]> www.ginac.de Git - ginac.git/blobdiff - ginac/power.cpp
Happy New Year!
[ginac.git] / ginac / power.cpp
index b37987f35c4abb1f0ba9bb601f99f922c58a3255..c4ea9db19649b4008936ea86be3904ba8d2b0719 100644 (file)
@@ -3,7 +3,7 @@
  *  Implementation of GiNaC's symbolic exponentiation (basis^exponent). */
 
 /*
- *  GiNaC Copyright (C) 1999-2016 Johannes Gutenberg University Mainz, Germany
+ *  GiNaC Copyright (C) 1999-2019 Johannes Gutenberg University Mainz, Germany
  *
  *  This program is free software; you can redistribute it and/or modify
  *  it under the terms of the GNU General Public License as published by
@@ -140,7 +140,7 @@ void power::do_print_latex(const print_latex & c, unsigned level) const
 static void print_sym_pow(const print_context & c, const symbol &x, int exp)
 {
        // Optimal output of integer powers of symbols to aid compiler CSE.
-       // C.f. ISO/IEC 14882:1998, section 1.9 [intro execution], paragraph 15
+       // C.f. ISO/IEC 14882:2011, section 1.9 [intro execution], paragraph 15
        // to learn why such a parenthesation is really necessary.
        if (exp == 1) {
                x.print(c);
@@ -229,21 +229,18 @@ bool power::info(unsigned inf) const
                case info_flags::cinteger_polynomial:
                case info_flags::rational_polynomial:
                case info_flags::crational_polynomial:
-                       return exponent.info(info_flags::nonnegint) &&
-                              basis.info(inf);
+                       return basis.info(inf) && exponent.info(info_flags::nonnegint);
                case info_flags::rational_function:
-                       return exponent.info(info_flags::integer) &&
-                              basis.info(inf);
-               case info_flags::algebraic:
-                       return !exponent.info(info_flags::integer) ||
-                              basis.info(inf);
+                       return basis.info(inf) && exponent.info(info_flags::integer);
+               case info_flags::real:
+                       return basis.info(inf) && exponent.info(info_flags::integer);
                case info_flags::expanded:
                        return (flags & status_flags::expanded);
                case info_flags::positive:
                        return basis.info(info_flags::positive) && exponent.info(info_flags::real);
                case info_flags::nonnegative:
                        return (basis.info(info_flags::positive) && exponent.info(info_flags::real)) ||
-                              (basis.info(info_flags::real) && exponent.info(info_flags::integer) && exponent.info(info_flags::even));
+                              (basis.info(info_flags::real) && exponent.info(info_flags::even));
                case info_flags::has_indices: {
                        if (flags & status_flags::has_indices)
                                return true;
@@ -282,7 +279,7 @@ ex power::map(map_function & f) const
 
        if (!are_ex_trivially_equal(basis, mapped_basis)
         || !are_ex_trivially_equal(exponent, mapped_exponent))
-               return (new power(mapped_basis, mapped_exponent))->setflag(status_flags::dynallocated);
+               return dynallocate<power>(mapped_basis, mapped_exponent);
        else
                return *this;
 }
@@ -373,42 +370,36 @@ ex power::coeff(const ex & s, int n) const
  *  - ^(*(x,y,z),c) -> *(x^c,y^c,z^c)  (if c integer)
  *  - ^(*(x,c1),c2) -> ^(x,c2)*c1^c2  (c1>0)
  *  - ^(*(x,c1),c2) -> ^(-x,c2)*c1^c2  (c1<0)
- *
- *  @param level cut-off in recursive evaluation */
-ex power::eval(int level) const
+ */
+ex power::eval() const
 {
-       if ((level==1) && (flags & status_flags::evaluated))
+       if (flags & status_flags::evaluated)
                return *this;
-       else if (level == -max_recursion_level)
-               throw(std::runtime_error("max recursion level reached"));
-       
-       const ex & ebasis    = level==1 ? basis    : basis.eval(level-1);
-       const ex & eexponent = level==1 ? exponent : exponent.eval(level-1);
-       
-       const numeric *num_basis = NULL;
-       const numeric *num_exponent = NULL;
-       
-       if (is_exactly_a<numeric>(ebasis)) {
-               num_basis = &ex_to<numeric>(ebasis);
+
+       const numeric *num_basis = nullptr;
+       const numeric *num_exponent = nullptr;
+
+       if (is_exactly_a<numeric>(basis)) {
+               num_basis = &ex_to<numeric>(basis);
        }
-       if (is_exactly_a<numeric>(eexponent)) {
-               num_exponent = &ex_to<numeric>(eexponent);
+       if (is_exactly_a<numeric>(exponent)) {
+               num_exponent = &ex_to<numeric>(exponent);
        }
        
        // ^(x,0) -> 1  (0^0 also handled here)
-       if (eexponent.is_zero()) {
-               if (ebasis.is_zero())
+       if (exponent.is_zero()) {
+               if (basis.is_zero())
                        throw (std::domain_error("power::eval(): pow(0,0) is undefined"));
                else
                        return _ex1;
        }
        
        // ^(x,1) -> x
-       if (eexponent.is_equal(_ex1))
-               return ebasis;
+       if (exponent.is_equal(_ex1))
+               return basis;
 
        // ^(0,c1) -> 0 or exception  (depending on real value of c1)
-       if ( ebasis.is_zero() && num_exponent ) {
+       if (basis.is_zero() && num_exponent) {
                if ((num_exponent->real()).is_zero())
                        throw (std::domain_error("power::eval(): pow(0,I) is undefined"));
                else if ((num_exponent->real()).is_negative())
@@ -418,16 +409,16 @@ ex power::eval(int level) const
        }
 
        // ^(1,x) -> 1
-       if (ebasis.is_equal(_ex1))
+       if (basis.is_equal(_ex1))
                return _ex1;
 
