]> www.ginac.de Git - ginac.git/blobdiff - ginac/power.cpp
Speed up power::real_part() and power::imag_part().
[ginac.git] / ginac / power.cpp
index c1568145d706157e250375ff8189f5caee944872..bf72d97320b667d1bcee62cf6572adee24845678 100644 (file)
@@ -3,7 +3,7 @@
  *  Implementation of GiNaC's symbolic exponentiation (basis^exponent). */
 
 /*
- *  GiNaC Copyright (C) 1999-2001 Johannes Gutenberg University Mainz, Germany
+ *  GiNaC Copyright (C) 1999-2015 Johannes Gutenberg University Mainz, Germany
  *
  *  This program is free software; you can redistribute it and/or modify
  *  it under the terms of the GNU General Public License as published by
  *
  *  You should have received a copy of the GNU General Public License
  *  along with this program; if not, write to the Free Software
- *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
+ *  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
  */
 
-#include <vector>
-#include <iostream>
-#include <stdexcept>
-
 #include "power.h"
 #include "expairseq.h"
 #include "add.h"
 #include "ncmul.h"
 #include "numeric.h"
 #include "constant.h"
+#include "operators.h"
 #include "inifcns.h" // for log() in power::derivative()
 #include "matrix.h"
+#include "indexed.h"
 #include "symbol.h"
-#include "print.h"
+#include "lst.h"
 #include "archive.h"
-#include "debugmsg.h"
 #include "utils.h"
+#include "relational.h"
+#include "compiler.h"
 
-namespace GiNaC {
+#include <iostream>
+#include <limits>
+#include <stdexcept>
+#include <vector>
 
-GINAC_IMPLEMENT_REGISTERED_CLASS(power, basic)
+namespace GiNaC {
 
-typedef std::vector<int> intvector;
+GINAC_IMPLEMENT_REGISTERED_CLASS_OPT(power, basic,
+  print_func<print_dflt>(&power::do_print_dflt).
+  print_func<print_latex>(&power::do_print_latex).
+  print_func<print_csrc>(&power::do_print_csrc).
+  print_func<print_python>(&power::do_print_python).
+  print_func<print_python_repr>(&power::do_print_python_repr).
+  print_func<print_csrc_cl_N>(&power::do_print_csrc_cl_N))
 
 //////////
-// default ctor, dtor, copy ctor assignment operator and helpers
+// default constructor
 //////////
 
-power::power() : inherited(TINFO_power)
-{
-       debugmsg("power default ctor",LOGLEVEL_CONSTRUCT);
-}
-
-void power::copy(const power & other)
-{
-       inherited::copy(other);
-       basis = other.basis;
-       exponent = other.exponent;
-}
-
-DEFAULT_DESTROY(power)
+power::power() { }
 
 //////////
-// other ctors
+// other constructors
 //////////
 
 // all inlined
@@ -73,9 +69,9 @@ DEFAULT_DESTROY(power)
 // archiving
 //////////
 
-power::power(const archive_node &n, const lst &sym_lst) : inherited(n, sym_lst)
+void power::read_archive(const archive_node &n, lst &sym_lst)
 {
-       debugmsg("power ctor from archive_node", LOGLEVEL_CONSTRUCT);
+       inherited::read_archive(n, sym_lst);
        n.find_ex("basis", basis, sym_lst);
        n.find_ex("exponent", exponent, sym_lst);
 }
@@ -87,19 +83,64 @@ void power::archive(archive_node &n) const
        n.add_ex("exponent", exponent);
 }
 
-DEFAULT_UNARCHIVE(power)
-
 //////////
 // functions overriding virtual functions from base classes
 //////////
 
 // public
 
+void power::print_power(const print_context & c, const char *powersymbol, const char *openbrace, const char *closebrace, unsigned level) const
+{
+       // Ordinary output of powers using '^' or '**'
+       if (precedence() <= level)
+               c.s << openbrace << '(';
+       basis.print(c, precedence());
+       c.s << powersymbol;
+       c.s << openbrace;
+       exponent.print(c, precedence());
+       c.s << closebrace;
+       if (precedence() <= level)
+               c.s << ')' << closebrace;
+}
+
+void power::do_print_dflt(const print_dflt & c, unsigned level) const
+{
+       if (exponent.is_equal(_ex1_2)) {
+
+               // Square roots are printed in a special way
+               c.s << "sqrt(";
+               basis.print(c);
+               c.s << ')';
+
+       } else
+               print_power(c, "^", "", "", level);
+}
+
+void power::do_print_latex(const print_latex & c, unsigned level) const
+{
+       if (is_exactly_a<numeric>(exponent) && ex_to<numeric>(exponent).is_negative()) {
+
+               // Powers with negative numeric exponents are printed as fractions
+               c.s << "\\frac{1}{";
+               power(basis, -exponent).eval().print(c);
+               c.s << '}';
+
+       } else if (exponent.is_equal(_ex1_2)) {
+
+               // Square roots are printed in a special way
+               c.s << "\\sqrt{";
+               basis.print(c);
+               c.s << '}';
+
+       } else
+               print_power(c, "^", "{", "}", level);
+}
+
 static void print_sym_pow(const print_context & c, const symbol &x, int exp)
 {
        // Optimal output of integer powers of symbols to aid compiler CSE.
        // C.f. ISO/IEC 14882:1998, section 1.9 [intro execution], paragraph 15
-       // to learn why such a parenthisation is really necessary.
+       // to learn why such a parenthesation is really necessary.
        if (exp == 1) {
                x.print(c);
        } else if (exp == 2) {
@@ -119,89 +160,66 @@ static void print_sym_pow(const print_context & c, const symbol &x, int exp)
        }
 }
 
