric2(), i1, i2);
 }
 
 ex lorentz_g(const ex & i1, const ex & i2, bool pos_sig)
 {
-       if (!is_ex_of_type(i1, varidx) || !is_ex_of_type(i2, varidx))
+       static ex metric_neg = dynallocate<minkmetric>(false);
+       static ex metric_pos = dynallocate<minkmetric>(true);
+
+       if (!is_a<varidx>(i1) || !is_a<varidx>(i2))
                throw(std::invalid_argument("indices of metric tensor must be of type varidx"));
 
-       return indexed(minkmetric(pos_sig), indexed::symmetric, i1, i2);
+       return indexed(pos_sig ? metric_pos : metric_neg, symmetric2(), i1, i2);
+}
+
+ex spinor_metric(const ex & i1, const ex & i2)
+{
+       static ex metric = dynallocate<spinmetric>();
+
+       if (!is_a<spinidx>(i1) || !is_a<spinidx>(i2))
+               throw(std::invalid_argument("indices of spinor metric must be of type spinidx"));
+       if (!ex_to<idx>(i1).get_dim().is_equal(2) || !ex_to<idx>(i2).get_dim().is_equal(2))
+               throw(std::runtime_error("index dimension for spinor metric must be 2"));
+
+       return indexed(metric, antisymmetric2(), i1, i2);
 }
 
 ex epsilon_tensor(const ex & i1, const ex & i2)
 {
-       if (!is_ex_of_type(i1, idx) || !is_ex_of_type(i2, idx))
+       static ex epsilon = dynallocate<tensepsilon>();
+
+       if (!is_a<idx>(i1) || !is_a<idx>(i2))
                throw(std::invalid_argument("indices of epsilon tensor must be of type idx"));
 
-       ex dim = ex_to_idx(i1).get_dim();
-       if (!dim.is_equal(ex_to_idx(i2).get_dim()))
+       ex dim = ex_to<idx>(i1).get_dim();
+       if (!dim.is_equal(ex_to<idx>(i2).get_dim()))
                throw(std::invalid_argument("all indices of epsilon tensor must have the same dimension"));
-       if (!ex_to_idx(i1).get_dim().is_equal(_ex2()))
+       if (!ex_to<idx>(i1).get_dim().is_equal(_ex2))
                throw(std::runtime_error("index dimension of epsilon tensor must match number of indices"));
 
-       return indexed(tensepsilon(), indexed::antisymmetric, i1, i2);
+       if(is_a<wildcard>(i1.op(0))||is_a<wildcard>(i2.op(0)))
+               return indexed(epsilon, antisymmetric2(), i1, i2).hold();
+
+       return indexed(epsilon, antisymmetric2(), i1, i2);
 }
 
 ex epsilon_tensor(const ex & i1, const ex & i2, const ex & i3)
 {
-       if (!is_ex_of_type(i1, idx) || !is_ex_of_type(i2, idx) || !is_ex_of_type(i3, idx))
+       static ex epsilon = dynallocate<tensepsilon>();
+
+       if (!is_a<idx>(i1) || !is_a<idx>(i2) || !is_a<idx>(i3))
                throw(std::invalid_argument("indices of epsilon tensor must be of type idx"));
 
-       ex dim = ex_to_idx(i1).get_dim();
-       if (!dim.is_equal(ex_to_idx(i2).get_dim()) || !dim.is_equal(ex_to_idx(i3).get_dim()))
+       ex dim = ex_to<idx>(i1).get_dim();
+       if (!dim.is_equal(ex_to<idx>(i2).get_dim()) || !dim.is_equal(ex_to<idx>(i3).get_dim()))
                throw(std::invalid_argument("all indices of epsilon tensor must have the same dimension"));
-       if (!ex_to_idx(i1).get_dim().is_equal(_ex3()))
+       if (!ex_to<idx>(i1).get_dim().is_equal(_ex3))
                throw(std::runtime_error("index dimension of epsilon tensor must match number of indices"));
 
-       return indexed(tensepsilon(), indexed::antisymmetric, i1, i2, i3);
+       if(is_a<wildcard>(i1.op(0))||is_a<wildcard>(i2.op(0))||is_a<wildcard>(i3.op(0)))
+               return indexed(epsilon, antisymmetric3(), i1, i2, i3).hold();
+
+       return indexed(epsilon, antisymmetric3(), i1, i2, i3);
 }
 
 ex lorentz_eps(const ex & i1, const ex & i2, const ex & i3, const ex & i4, bool pos_sig)
 {
-       if (!is_ex_of_type(i1, varidx) || !is_ex_of_type(i2, varidx) || !is_ex_of_type(i3, varidx) || !is_ex_of_type(i4, varidx))
+       static ex epsilon_neg = dynallocate<tensepsilon>(true, false);
+       static ex epsilon_pos = dynallocate<tensepsilon>(true, true);
+
+       if (!is_a<varidx>(i1) || !is_a<varidx>(i2) || !is_a<varidx>(i3) || !is_a<varidx>(i4))
                throw(std::invalid_argument("indices of Lorentz epsilon tensor must be of type varidx"));
 
-       ex dim = ex_to_idx(i1).get_dim();
-       if (!dim.is_equal(ex_to_idx(i2).get_dim()) || !dim.is_equal(ex_to_idx(i3).get_dim()) || !dim.is_equal(ex_to_idx(i4).get_dim()))
+       ex dim = ex_to<idx>(i1).get_dim();
+       if (!dim.is_equal(ex_to<idx>(i2).get_dim()) || !dim.is_equal(ex_to<idx>(i3).get_dim()) || !dim.is_equal(ex_to<idx>(i4).get_dim()))
                throw(std::invalid_argument("all indices of epsilon tensor must have the same dimension"));
-       if (!ex_to_idx(i1).get_dim().is_equal(_ex4()))
+       if (!ex_to<idx>(i1).get_dim().is_equal(_ex4))
                throw(std::runtime_error("index dimension of epsilon tensor must match number of indices"));
 
-       return indexed(tensepsilon(true, pos_sig), indexed::antisymmetric, i1, i2, i3, i4);
+       if(is_a<wildcard>(i1.op(0))||is_a<wildcard>(i2.op(0))||is_a<wildcard>(i3.op(0))||is_a<wildcard>(i4.op(0)))
+               return indexed(pos_sig ? epsilon_pos : epsilon_neg, antisymmetric4(), i1, i2, i3, i4).hold();
+
+       return indexed(pos_sig ? epsilon_pos : epsilon_neg, antisymmetric4(), i1, i2, i3, i4);
 }
 
 } // namespace GiNaC