        // power of a function calculated by separate rules defined for this function
-       if (is_exactly_a<function>(ebasis))
-               return ex_to<function>(ebasis).power(eexponent);
+       if (is_exactly_a<function>(basis))
+               return ex_to<function>(basis).power(exponent);
 
        // Turn (x^c)^d into x^(c*d) in the case that x is positive and c is real.
-       if (is_exactly_a<power>(ebasis) && ebasis.op(0).info(info_flags::positive) && ebasis.op(1).info(info_flags::real))
-               return power(ebasis.op(0), ebasis.op(1) * eexponent);
+       if (is_exactly_a<power>(basis) && basis.op(0).info(info_flags::positive) && basis.op(1).info(info_flags::real))
+               return dynallocate<power>(basis.op(0), basis.op(1) * exponent);
 
        if ( num_exponent ) {
 
@@ -438,9 +429,7 @@ ex power::eval(int level) const
                        const bool exponent_is_crational = num_exponent->is_crational();
                        if (!basis_is_crational || !exponent_is_crational) {
                                // return a plain float
-                               return (new numeric(num_basis->power(*num_exponent)))->setflag(status_flags::dynallocated |
-                                                                                              status_flags::evaluated |
-                                                                                              status_flags::expanded);
+                               return dynallocate<numeric>(num_basis->power(*num_exponent));
                        }
 
                        const numeric res = num_basis->power(*num_exponent);
@@ -470,9 +459,9 @@ ex power::eval(int level) const
                                                const numeric res_bnum = bnum.power(*num_exponent);
                                                const numeric res_bden = bden.power(*num_exponent);
                                                if (res_bnum.is_integer())
-                                                       return (new mul(power(bden,-*num_exponent),res_bnum))->setflag(status_flags::dynallocated | status_flags::evaluated);
+                                                       return dynallocate<mul>(dynallocate<power>(bden,-*num_exponent),res_bnum).setflag(status_flags::evaluated);
                                                if (res_bden.is_integer())
-                                                       return (new mul(power(bnum,*num_exponent),res_bden.inverse()))->setflag(status_flags::dynallocated | status_flags::evaluated);
+                                                       return dynallocate<mul>(dynallocate<power>(bnum,*num_exponent),res_bden.inverse()).setflag(status_flags::evaluated);
                                        }
                                        return this->hold();
                                } else {
@@ -480,8 +469,7 @@ ex power::eval(int level) const
                                        // because otherwise we'll end up with something like
                                        //    (7/8)^(4/3)  ->  7/8*(1/2*7^(1/3))
                                        // instead of 7/16*7^(1/3).
-                                       ex prod = power(*num_basis,r.div(m));
-                                       return prod*power(*num_basis,q);
+                                       return pow(basis, r.div(m)) * pow(basis, q);
                                }
                        }
                }
@@ -489,8 +477,8 @@ ex power::eval(int level) const
                // ^(^(x,c1),c2) -> ^(x,c1*c2)
                // (c1, c2 numeric(), c2 integer or -1 < c1 <= 1 or (c1=-1 and c2>0),
                // case c1==1 should not happen, see below!)
-               if (is_exactly_a<power>(ebasis)) {
-                       const power & sub_power = ex_to<power>(ebasis);
+               if (is_exactly_a<power>(basis)) {
+                       const power & sub_power = ex_to<power>(basis);
                        const ex & sub_basis = sub_power.basis;
                        const ex & sub_exponent = sub_power.exponent;
                        if (is_exactly_a<numeric>(sub_exponent)) {
@@ -498,21 +486,21 @@ ex power::eval(int level) const
                                GINAC_ASSERT(num_sub_exponent!=numeric(1));
                                if (num_exponent->is_integer() || (abs(num_sub_exponent) - (*_num1_p)).is_negative() ||
                                    (num_sub_exponent == *_num_1_p && num_exponent->is_positive())) {
-                                       return power(sub_basis,num_sub_exponent.mul(*num_exponent));
+                                       return dynallocate<power>(sub_basis, num_sub_exponent.mul(*num_exponent));
                                }
                        }
                }
        
                // ^(*(x,y,z),c1) -> *(x^c1,y^c1,z^c1) (c1 integer)
-               if (num_exponent->is_integer() && is_exactly_a<mul>(ebasis)) {
-                       return expand_mul(ex_to<mul>(ebasis), *num_exponent, 0);
+               if (num_exponent->is_integer() && is_exactly_a<mul>(basis)) {
+                       return expand_mul(ex_to<mul>(basis), *num_exponent, false);
                }
 
                // (2*x + 6*y)^(-4) -> 1/16*(x + 3*y)^(-4)
-               if (num_exponent->is_integer() && is_exactly_a<add>(ebasis)) {
-                       numeric icont = ebasis.integer_content();
+               if (num_exponent->is_integer() && is_exactly_a<add>(basis)) {
+                       numeric icont = basis.integer_content();
                        const numeric lead_coeff = 
-                               ex_to<numeric>(ex_to<add>(ebasis).seq.begin()->coeff).div(icont);
+                               ex_to<numeric>(ex_to<add>(basis).seq.begin()->coeff).div(icont);
 
                        const bool canonicalizable = lead_coeff.is_integer();
                        const bool unit_normal = lead_coeff.is_pos_integer();
@@ -520,48 +508,43 @@ ex power::eval(int level) const
                                icont = icont.mul(*_num_1_p);
                        