-void power::print(const print_context & c, unsigned level) const
+void power::do_print_csrc_cl_N(const print_csrc_cl_N& c, unsigned level) const
 {
-       debugmsg("power print", LOGLEVEL_PRINT);
-
-       if (is_a<print_tree>(c)) {
-
-               inherited::print(c, level);
-
-       } else if (is_a<print_csrc>(c)) {
-
-               // Integer powers of symbols are printed in a special, optimized way
-               if (exponent.info(info_flags::integer)
-                && (is_exactly_a<symbol>(basis) || is_exactly_a<constant>(basis))) {
-                       int exp = ex_to<numeric>(exponent).to_int();
-                       if (exp > 0)
-                               c.s << '(';
-                       else {
-                               exp = -exp;
-                               if (is_a<print_csrc_cl_N>(c))
-                                       c.s << "recip(";
-                               else
-                                       c.s << "1.0/(";
-                       }
-                       print_sym_pow(c, ex_to<symbol>(basis), exp);
-                       c.s << ')';
-
-               // <expr>^-1 is printed as "1.0/<expr>" or with the recip() function of CLN
-               } else if (exponent.compare(_num_1()) == 0) {
-                       if (is_a<print_csrc_cl_N>(c))
-                               c.s << "recip(";
-                       else
-                               c.s << "1.0/(";
-                       basis.print(c);
-                       c.s << ')';
+       if (exponent.is_equal(_ex_1)) {
+               c.s << "recip(";
+               basis.print(c);
+               c.s << ')';
+               return;
+       }
+       c.s << "expt(";
+       basis.print(c);
+       c.s << ", ";
+       exponent.print(c);
+       c.s << ')';
+}
 
-               // Otherwise, use the pow() or expt() (CLN) functions
-               } else {
-                       if (is_a<print_csrc_cl_N>(c))
-                               c.s << "expt(";
-                       else
-                               c.s << "pow(";
-                       basis.print(c);
-                       c.s << ',';
-                       exponent.print(c);
-                       c.s << ')';
+void power::do_print_csrc(const print_csrc & c, unsigned level) const
+{
+       // Integer powers of symbols are printed in a special, optimized way
+       if (exponent.info(info_flags::integer) &&
+           (is_a<symbol>(basis) || is_a<constant>(basis))) {
+               int exp = ex_to<numeric>(exponent).to_int();
+               if (exp > 0)
+                       c.s << '(';
+               else {
+                       exp = -exp;
+                       c.s << "1.0/(";
                }
+               print_sym_pow(c, ex_to<symbol>(basis), exp);
+               c.s << ')';
 
-       } else {
+       // <expr>^-1 is printed as "1.0/<expr>" or with the recip() function of CLN
+       } else if (exponent.is_equal(_ex_1)) {
+               c.s << "1.0/(";
+               basis.print(c);
+               c.s << ')';
 
-               if (exponent.is_equal(_ex1_2())) {
-                       if (is_a<print_latex>(c))
-                               c.s << "\\sqrt{";
-                       else
-                               c.s << "sqrt(";
-                       basis.print(c);
-                       if (is_a<print_latex>(c))
-                               c.s << '}';
-                       else
-                               c.s << ')';
-               } else {
-                       if (precedence() <= level) {
-                               if (is_a<print_latex>(c))
-                                       c.s << "{(";
-                               else
-                                       c.s << "(";
-                       }
-                       basis.print(c, precedence());
-                       c.s << '^';
-                       if (is_a<print_latex>(c))
-                               c.s << '{';
-                       exponent.print(c, precedence());
-                       if (is_a<print_latex>(c))
-                               c.s << '}';
-                       if (precedence() <= level) {
-                               if (is_a<print_latex>(c))
-                                       c.s << ")}";
-                               else
-                                       c.s << ')';
-                       }
-               }
+       // Otherwise, use the pow() function
+       } else {
+               c.s << "pow(";
+               basis.print(c);
+               c.s << ',';
+               exponent.print(c);
+               c.s << ')';
        }
 }
 