                        if (canonicalizable && (icont != *_num1_p)) {
-                               const add& addref = ex_to<add>(ebasis);
-                               add* addp = new add(addref);
-                               addp->setflag(status_flags::dynallocated);
-                               addp->clearflag(status_flags::hash_calculated);
-                               addp->overall_coeff = ex_to<numeric>(addp->overall_coeff).div_dyn(icont);
-                               for (epvector::iterator i = addp->seq.begin(); i != addp->seq.end(); ++i)
-                                       i->coeff = ex_to<numeric>(i->coeff).div_dyn(icont);
+                               const add& addref = ex_to<add>(basis);
+                               add & addp = dynallocate<add>(addref);
+                               addp.clearflag(status_flags::hash_calculated);
+                               addp.overall_coeff = ex_to<numeric>(addp.overall_coeff).div_dyn(icont);
+                               for (auto & i : addp.seq)
+                                       i.coeff = ex_to<numeric>(i.coeff).div_dyn(icont);
 
                                const numeric c = icont.power(*num_exponent);
                                if (likely(c != *_num1_p))
-                                       return (new mul(power(*addp, *num_exponent), c))->setflag(status_flags::dynallocated);
+                                       return dynallocate<mul>(dynallocate<power>(addp, *num_exponent), c);
                                else
-                                       return power(*addp, *num_exponent);
+                                       return dynallocate<power>(addp, *num_exponent);
                        }
                }
 
                // ^(*(...,x;c1),c2) -> *(^(*(...,x;1),c2),c1^c2)  (c1, c2 numeric(), c1>0)
                // ^(*(...,x;c1),c2) -> *(^(*(...,x;-1),c2),(-c1)^c2)  (c1, c2 numeric(), c1<0)
-               if (is_exactly_a<mul>(ebasis)) {
+               if (is_exactly_a<mul>(basis)) {
                        GINAC_ASSERT(!num_exponent->is_integer()); // should have been handled above
-                       const mul & mulref = ex_to<mul>(ebasis);
+                       const mul & mulref = ex_to<mul>(basis);
                        if (!mulref.overall_coeff.is_equal(_ex1)) {
                                const numeric & num_coeff = ex_to<numeric>(mulref.overall_coeff);
                                if (num_coeff.is_real()) {
                                        if (num_coeff.is_positive()) {
-                                               mul *mulp = new mul(mulref);
-                                               mulp->overall_coeff = _ex1;
-                                               mulp->setflag(status_flags::dynallocated);
-                                               mulp->clearflag(status_flags::evaluated);
-                                               mulp->clearflag(status_flags::hash_calculated);
-                                               return (new mul(power(*mulp,exponent),
-                                                               power(num_coeff,*num_exponent)))->setflag(status_flags::dynallocated);
+                                               mul & mulp = dynallocate<mul>(mulref);
+                                               mulp.overall_coeff = _ex1;
+                                               mulp.clearflag(status_flags::evaluated | status_flags::hash_calculated);
+                                               return dynallocate<mul>(dynallocate<power>(mulp, exponent),
+                                                                       dynallocate<power>(num_coeff, *num_exponent));
                                        } else {
                                                GINAC_ASSERT(num_coeff.compare(*_num0_p)<0);
                                                if (!num_coeff.is_equal(*_num_1_p)) {
-                                                       mul *mulp = new mul(mulref);
-                                                       mulp->overall_coeff = _ex_1;
-                                                       mulp->setflag(status_flags::dynallocated);
-                                                       mulp->clearflag(status_flags::evaluated);
-                                                       mulp->clearflag(status_flags::hash_calculated);
-                                                       return (new mul(power(*mulp,exponent),
-                                                                       power(abs(num_coeff),*num_exponent)))->setflag(status_flags::dynallocated);
+                                                       mul & mulp = dynallocate<mul>(mulref);
+                                                       mulp.overall_coeff = _ex_1;
+                                                       mulp.clearflag(status_flags::evaluated | status_flags::hash_calculated);
+                                                       return dynallocate<mul>(dynallocate<power>(mulp, exponent),
+                                                                               dynallocate<power>(abs(num_coeff), *num_exponent));
                                                }
                                        }
                                }
@@ -570,39 +553,26 @@ ex power::eval(int level) const
 
                // ^(nc,c1) -> ncmul(nc,nc,...) (c1 positive integer, unless nc is a matrix)
                if (num_exponent->is_pos_integer() &&
-                   ebasis.return_type() != return_types::commutative &&
-                   !is_a<matrix>(ebasis)) {
-                       return ncmul(exvector(num_exponent->to_int(), ebasis), true);
+                   basis.return_type() != return_types::commutative &&
+                   !is_a<matrix>(basis)) {
+                       return ncmul(exvector(num_exponent->to_int(), basis));
                }
        }
-       
-       if (are_ex_trivially_equal(ebasis,basis) &&
-           are_ex_trivially_equal(eexponent,exponent)) {
-               return this->hold();
-       }
-       return (new power(ebasis, eexponent))->setflag(status_flags::dynallocated |
-                                                      status_flags::evaluated);
+
+       return this->hold();
 }
 
-ex power::evalf(int level) const
+ex power::evalf() const
 {
-       ex ebasis;
+       ex ebasis = basis.evalf();
        ex eexponent;
        
-       if (level==1) {
-               ebasis = basis;
+       if (!is_exactly_a<numeric>(exponent))
+               eexponent = exponent.evalf();
+       else
                eexponent = exponent;
-       } else if (level == -max_recursion_level) {
-               throw(std::runtime_error("max recursion level reached"));
-       } else {
-               ebasis = basis.evalf(level-1);
-               if (!is_exactly_a<numeric>(exponent))
-                       eexponent = exponent.evalf(level-1);
-               else
-                       eexponent = exponent;
-       }
 
-       return power(ebasis,eexponent);
+       return dynallocate<power>(ebasis, eexponent);
 }
 
 ex power::evalm() const
@@ -611,10 +581,10 @@ ex power::evalm() const
        const ex eexponent = exponent.evalm();
        if (is_a<matrix>(ebasis)) {
                if (is_exactly_a<numeric>(eexponent)) {
-                       return (new matrix(ex_to<matrix>(ebasis).pow(eexponent)))->setflag(status_flags::dynallocated);
+                       return dynallocate<matrix>(ex_to<matrix>(ebasis).pow(eexponent));
                }
        }
-       return (new power(ebasis, eexponent))->setflag(status_flags::dynallocated);
+       return dynallocate<power>(ebasis, eexponent);
 }
 
 bool power::has(const ex & other, unsigned options) const
@@ -654,13 +624,13 @@ ex power::subs(const exmap & m, unsigned options) const
        if (!(options & subs_options::algebraic))
                return subs_one_level(m, options);
 