+void power::do_print_python(const print_python & c, unsigned level) const
+{
+       print_power(c, "**", "", "", level);
+}
+
+void power::do_print_python_repr(const print_python_repr & c, unsigned level) const
+{
+       c.s << class_name() << '(';
+       basis.print(c);
+       c.s << ',';
+       exponent.print(c);
+       c.s << ')';
+}
+
 bool power::info(unsigned inf) const
 {
        switch (inf) {
@@ -210,24 +228,47 @@ bool power::info(unsigned inf) const
                case info_flags::cinteger_polynomial:
                case info_flags::rational_polynomial:
                case info_flags::crational_polynomial:
-                       return exponent.info(info_flags::nonnegint);
+                       return exponent.info(info_flags::nonnegint) &&
+                              basis.info(inf);
                case info_flags::rational_function:
-                       return exponent.info(info_flags::integer);
+                       return exponent.info(info_flags::integer) &&
+                              basis.info(inf);
                case info_flags::algebraic:
-                       return (!exponent.info(info_flags::integer) ||
-                                       basis.info(inf));
+                       return !exponent.info(info_flags::integer) ||
+                              basis.info(inf);
+               case info_flags::expanded:
+                       return (flags & status_flags::expanded);
+               case info_flags::positive:
+                       return basis.info(info_flags::positive) && exponent.info(info_flags::real);
+               case info_flags::nonnegative:
+                       return (basis.info(info_flags::positive) && exponent.info(info_flags::real)) ||
+                              (basis.info(info_flags::real) && exponent.info(info_flags::integer) && exponent.info(info_flags::even));
+               case info_flags::has_indices: {
+                       if (flags & status_flags::has_indices)
+                               return true;
+                       else if (flags & status_flags::has_no_indices)
+                               return false;
+                       else if (basis.info(info_flags::has_indices)) {
+                               setflag(status_flags::has_indices);
+                               clearflag(status_flags::has_no_indices);
+                               return true;
+                       } else {
+                               clearflag(status_flags::has_indices);
+                               setflag(status_flags::has_no_indices);
+                               return false;
+                       }
+               }
        }
        return inherited::info(inf);
 }
 
-unsigned power::nops() const
+size_t power::nops() const
 {
        return 2;
 }
 
-ex & power::let_op(int i)
+ex power::op(size_t i) const
 {
-       GINAC_ASSERT(i>=0);
        GINAC_ASSERT(i<2);
 
        return i==0 ? basis : exponent;
@@ -235,54 +276,85 @@ ex & power::let_op(int i)
 
 ex power::map(map_function & f) const
 {
-       return (new power(f(basis), f(exponent)))->setflag(status_flags::dynallocated);
+       const ex &mapped_basis = f(basis);
+       const ex &mapped_exponent = f(exponent);
+
+       if (!are_ex_trivially_equal(basis, mapped_basis)
+        || !are_ex_trivially_equal(exponent, mapped_exponent))
+               return (new power(mapped_basis, mapped_exponent))->setflag(status_flags::dynallocated);
+       else
+               return *this;
+}
+
+bool power::is_polynomial(const ex & var) const
+{
+       if (basis.is_polynomial(var)) {
+               if (basis.has(var))
+                       // basis is non-constant polynomial in var
+                       return exponent.info(info_flags::nonnegint);
+               else
+                       // basis is constant in var
+                       return !exponent.has(var);
+       }
+       // basis is a non-polynomial function of var
+       return false;
 }
 
 int power::degree(const ex & s) const
 {
-       if (is_exactly_of_type(*exponent.bp, numeric) && ex_to<numeric>(exponent).is_integer()) {
+       if (is_equal(ex_to<basic>(s)))
+               return 1;
+       else if (is_exactly_a<numeric>(exponent) && ex_to<numeric>(exponent).is_integer()) {
                if (basis.is_equal(s))
                        return ex_to<numeric>(exponent).to_int();
                else
                        return basis.degree(s) * ex_to<numeric>(exponent).to_int();
-       }
-       return 0;
+       } else if (basis.has(s))
+               throw(std::runtime_error("power::degree(): undefined degree because of non-integer exponent"));
+       else
+               return 0;
 }
 
 int power::ldegree(const ex & s) const 
 {
-       if (is_exactly_of_type(*exponent.bp, numeric) && ex_to<numeric>(exponent).is_integer()) {
+       if (is_equal(ex_to<basic>(s)))
+               return 1;
+       else if (is_exactly_a<numeric>(exponent) && ex_to<numeric>(exponent).is_integer()) {
                if (basis.is_equal(s))
                        return ex_to<numeric>(exponent).to_int();
                else
                        return basis.ldegree(s) * ex_to<numeric>(exponent).to_int();
-       }
-       return 0;
+       } else if (basis.has(s))
+               throw(std::runtime_error("power::ldegree(): undefined degree because of non-integer exponent"));
+       else
+               return 0;
 }
 