-       for (exmap::const_iterator it = m.begin(); it != m.end(); ++it) {
+       for (auto & it : m) {
                int nummatches = std::numeric_limits<int>::max();
                exmap repls;
-               if (tryfactsubs(*this, it->first, nummatches, repls)) {
-                       ex anum = it->second.subs(repls, subs_options::no_pattern);
-                       ex aden = it->first.subs(repls, subs_options::no_pattern);
-                       ex result = (*this)*power(anum/aden, nummatches);
+               if (tryfactsubs(*this, it.first, nummatches, repls)) {
+                       ex anum = it.second.subs(repls, subs_options::no_pattern);
+                       ex aden = it.first.subs(repls, subs_options::no_pattern);
+                       ex result = (*this) * pow(anum/aden, nummatches);
                        return (ex_to<basic>(result)).subs_one_level(m, options);
                }
        }
@@ -682,14 +652,14 @@ ex power::conjugate() const
                if (are_ex_trivially_equal(exponent, newexponent)) {
                        return *this;
                }
-               return (new power(basis, newexponent))->setflag(status_flags::dynallocated);
+               return dynallocate<power>(basis, newexponent);
        }
        if (exponent.info(info_flags::integer)) {
                ex newbasis = basis.conjugate();
                if (are_ex_trivially_equal(basis, newbasis)) {
                        return *this;
                }
-               return (new power(newbasis, exponent))->setflag(status_flags::dynallocated);
+               return dynallocate<power>(newbasis, exponent);
        }
        return conjugate_function(*this).hold();
 }
@@ -699,7 +669,8 @@ ex power::real_part() const
        // basis == a+I*b, exponent == c+I*d
        const ex a = basis.real_part();
        const ex c = exponent.real_part();
-       if (basis.is_equal(a) && exponent.is_equal(c)) {
+       if (basis.is_equal(a) && exponent.is_equal(c) &&
+           (a.info(info_flags::nonnegative) || c.info(info_flags::integer))) {
                // Re(a^c)
                return *this;
        }
@@ -709,12 +680,12 @@ ex power::real_part() const
                // Re((a+I*b)^c)  w/  c âˆˆ â„¤
                long N = ex_to<numeric>(c).to_long();
                // Use real terms in Binomial expansion to construct
-               // Re(expand(power(a+I*b, N))).
+               // Re(expand(pow(a+I*b, N))).
                long NN = N > 0 ? N : -N;
-               ex numer = N > 0 ? _ex1 : power(power(a,2) + power(b,2), NN);
+               ex numer = N > 0 ? _ex1 : pow(pow(a,2) + pow(b,2), NN);
                ex result = 0;
                for (long n = 0; n <= NN; n += 2) {
-                       ex term = binomial(NN, n) * power(a, NN-n) * power(b, n) / numer;
+                       ex term = binomial(NN, n) * pow(a, NN-n) * pow(b, n) / numer;
                        if (n % 4 == 0) {
                                result += term;  // sign: I^n w/ n == 4*m
                        } else {
@@ -726,14 +697,16 @@ ex power::real_part() const
 
        // Re((a+I*b)^(c+I*d))
        const ex d = exponent.imag_part();
-       return power(abs(basis),c)*exp(-d*atan2(b,a))*cos(c*atan2(b,a)+d*log(abs(basis)));
+       return pow(abs(basis),c) * exp(-d*atan2(b,a)) * cos(c*atan2(b,a)+d*log(abs(basis)));
 }
 
 ex power::imag_part() const
 {
+       // basis == a+I*b, exponent == c+I*d
        const ex a = basis.real_part();
        const ex c = exponent.real_part();
-       if (basis.is_equal(a) && exponent.is_equal(c)) {
+       if (basis.is_equal(a) && exponent.is_equal(c) &&
+           (a.info(info_flags::nonnegative) || c.info(info_flags::integer))) {
                // Im(a^c)
                return 0;
        }
@@ -743,13 +716,13 @@ ex power::imag_part() const
                // Im((a+I*b)^c)  w/  c âˆˆ â„¤
                long N = ex_to<numeric>(c).to_long();
                // Use imaginary terms in Binomial expansion to construct
-               // Im(expand(power(a+I*b, N))).
+               // Im(expand(pow(a+I*b, N))).
                long p = N > 0 ? 1 : 3;  // modulus for positive sign
                long NN = N > 0 ? N : -N;
-               ex numer = N > 0 ? _ex1 : power(power(a,2) + power(b,2), NN);
+               ex numer = N > 0 ? _ex1 : pow(pow(a,2) + pow(b,2), NN);
                ex result = 0;
                for (long n = 1; n <= NN; n += 2) {
-                       ex term = binomial(NN, n) * power(a, NN-n) * power(b, n) / numer;
+                       ex term = binomial(NN, n) * pow(a, NN-n) * pow(b, n) / numer;
                        if (n % 4 == p) {
                                result += term;  // sign: I^n w/ n == 4*m+p
                        } else {
@@ -761,7 +734,7 @@ ex power::imag_part() const
 
        // Im((a+I*b)^(c+I*d))
        const ex d = exponent.imag_part();
-       return power(abs(basis),c)*exp(-d*atan2(b,a))*sin(c*atan2(b,a)+d*log(abs(basis)));
+       return pow(abs(basis),c) * exp(-d*atan2(b,a)) * sin(c*atan2(b,a)+d*log(abs(basis)));
 }
 