 ex power::coeff(const ex & s, int n) const
 {
-       if (!basis.is_equal(s)) {
+       if (is_equal(ex_to<basic>(s)))
+               return n==1 ? _ex1 : _ex0;
+       else if (!basis.is_equal(s)) {
                // basis not equal to s
                if (n == 0)
                        return *this;
                else
-                       return _ex0();
+                       return _ex0;
        } else {
                // basis equal to s
-               if (is_exactly_of_type(*exponent.bp, numeric) && ex_to<numeric>(exponent).is_integer()) {
+               if (is_exactly_a<numeric>(exponent) && ex_to<numeric>(exponent).is_integer()) {
                        // integer exponent
                        int int_exp = ex_to<numeric>(exponent).to_int();
                        if (n == int_exp)
-                               return _ex1();
+                               return _ex1;
                        else
-                               return _ex0();
+                               return _ex0;
                } else {
                        // non-integer exponents are treated as zero
                        if (n == 0)
                                return *this;
                        else
-                               return _ex0();
+                               return _ex0;
                }
        }
 }
@@ -295,7 +367,8 @@ ex power::coeff(const ex & s, int n) const
  *  - ^(0,c) -> 0 or exception  (depending on the real part of c)
  *  - ^(1,x) -> 1
  *  - ^(c1,c2) -> *(c1^n,c1^(c2-n))  (so that 0<(c2-n)<1, try to evaluate roots, possibly in numerator and denominator of c1)
- *  - ^(^(x,c1),c2) -> ^(x,c1*c2)  (c2 integer or -1 < c1 <= 1, case c1=1 should not happen, see below!)
+ *  - ^(^(x,c1),c2) -> ^(x,c1*c2)  if x is positive and c1 is real.
+ *  - ^(^(x,c1),c2) -> ^(x,c1*c2)  (c2 integer or -1 < c1 <= 1 or (c1=-1 and c2>0), case c1=1 should not happen, see below!)
  *  - ^(*(x,y,z),c) -> *(x^c,y^c,z^c)  (if c integer)
  *  - ^(*(x,c1),c2) -> ^(x,c2)*c1^c2  (c1>0)
  *  - ^(*(x,c1),c2) -> ^(-x,c2)*c1^c2  (c1<0)
@@ -303,8 +376,6 @@ ex power::coeff(const ex & s, int n) const
  *  @param level cut-off in recursive evaluation */
 ex power::eval(int level) const
 {
-       debugmsg("power eval",LOGLEVEL_MEMBER_FUNCTION);
-       
        if ((level==1) && (flags & status_flags::evaluated))
                return *this;
        else if (level == -max_recursion_level)
@@ -313,18 +384,14 @@ ex power::eval(int level) const
        const ex & ebasis    = level==1 ? basis    : basis.eval(level-1);
        const ex & eexponent = level==1 ? exponent : exponent.eval(level-1);
        
-       bool basis_is_numerical = false;
-       bool exponent_is_numerical = false;
-       const numeric *num_basis;
-       const numeric *num_exponent;
+       const numeric *num_basis = NULL;
+       const numeric *num_exponent = NULL;
        
-       if (is_exactly_of_type(*ebasis.bp,numeric)) {
-               basis_is_numerical = true;
-               num_basis = static_cast<const numeric *>(ebasis.bp);
+       if (is_exactly_a<numeric>(ebasis)) {
+               num_basis = &ex_to<numeric>(ebasis);
        }
-       if (is_exactly_of_type(*eexponent.bp,numeric)) {
-               exponent_is_numerical = true;
-               num_exponent = static_cast<const numeric *>(eexponent.bp);
+       if (is_exactly_a<numeric>(eexponent)) {
+               num_exponent = &ex_to<numeric>(eexponent);
        }
        
        // ^(x,0) -> 1  (0^0 also handled here)
@@ -332,32 +399,40 @@ ex power::eval(int level) const
                if (ebasis.is_zero())
                        throw (std::domain_error("power::eval(): pow(0,0) is undefined"));
                else
-                       return _ex1();
+                       return _ex1;
        }
        
        // ^(x,1) -> x
-       if (eexponent.is_equal(_ex1()))
+       if (eexponent.is_equal(_ex1))
                return ebasis;
 
        // ^(0,c1) -> 0 or exception  (depending on real value of c1)
-       if (ebasis.is_zero() && exponent_is_numerical) {
+       if ( ebasis.is_zero() && num_exponent ) {
                if ((num_exponent->real()).is_zero())
                        throw (std::domain_error("power::eval(): pow(0,I) is undefined"));
                else if ((num_exponent->real()).is_negative())
                        throw (pole_error("power::eval(): division by zero",1));
                else
-                       return _ex0();
+                       return _ex0;
        }
 
        // ^(1,x) -> 1
-       if (ebasis.is_equal(_ex1()))
-               return _ex1();
+       if (ebasis.is_equal(_ex1))
+               return _ex1;
 
-       if (exponent_is_numerical) {
+       // power of a function calculated by separate rules defined for this function
+       if (is_exactly_a<function>(ebasis))
+               return ex_to<function>(ebasis).power(eexponent);
+
+       // Turn (x^c)^d into x^(c*d) in the case that x is positive and c is real.
+       if (is_exactly_a<power>(ebasis) && ebasis.op(0).info(info_flags::positive) && ebasis.op(1).info(info_flags::real))
+               return power(ebasis.op(0), ebasis.op(1) * eexponent);
+
+       if ( num_exponent ) {
 
                // ^(c1,c2) -> c1^c2  (c1, c2 numeric(),
                // except if c1,c2 are rational, but c1^c2 is not)
-               if (basis_is_numerical) {
+               if ( num_basis ) {
                        const bool basis_is_crational = num_basis->is_crational();
                        const bool exponent_is_crational = num_exponent->is_crational();
                        if (!basis_is_crational || !exponent_is_crational) {
@@ -411,45 +486,77 @@ ex power::eval(int level) const
                }
        