 // protected
@@ -772,16 +745,11 @@ ex power::derivative(const symbol & s) const
 {
        if (is_a<numeric>(exponent)) {
                // D(b^r) = r * b^(r-1) * D(b) (faster than the formula below)
-               epvector newseq;
-               newseq.reserve(2);
-               newseq.push_back(expair(basis, exponent - _ex1));
-               newseq.push_back(expair(basis.diff(s), _ex1));
-               return mul(newseq, exponent);
+               const epvector newseq = {expair(basis, exponent - _ex1), expair(basis.diff(s), _ex1)};
+               return dynallocate<mul>(std::move(newseq), exponent);
        } else {
                // D(b^e) = b^e * (D(e)*ln(b) + e*D(b)/b)
-               return mul(*this,
-                          add(mul(exponent.diff(s), log(basis)),
-                          mul(mul(exponent, basis.diff(s)), power(basis, _ex_1))));
+               return *this * (exponent.diff(s)*log(basis) + exponent*basis.diff(s)*pow(basis, _ex_1));
        }
 }
 
@@ -823,29 +791,26 @@ ex power::expand(unsigned options) const
                epvector powseq;
                prodseq.reserve(m.seq.size() + 1);
                powseq.reserve(m.seq.size() + 1);
-               epvector::const_iterator last = m.seq.end();
-               epvector::const_iterator cit = m.seq.begin();
                bool possign = true;
 
                // search for positive/negative factors
-               while (cit!=last) {
-                       ex e=m.recombine_pair_to_ex(*cit);
+               for (auto & cit : m.seq) {
+                       ex e=m.recombine_pair_to_ex(cit);
                        if (e.info(info_flags::positive))
                                prodseq.push_back(pow(e, exponent).expand(options));
                        else if (e.info(info_flags::negative)) {
                                prodseq.push_back(pow(-e, exponent).expand(options));
                                possign = !possign;
                        } else
-                               powseq.push_back(*cit);
-                       ++cit;
+                               powseq.push_back(cit);
                }
 
                // take care on the numeric coefficient
                ex coeff=(possign? _ex1 : _ex_1);
                if (m.overall_coeff.info(info_flags::positive) && m.overall_coeff != _ex1)
-                       prodseq.push_back(power(m.overall_coeff, exponent));
+                       prodseq.push_back(pow(m.overall_coeff, exponent));
                else if (m.overall_coeff.info(info_flags::negative) && m.overall_coeff != _ex_1)
-                       prodseq.push_back(power(-m.overall_coeff, exponent));
+                       prodseq.push_back(pow(-m.overall_coeff, exponent));
                else
                        coeff *= m.overall_coeff;
 
@@ -853,9 +818,9 @@ ex power::expand(unsigned options) const
                // In either case we set a flag to avoid the second run on a part
                // which does not have positive/negative terms.
                if (prodseq.size() > 0) {
-                       ex newbasis = coeff*mul(powseq);
+                       ex newbasis = dynallocate<mul>(std::move(powseq), coeff);
                        ex_to<basic>(newbasis).setflag(status_flags::purely_indefinite);
-                       return ((new mul(prodseq))->setflag(status_flags::dynallocated)*(new power(newbasis, exponent))->setflag(status_flags::dynallocated).expand(options)).expand(options);
+                       return dynallocate<mul>(std::move(prodseq)) * pow(newbasis, exponent);
                } else
                        ex_to<basic>(basis).setflag(status_flags::purely_indefinite);
        }
@@ -868,26 +833,23 @@ ex power::expand(unsigned options) const
                const add &a = ex_to<add>(expanded_exponent);
                exvector distrseq;
                distrseq.reserve(a.seq.size() + 1);
-               epvector::const_iterator last = a.seq.end();
-               epvector::const_iterator cit = a.seq.begin();
-               while (cit!=last) {
-                       distrseq.push_back(power(expanded_basis, a.recombine_pair_to_ex(*cit)));
-                       ++cit;
+               for (auto & cit : a.seq) {
+                       distrseq.push_back(pow(expanded_basis, a.recombine_pair_to_ex(cit)));
                }
                
                // Make sure that e.g. (x+y)^(2+a) expands the (x+y)^2 factor
                if (ex_to<numeric>(a.overall_coeff).is_integer()) {
                        const numeric &num_exponent = ex_to<numeric>(a.overall_coeff);
-                       int int_exponent = num_exponent.to_int();
+                       long int_exponent = num_exponent.to_int();
                        if (int_exponent > 0 && is_exactly_a<add>(expanded_basis))
                                distrseq.push_back(expand_add(ex_to<add>(expanded_basis), int_exponent, options));
                        else
-                               distrseq.push_back(power(expanded_basis, a.overall_coeff));
+                               distrseq.push_back(pow(expanded_basis, a.overall_coeff));
                } else
-                       distrseq.push_back(power(expanded_basis, a.overall_coeff));
+                       distrseq.push_back(pow(expanded_basis, a.overall_coeff));
                
                // Make sure that e.g. (x+y)^(1+a) -> x*(x+y)^a + y*(x+y)^a
-               ex r = (new mul(distrseq))->setflag(status_flags::dynallocated);
+               ex r = dynallocate<mul>(distrseq);
                return r.expand(options);
        }
        
@@ -896,13 +858,13 @@ ex power::expand(unsigned options) const
                if (are_ex_trivially_equal(basis,expanded_basis) && are_ex_trivially_equal(exponent,expanded_exponent)) {
                        return this->hold();
                } else {
-                       return (new power(expanded_basis,expanded_exponent))->setflag(status_flags::dynallocated | (options == 0 ? status_flags::expanded : 0));
+                       return dynallocate<power>(expanded_basis, expanded_exponent).setflag(options == 0 ? status_flags::expanded : 0);
                }
        }
        