                // ^(^(x,c1),c2) -> ^(x,c1*c2)
-               // (c1, c2 numeric(), c2 integer or -1 < c1 <= 1,
+               // (c1, c2 numeric(), c2 integer or -1 < c1 <= 1 or (c1=-1 and c2>0),
                // case c1==1 should not happen, see below!)
-               if (is_ex_exactly_of_type(ebasis,power)) {
+               if (is_exactly_a<power>(ebasis)) {
                        const power & sub_power = ex_to<power>(ebasis);
                        const ex & sub_basis = sub_power.basis;
                        const ex & sub_exponent = sub_power.exponent;
-                       if (is_ex_exactly_of_type(sub_exponent,numeric)) {
+                       if (is_exactly_a<numeric>(sub_exponent)) {
                                const numeric & num_sub_exponent = ex_to<numeric>(sub_exponent);
                                GINAC_ASSERT(num_sub_exponent!=numeric(1));
-                               if (num_exponent->is_integer() || (abs(num_sub_exponent) - _num1()).is_negative())
+                               if (num_exponent->is_integer() || (abs(num_sub_exponent) - (*_num1_p)).is_negative() ||
+                                   (num_sub_exponent == *_num_1_p && num_exponent->is_positive())) {
                                        return power(sub_basis,num_sub_exponent.mul(*num_exponent));
+                               }
                        }
                }
        
                // ^(*(x,y,z),c1) -> *(x^c1,y^c1,z^c1) (c1 integer)
-               if (num_exponent->is_integer() && is_ex_exactly_of_type(ebasis,mul)) {
-                       return expand_mul(ex_to<mul>(ebasis), *num_exponent);
+               if (num_exponent->is_integer() && is_exactly_a<mul>(ebasis)) {
+                       return expand_mul(ex_to<mul>(ebasis), *num_exponent, 0);
                }
-       
+
+               // (2*x + 6*y)^(-4) -> 1/16*(x + 3*y)^(-4)
+               if (num_exponent->is_integer() && is_exactly_a<add>(ebasis)) {
+                       numeric icont = ebasis.integer_content();
+                       const numeric lead_coeff = 
+                               ex_to<numeric>(ex_to<add>(ebasis).seq.begin()->coeff).div(icont);
+
+                       const bool canonicalizable = lead_coeff.is_integer();
+                       const bool unit_normal = lead_coeff.is_pos_integer();
+                       if (canonicalizable && (! unit_normal))
+                               icont = icont.mul(*_num_1_p);
+                       
+                       if (canonicalizable && (icont != *_num1_p)) {
+                               const add& addref = ex_to<add>(ebasis);
+                               add* addp = new add(addref);
+                               addp->setflag(status_flags::dynallocated);
+                               addp->clearflag(status_flags::hash_calculated);
+                               addp->overall_coeff = ex_to<numeric>(addp->overall_coeff).div_dyn(icont);
+                               for (epvector::iterator i = addp->seq.begin(); i != addp->seq.end(); ++i)
+                                       i->coeff = ex_to<numeric>(i->coeff).div_dyn(icont);
+
+                               const numeric c = icont.power(*num_exponent);
+                               if (likely(c != *_num1_p))
+                                       return (new mul(power(*addp, *num_exponent), c))->setflag(status_flags::dynallocated);
+                               else
+                                       return power(*addp, *num_exponent);
+                       }
+               }
+
                // ^(*(...,x;c1),c2) -> *(^(*(...,x;1),c2),c1^c2)  (c1, c2 numeric(), c1>0)
                // ^(*(...,x;c1),c2) -> *(^(*(...,x;-1),c2),(-c1)^c2)  (c1, c2 numeric(), c1<0)
-               if (is_ex_exactly_of_type(ebasis,mul)) {
+               if (is_exactly_a<mul>(ebasis)) {
                        GINAC_ASSERT(!num_exponent->is_integer()); // should have been handled above
                        const mul & mulref = ex_to<mul>(ebasis);
-                       if (!mulref.overall_coeff.is_equal(_ex1())) {
+                       if (!mulref.overall_coeff.is_equal(_ex1)) {
                                const numeric & num_coeff = ex_to<numeric>(mulref.overall_coeff);
                                if (num_coeff.is_real()) {
                                        if (num_coeff.is_positive()) {
                                                mul *mulp = new mul(mulref);
-                                               mulp->overall_coeff = _ex1();
+                                               mulp->overall_coeff = _ex1;
+                                               mulp->setflag(status_flags::dynallocated);
                                                mulp->clearflag(status_flags::evaluated);
                                                mulp->clearflag(status_flags::hash_calculated);
                                                return (new mul(power(*mulp,exponent),
                                                                power(num_coeff,*num_exponent)))->setflag(status_flags::dynallocated);
                                        } else {
-                                               GINAC_ASSERT(num_coeff.compare(_num0())<0);
-                                               if (num_coeff.compare(_num_1())!=0) {
+                                               GINAC_ASSERT(num_coeff.compare(*_num0_p)<0);
+                                               if (!num_coeff.is_equal(*_num_1_p)) {
                                                        mul *mulp = new mul(mulref);
-                                                       mulp->overall_coeff = _ex_1();
+                                                       mulp->overall_coeff = _ex_1;
+                                                       mulp->setflag(status_flags::dynallocated);
                                                        mulp->clearflag(status_flags::evaluated);
                                                        mulp->clearflag(status_flags::hash_calculated);
                                                        return (new mul(power(*mulp,exponent),
@@ -463,7 +570,7 @@ ex power::eval(int level) const
                // ^(nc,c1) -> ncmul(nc,nc,...) (c1 positive integer, unless nc is a matrix)
                if (num_exponent->is_pos_integer() &&
                    ebasis.return_type() != return_types::commutative &&
-                   !is_ex_of_type(ebasis,matrix)) {
+                   !is_a<matrix>(ebasis)) {
                        return ncmul(exvector(num_exponent->to_int(), ebasis), true);
                }
        }
@@ -478,8 +585,6 @@ ex power::eval(int level) const
 