        // integer numeric exponent
        const numeric & num_exponent = ex_to<numeric>(expanded_exponent);
-       int int_exponent = num_exponent.to_int();
+       long int_exponent = num_exponent.to_long();
        
        // (x+y)^n, n>0
        if (int_exponent > 0 && is_exactly_a<add>(expanded_basis))
@@ -916,7 +878,7 @@ ex power::expand(unsigned options) const
        if (are_ex_trivially_equal(basis,expanded_basis) && are_ex_trivially_equal(exponent,expanded_exponent))
                return this->hold();
        else
-               return (new power(expanded_basis,expanded_exponent))->setflag(status_flags::dynallocated | (options == 0 ? status_flags::expanded : 0));
+               return dynallocate<power>(expanded_basis, expanded_exponent).setflag(options == 0 ? status_flags::expanded : 0);
 }
 
 //////////
@@ -929,192 +891,9 @@ ex power::expand(unsigned options) const
 // non-virtual functions in this class
 //////////
 
-namespace {  // anonymous namespace for power::expand_add() helpers
-
-/** Helper class to generate all bounded combinatorial partitions of an integer
- *  n with exactly m parts (including zero parts) in non-decreasing order.
- */
-class partition_generator {
-private:
-       // Partitions n into m parts, not including zero parts.
-       // (Cf. OEIS sequence A008284; implementation adapted from Jörg Arndt's
-       // FXT library)
-       struct mpartition2
-       {
-               // partition: x[1] + x[2] + ... + x[m] = n and sentinel x[0] == 0
-               std::vector<int> x;
-               int n;   // n>0
-               int m;   // 0<m<=n
-               mpartition2(unsigned n_, unsigned m_)
-                 : x(m_+1), n(n_), m(m_)
-               {
-                       for (int k=1; k<m; ++k)
-                               x[k] = 1;
-                       x[m] = n - m + 1;
-               }
-               bool next_partition()
-               {
-                       int u = x[m];  // last element
-                       int k = m;
-                       int s = u;
-                       while (--k) {
-                               s += x[k];
-                               if (x[k] + 2 <= u)
-                                       break;
-                       }
-                       if (k==0)
-                               return false;  // current is last
-                       int f = x[k] + 1;
-                       while (k < m) {
-                               x[k] = f;
-                               s -= f;
-                               ++k;
-                       }
-                       x[m] = s;
-                       return true;
-               }
-       } mpgen;
-       int m;  // number of parts 0<m<=n
-       mutable std::vector<int> partition;  // current partition
-public:
-       partition_generator(unsigned n_, unsigned m_)
-         : mpgen(n_, 1), m(m_), partition(m_)
-       { }
-       // returns current partition in non-decreasing order, padded with zeros
-       const std::vector<int>& current() const
-       {
-               for (int i = 0; i < m - mpgen.m; ++i)
-                       partition[i] = 0;  // pad with zeros
-
-               for (int i = m - mpgen.m; i < m; ++i)
-                       partition[i] = mpgen.x[i - m + mpgen.m + 1];
-
-               return partition;
-       }
-       bool next()
-       {
-               if (!mpgen.next_partition()) {
-                       if (mpgen.m == m || mpgen.m == mpgen.n)
-                               return false;  // current is last
-                       // increment number of parts
-                       mpgen = mpartition2(mpgen.n, mpgen.m + 1);
-               }
-               return true;
-       }
-};
-
-/** Helper class to generate all compositions of a partition of an integer n,
- *  starting with the compositions which has non-decreasing order.
- */
-class composition_generator {
-private:
-       // Generates all distinct permutations of a multiset.
-       // (Based on Aaron Williams' algorithm 1 from "Loopless Generation of
-       // Multiset Permutations using a Constant Number of Variables by Prefix
-       // Shifts." <http://webhome.csc.uvic.ca/~haron/CoolMulti.pdf>)
-       struct coolmulti {
-               // element of singly linked list
-               struct element {
-                       int value;
-                       element* next;
-                       element(int val, element* n)
-                         : value(val), next(n) {}
-                       ~element()
-                       {   // recurses down to the end of the singly linked list
-                               delete next;
-                       }
-               };
-               element *head, *i, *after_i;
-               // NB: Partition must be sorted in non-decreasing order.
-               explicit coolmulti(const std::vector<int>& partition)
-               {
-                       head = NULL;
-                       for (unsigned n = 0; n < partition.size(); ++n) {
-                               head = new element(partition[n], head);
-                               if (n <= 1)
-                                       i = head;
-                       }
-                       after_i = i->next;
-               }
-               ~coolmulti()
-               {   // deletes singly linked list
-                       delete head;
-               }
-               void next_permutation()
-               {
-                       element *before_k;
-                       if (after_i->next != NULL && i->value >= after_i->next->value)
-                               before_k = after_i;
-                       else
-                               before_k = i;
-                       element *k = before_k->next;
-                       before_k->next = k->next;
-                       k->next = head;
-                       if (k->value < head->value)
-                               i = k;
-                       after_i = i->next;
-                       head = k;
-               }
-               bool finished() const
-               {
-                       return after_i->next == NULL && after_i->value >= head->value;
-               }
-       } cmgen;
-       bool atend;  // needed for simplifying iteration over permutations
-       bool trivial;  // likewise, true if all elements are equal
-       mutable std::vector<int> composition;  // current compositions
-public:
-       explicit composition_generator(const std::vector<int>& partition)
-         : cmgen(partition), atend(false), trivial(true), composition(partition.size())
-       {
-               for (unsigned i=1; i<partition.size(); ++i)
-                       trivial = trivial && (partition[0] == partition[i]);
-       }
-       const std::vector<int>& current() const
-       {
-               coolmulti::element* it = cmgen.head;
-               size_t i = 0;
-               while (it != NULL) {
-                       composition[i] = it->value;
-                       it = it->next;
-                       ++i;
-               }
-               return composition;
-       }
-       bool next()
-       {
-               // This ugly contortion is needed because the original coolmulti
-               // algorithm requires code duplication of the payload procedure,
-               // one before the loop and one inside it.
-               if (trivial || atend)
-                       return false;
-               cmgen.next_permutation();
-               atend = cmgen.finished();
-               return true;
-       }
-};
-
-/** Helper function to compute the multinomial coefficient n!/(p1!*p2!*...*pk!)
- *  where n = p1+p2+...+pk, i.e. p is a partition of n.
- */
-const numeric
-multinomial_coefficient(const std::vector<int> & p)
-{
-       numeric n = 0, d = 1;
-       std::vector<int>::const_iterator it = p.begin(), itend = p.end();
-       while (it != itend) {
-               n += numeric(*it);
-               d *= factorial(numeric(*it));
-               ++it;
-       }
-       return factorial(numeric(n)) / d;
-}
-
-}  // anonymous namespace
-
 /** expand a^n where a is an add and n is a positive integer.
  *  @see power::expand */
-ex power::expand_add(const add & a, int n, unsigned options) const
+ex power::expand_add(const add & a, long n, unsigned options)
 {
        // The special case power(+(x,...y;x),2) can be optimized better.
        if (n==2)
@@ -1176,7 +955,7 @@ ex power::expand_add(const add & a, int n, unsigned options) const
        // i.e. the number of unordered arrangements of m nonnegative integers
        // which sum up to n.  It is frequently written as C_n(m) and directly
        // related with binomial coefficients: binomial(n+m-1,m-1).
-       size_t result_size = binomial(numeric(n+a.nops()-1), numeric(a.nops()-1)).to_int();
+       size_t result_size = binomial(numeric(n+a.nops()-1), numeric(a.nops()-1)).to_long();
        if (!a.overall_coeff.is_zero()) {
                // the result's overall_coeff is one of the terms
                --result_size;
@@ -1202,18 +981,18 @@ ex power::expand_add(const add & a, int n, unsigned options) const
                // Multinomial expansion of power(+(x,...,z;0),k)*c^(n-k):
                // Iterate over all partitions of k with exactly as many parts as
                // there are symbolic terms in the basis (including zero parts).
-               partition_generator partitions(k, a.seq.size());
+               partition_with_zero_parts_generator partitions(k, a.seq.size());
                do {
-                       const std::vector<int>& partition = partitions.current();
+                       const std::vector<unsigned>& partition = partitions.get();
                        // All monomials of this partition have the same number of terms and the same coefficient.
-                       const unsigned msize = count_if(partition.begin(), partition.end(), bind2nd(std::greater<int>(), 0));
+                       const unsigned msize = std::count_if(partition.begin(), partition.end(), [](int i) { return i > 0; });
                        const numeric coeff = multinomial_coefficient(partition) * binomial_coefficient;
 
                        // Iterate over all compositions of the current partition.
                        composition_generator compositions(partition);
                        do {
-                               const std::vector<int>& exponent = compositions.current();
-                               exvector monomial;
+                               const std::vector<unsigned>& exponent = compositions.get();
+                               epvector monomial;
                                monomial.reserve(msize);
                                numeric factor = coeff;
                                for (unsigned i = 0; i < exponent.size(); ++i) {
@@ -1231,44 +1010,46 @@ ex power::expand_add(const add & a, int n, unsigned options) const
                                                // optimize away
                                        } else if (exponent[i] == 1) {
                                                // optimized
-                                               monomial.push_back(r);
+                                               monomial.push_back(expair(r, _ex1));
                                                if (c != *_num1_p)
                                                        factor = factor.mul(c);
                                        } else { // general case exponent[i] > 1
-                                               monomial.push_back((new power(r, exponent[i]))->setflag(status_flags::dynallocated));
+                                               monomial.push_back(expair(r, exponent[i]));
                                                if (c != *_num1_p)
                                                        factor = factor.mul(c.power(exponent[i]));
                                        }
                                }
-                               result.push_back(a.combine_ex_with_coeff_to_pair(mul(monomial).expand(options), factor));
+                               result.push_back(expair(mul(std::move(monomial)).expand(options), factor));
                        } while (compositions.next());
                } while (partitions.next());
        }
 
        GINAC_ASSERT(result.size() == result_size);
-
        if (a.overall_coeff.is_zero()) {
-               return (new add(result))->setflag(status_flags::dynallocated |
-                                                 status_flags::expanded);
+               return dynallocate<add>(std::move(result)).setflag(status_flags::expanded);
        } else {
-               return (new add(result, ex_to<numeric>(a.overall_coeff).power(n)))->setflag(status_flags::dynallocated |
-                                                                                           status_flags::expanded);
+               return dynallocate<add>(std::move(result), ex_to<numeric>(a.overall_coeff).power(n)).setflag(status_flags::expanded);
        }
 }
 
 
 /** Special case of power::expand_add. Expands a^2 where a is an add.
  *  @see power::expand_add */
-ex power::expand_add_2(const add & a, unsigned options) const
+ex power::expand_add_2(const add & a, unsigned options)
 {
-       epvector sum;
-       size_t a_nops = a.nops();
-       sum.reserve((a_nops*(a_nops+1))/2);
-       epvector::const_iterator last = a.seq.end();
+       epvector result;
+       size_t result_size = (a.nops() * (a.nops()+1)) / 2;
+       if (!a.overall_coeff.is_zero()) {
+               // the result's overall_coeff is one of the terms
+               --result_size;
+       }
+       result.reserve(result_size);
+
+       auto last = a.seq.end();
 
        // power(+(x,...,z;c),2)=power(+(x,...,z;0),2)+2*c*+(x,...,z;0)+c*c
        // first part: ignore overall_coeff and expand other terms
-       for (epvector::const_iterator cit0=a.seq.begin(); cit0!=last; ++cit0) {
+       for (auto cit0=a.seq.begin(); cit0!=last; ++cit0) {
                const ex & r = cit0->rest;
                const ex & c = cit0->coeff;
                