 ex power::evalf(int level) const
 {
-       debugmsg("power evalf",LOGLEVEL_MEMBER_FUNCTION);
-       
        ex ebasis;
        ex eexponent;
        
@@ -490,7 +595,7 @@ ex power::evalf(int level) const
                throw(std::runtime_error("max recursion level reached"));
        } else {
                ebasis = basis.evalf(level-1);
-               if (!is_ex_exactly_of_type(eexponent,numeric))
+               if (!is_exactly_a<numeric>(exponent))
                        eexponent = exponent.evalf(level-1);
                else
                        eexponent = exponent;
@@ -499,33 +604,163 @@ ex power::evalf(int level) const
        return power(ebasis,eexponent);
 }
 
-ex power::evalm(void) const
+ex power::evalm() const
 {
        const ex ebasis = basis.evalm();
        const ex eexponent = exponent.evalm();
-       if (is_ex_of_type(ebasis,matrix)) {
-               if (is_ex_of_type(eexponent,numeric)) {
+       if (is_a<matrix>(ebasis)) {
+               if (is_exactly_a<numeric>(eexponent)) {
                        return (new matrix(ex_to<matrix>(ebasis).pow(eexponent)))->setflag(status_flags::dynallocated);
                }
        }
        return (new power(ebasis, eexponent))->setflag(status_flags::dynallocated);
 }
 
-ex power::subs(const lst & ls, const lst & lr, bool no_pattern) const
+bool power::has(const ex & other, unsigned options) const
+{
+       if (!(options & has_options::algebraic))
+               return basic::has(other, options);
+       if (!is_a<power>(other))
+               return basic::has(other, options);
+       if (!exponent.info(info_flags::integer) ||
+           !other.op(1).info(info_flags::integer))
+               return basic::has(other, options);
+       if (exponent.info(info_flags::posint) &&
+           other.op(1).info(info_flags::posint) &&
+           ex_to<numeric>(exponent) > ex_to<numeric>(other.op(1)) &&
+           basis.match(other.op(0)))
+               return true;
+       if (exponent.info(info_flags::negint) &&
+           other.op(1).info(info_flags::negint) &&
+           ex_to<numeric>(exponent) < ex_to<numeric>(other.op(1)) &&
+           basis.match(other.op(0)))
+               return true;
+       return basic::has(other, options);
+}
+
+// from mul.cpp
+extern bool tryfactsubs(const ex &, const ex &, int &, exmap&);
+
+ex power::subs(const exmap & m, unsigned options) const
+{      
+       const ex &subsed_basis = basis.subs(m, options);
+       const ex &subsed_exponent = exponent.subs(m, options);
+
+       if (!are_ex_trivially_equal(basis, subsed_basis)
+        || !are_ex_trivially_equal(exponent, subsed_exponent)) 
+               return power(subsed_basis, subsed_exponent).subs_one_level(m, options);
+
+       if (!(options & subs_options::algebraic))
+               return subs_one_level(m, options);
+
+       for (exmap::const_iterator it = m.begin(); it != m.end(); ++it) {
+               int nummatches = std::numeric_limits<int>::max();
+               exmap repls;
+               if (tryfactsubs(*this, it->first, nummatches, repls)) {
+                       ex anum = it->second.subs(repls, subs_options::no_pattern);
+                       ex aden = it->first.subs(repls, subs_options::no_pattern);
+                       ex result = (*this)*power(anum/aden, nummatches);
+                       return (ex_to<basic>(result)).subs_one_level(m, options);
+               }
+       }
+
+       return subs_one_level(m, options);
+}
+
+ex power::eval_ncmul(const exvector & v) const
 {
-       const ex &subsed_basis = basis.subs(ls, lr, no_pattern);
-       const ex &subsed_exponent = exponent.subs(ls, lr, no_pattern);
+       return inherited::eval_ncmul(v);
+}
 
-       if (are_ex_trivially_equal(basis, subsed_basis)
-        && are_ex_trivially_equal(exponent, subsed_exponent))
-               return basic::subs(ls, lr, no_pattern);
-       else
-               return ex(power(subsed_basis, subsed_exponent)).bp->basic::subs(ls, lr, no_pattern);
+ex power::conjugate() const
+{
+       // conjugate(pow(x,y))==pow(conjugate(x),conjugate(y)) unless on the
+       // branch cut which runs along the negative real axis.
+       if (basis.info(info_flags::positive)) {
+               ex newexponent = exponent.conjugate();
+               if (are_ex_trivially_equal(exponent, newexponent)) {
+                       return *this;
+               }
+               return (new power(basis, newexponent))->setflag(status_flags::dynallocated);
+       }
+       if (exponent.info(info_flags::integer)) {
+               ex newbasis = basis.conjugate();
+               if (are_ex_trivially_equal(basis, newbasis)) {
+                       return *this;
+               }
+               return (new power(newbasis, exponent))->setflag(status_flags::dynallocated);
+       }
+       return conjugate_function(*this).hold();
+}
+
+ex power::real_part() const
+{
+       // basis == a+I*b, exponent == c+I*d
+       const ex a = basis.real_part();
+       const ex c = exponent.real_part();
+       if (basis.is_equal(a) && exponent.is_equal(c)) {
+               // Re(a^c)
+               return *this;
+       }
+
+       const ex b = basis.imag_part();
+       if (exponent.info(info_flags::integer)) {
+               // Re((a+I*b)^c)  w/  c âˆˆ â„¤
+               long N = ex_to<numeric>(c).to_long();
+               // Use real terms in Binomial expansion to construct
+               // Re(expand(power(a+I*b, N))).
+               long NN = N > 0 ? N : -N;
+               ex numer = N > 0 ? _ex1 : power(power(a,2) + power(b,2), NN);
+               ex result = 0;
+               for (long n = 0; n <= NN; n += 2) {
+                       ex term = binomial(NN, n) * power(a, NN-n) * power(b, n) / numer;
+                       if (n % 4 == 0) {
+                               result += term;  // sign: I^n w/ n == 4*m
+                       } else {
+                               result -= term;  // sign: I^n w/ n == 4*m+2
+                       }
+               }
+               return result;
+       }
+
+       // Re((a+I*b)^(c+I*d))
+       const ex d = exponent.imag_part();
+       return power(abs(basis),c)*exp(-d*atan2(b,a))*cos(c*atan2(b,a)+d*log(abs(basis)));
 }
 
-ex power::simplify_ncmul(const exvector & v) const
+ex power::imag_part() const
 {
-       return inherited::simplify_ncmul(v);
+       const ex a = basis.real_part();
+       const ex c = exponent.real_part();
+       if (basis.is_equal(a) && exponent.is_equal(c)) {
+               // Im(a^c)
+               return 0;
+       }
+
+       const ex b = basis.imag_part();
+       if (exponent.info(info_flags::integer)) {
+               // Im((a+I*b)^c)  w/  c âˆˆ â„¤
+               long N = ex_to<numeric>(c).to_long();
+               // Use imaginary terms in Binomial expansion to construct
+               // Im(expand(power(a+I*b, N))).
+               long p = N > 0 ? 1 : 3;  // modulus for positive sign
+               long NN = N > 0 ? N : -N;
+               ex numer = N > 0 ? _ex1 : power(power(a,2) + power(b,2), NN);
+               ex result = 0;
+               for (long n = 1; n <= NN; n += 2) {
+                       ex term = binomial(NN, n) * power(a, NN-n) * power(b, n) / numer;
+                       if (n % 4 == p) {
+                               result += term;  // sign: I^n w/ n == 4*m+p
+                       } else {
+                               result -= term;  // sign: I^n w/ n == 4*m+2+p
+                       }
+               }
+               return result;
+       }
+
+       // Im((a+I*b)^(c+I*d))
+       const ex d = exponent.imag_part();
+       return power(abs(basis),c)*exp(-d*atan2(b,a))*sin(c*atan2(b,a)+d*log(abs(basis)));
 }
 
 // protected
@@ -534,24 +769,24 @@ ex power::simplify_ncmul(const exvector & v) const
  *  @see ex::diff */
 ex power::derivative(const symbol & s) const
 {
-       if (exponent.info(info_flags::real)) {
+       if (is_a<numeric>(exponent)) {
                // D(b^r) = r * b^(r-1) * D(b) (faster than the formula below)
                epvector newseq;
                newseq.reserve(2);
-               newseq.push_back(expair(basis, exponent - _ex1()));
-               newseq.push_back(expair(basis.diff(s), _ex1()));
+               newseq.push_back(expair(basis, exponent - _ex1));
+               newseq.push_back(expair(basis.diff(s), _ex1));
                return mul(newseq, exponent);
        } else {
                // D(b^e) = b^e * (D(e)*ln(b) + e*D(b)/b)
                return mul(*this,
                           add(mul(exponent.diff(s), log(basis)),
-                          mul(mul(exponent, basis.diff(s)), power(basis, _ex_1()))));
+                          mul(mul(exponent, basis.diff(s)), power(basis, _ex_1))));
        }
 }
 
 int power::compare_same_type(const basic & other) const
 {
-       GINAC_ASSERT(is_exactly_of_type(other, power));
+       GINAC_ASSERT(is_exactly_a<power>(other));
        const power &o = static_cast<const power &>(other);
 
        int cmpval = basis.compare(o.basis);
@@ -561,26 +796,74 @@ int power::compare_same_type(const basic & other) const
                return exponent.compare(o.exponent);
 }
 