@@ -1282,50 +1063,48 @@ ex power::expand_add_2(const add & a, unsigned options) const
                
                if (c.is_equal(_ex1)) {
                        if (is_exactly_a<mul>(r)) {
-                               sum.push_back(a.combine_ex_with_coeff_to_pair(expand_mul(ex_to<mul>(r), *_num2_p, options, true),
-                                                                             _ex1));
+                               result.push_back(expair(expand_mul(ex_to<mul>(r), *_num2_p, options, true),
+                                                       _ex1));
                        } else {
-                               sum.push_back(a.combine_ex_with_coeff_to_pair((new power(r,_ex2))->setflag(status_flags::dynallocated),
-                                                                             _ex1));
+                               result.push_back(expair(dynallocate<power>(r, _ex2),
+                                                       _ex1));
                        }
                } else {
                        if (is_exactly_a<mul>(r)) {
-                               sum.push_back(a.combine_ex_with_coeff_to_pair(expand_mul(ex_to<mul>(r), *_num2_p, options, true),
-                                                    ex_to<numeric>(c).power_dyn(*_num2_p)));
+                               result.push_back(expair(expand_mul(ex_to<mul>(r), *_num2_p, options, true),
+                                                       ex_to<numeric>(c).power_dyn(*_num2_p)));
                        } else {
-                               sum.push_back(a.combine_ex_with_coeff_to_pair((new power(r,_ex2))->setflag(status_flags::dynallocated),
-                                                    ex_to<numeric>(c).power_dyn(*_num2_p)));
+                               result.push_back(expair(dynallocate<power>(r, _ex2),
+                                                       ex_to<numeric>(c).power_dyn(*_num2_p)));
                        }
                }
 
-               for (epvector::const_iterator cit1=cit0+1; cit1!=last; ++cit1) {
+               for (auto cit1=cit0+1; cit1!=last; ++cit1) {
                        const ex & r1 = cit1->rest;
                        const ex & c1 = cit1->coeff;
-                       sum.push_back(a.combine_ex_with_coeff_to_pair(mul(r,r1).expand(options),
-                                                                     _num2_p->mul(ex_to<numeric>(c)).mul_dyn(ex_to<numeric>(c1))));
+                       result.push_back(expair(mul(r,r1).expand(options),
+                                               _num2_p->mul(ex_to<numeric>(c)).mul_dyn(ex_to<numeric>(c1))));
                }
        }
        
-       GINAC_ASSERT(sum.size()==(a.seq.size()*(a.seq.size()+1))/2);
-       
        // second part: add terms coming from overall_coeff (if != 0)
        if (!a.overall_coeff.is_zero()) {
-               epvector::const_iterator i = a.seq.begin(), end = a.seq.end();
-               while (i != end) {
-                       sum.push_back(a.combine_pair_with_coeff_to_pair(*i, ex_to<numeric>(a.overall_coeff).mul_dyn(*_num2_p)));
-                       ++i;
-               }
-               sum.push_back(expair(ex_to<numeric>(a.overall_coeff).power_dyn(*_num2_p),_ex1));
+               for (auto & i : a.seq)
+                       result.push_back(a.combine_pair_with_coeff_to_pair(i, ex_to<numeric>(a.overall_coeff).mul_dyn(*_num2_p)));
+       }
+
+       GINAC_ASSERT(result.size() == result_size);
+
+       if (a.overall_coeff.is_zero()) {
+               return dynallocate<add>(std::move(result)).setflag(status_flags::expanded);
+       } else {
+               return dynallocate<add>(std::move(result), ex_to<numeric>(a.overall_coeff).power(2)).setflag(status_flags::expanded);
        }
-       
-       GINAC_ASSERT(sum.size()==(a_nops*(a_nops+1))/2);
-       
-       return (new add(sum))->setflag(status_flags::dynallocated | status_flags::expanded);
 }
 
 /** Expand factors of m in m^n where m is a mul and n is an integer.
  *  @see power::expand */
-ex power::expand_mul(const mul & m, const numeric & n, unsigned options, bool from_expand) const
+ex power::expand_mul(const mul & m, const numeric & n, unsigned options, bool from_expand)
 {
        GINAC_ASSERT(n.is_integer());
 
@@ -1353,20 +1132,17 @@ ex power::expand_mul(const mul & m, const numeric & n, unsigned options, bool fr
        distrseq.reserve(m.seq.size());
        bool need_reexpand = false;
 
-       epvector::const_iterator last = m.seq.end();
-       epvector::const_iterator cit = m.seq.begin();
-       while (cit!=last) {
-               expair p = m.combine_pair_with_coeff_to_pair(*cit, n);
-               if (from_expand && is_exactly_a<add>(cit->rest) && ex_to<numeric>(p.coeff).is_pos_integer()) {
+       for (auto & cit : m.seq) {
+               expair p = m.combine_pair_with_coeff_to_pair(cit, n);
+               if (from_expand && is_exactly_a<add>(cit.rest) && ex_to<numeric>(p.coeff).is_pos_integer()) {
                        // this happens when e.g. (a+b)^(1/2) gets squared and
                        // the resulting product needs to be reexpanded
                        need_reexpand = true;
                }
                distrseq.push_back(p);
-               ++cit;
        }
 
-       const mul & result = static_cast<const mul &>((new mul(distrseq, ex_to<numeric>(m.overall_coeff).power_dyn(n)))->setflag(status_flags::dynallocated));
+       const mul & result = dynallocate<mul>(std::move(distrseq), ex_to<numeric>(m.overall_coeff).power_dyn(n));
        if (need_reexpand)
                return ex(result).expand(options);
        if (from_expand)