-unsigned power::return_type(void) const
+unsigned power::return_type() const
 {
        return basis.return_type();
 }
-   
-unsigned power::return_type_tinfo(void) const
+
+return_type_t power::return_type_tinfo() const
 {
        return basis.return_type_tinfo();
 }
 
 ex power::expand(unsigned options) const
 {
-       if (options == 0 && (flags & status_flags::expanded))
+       if (is_a<symbol>(basis) && exponent.info(info_flags::integer)) {
+               // A special case worth optimizing.
+               setflag(status_flags::expanded);
                return *this;
-       
+       }
+
+       // (x*p)^c -> x^c * p^c, if p>0
+       // makes sense before expanding the basis
+       if (is_exactly_a<mul>(basis) && !basis.info(info_flags::indefinite)) {
+               const mul &m = ex_to<mul>(basis);
+               exvector prodseq;
+               epvector powseq;
+               prodseq.reserve(m.seq.size() + 1);
+               powseq.reserve(m.seq.size() + 1);
+               epvector::const_iterator last = m.seq.end();
+               epvector::const_iterator cit = m.seq.begin();
+               bool possign = true;
+
+               // search for positive/negative factors
+               while (cit!=last) {
+                       ex e=m.recombine_pair_to_ex(*cit);
+                       if (e.info(info_flags::positive))
+                               prodseq.push_back(pow(e, exponent).expand(options));
+                       else if (e.info(info_flags::negative)) {
+                               prodseq.push_back(pow(-e, exponent).expand(options));
+                               possign = !possign;
+                       } else
+                               powseq.push_back(*cit);
+                       ++cit;
+               }
+
+               // take care on the numeric coefficient
+               ex coeff=(possign? _ex1 : _ex_1);
+               if (m.overall_coeff.info(info_flags::positive) && m.overall_coeff != _ex1)
+                       prodseq.push_back(power(m.overall_coeff, exponent));
+               else if (m.overall_coeff.info(info_flags::negative) && m.overall_coeff != _ex_1)
+                       prodseq.push_back(power(-m.overall_coeff, exponent));
+               else
+                       coeff *= m.overall_coeff;
+
+               // If positive/negative factors are found, then extract them.
+               // In either case we set a flag to avoid the second run on a part
+               // which does not have positive/negative terms.
+               if (prodseq.size() > 0) {
+                       ex newbasis = coeff*mul(powseq);
+                       ex_to<basic>(newbasis).setflag(status_flags::purely_indefinite);
+                       return ((new mul(prodseq))->setflag(status_flags::dynallocated)*(new power(newbasis, exponent))->setflag(status_flags::dynallocated).expand(options)).expand(options);
+               } else
+                       ex_to<basic>(basis).setflag(status_flags::purely_indefinite);
+       }
+
        const ex expanded_basis = basis.expand(options);
        const ex expanded_exponent = exponent.expand(options);
        
        // x^(a+b) -> x^a * x^b
-       if (is_ex_exactly_of_type(expanded_exponent, add)) {
+       if (is_exactly_a<add>(expanded_exponent)) {
                const add &a = ex_to<add>(expanded_exponent);
                exvector distrseq;
                distrseq.reserve(a.seq.size() + 1);
@@ -595,8 +878,8 @@ ex power::expand(unsigned options) const
                if (ex_to<numeric>(a.overall_coeff).is_integer()) {
                        const numeric &num_exponent = ex_to<numeric>(a.overall_coeff);
                        int int_exponent = num_exponent.to_int();
-                       if (int_exponent > 0 && is_ex_exactly_of_type(expanded_basis, add))
-                               distrseq.push_back(expand_add(ex_to<add>(expanded_basis), int_exponent));
+                       if (int_exponent > 0 && is_exactly_a<add>(expanded_basis))
+                               distrseq.push_back(expand_add(ex_to<add>(expanded_basis), int_exponent, options));
                        else
                                distrseq.push_back(power(expanded_basis, a.overall_coeff));
                } else
@@ -604,10 +887,10 @@ ex power::expand(unsigned options) const
                
                // Make sure that e.g. (x+y)^(1+a) -> x*(x+y)^a + y*(x+y)^a
                ex r = (new mul(distrseq))->setflag(status_flags::dynallocated);
-               return r.expand();
+               return r.expand(options);
        }
        
-       if (!is_ex_exactly_of_type(expanded_exponent, numeric) ||
+       if (!is_exactly_a<numeric>(expanded_exponent) ||
                !ex_to<numeric>(expanded_exponent).is_integer()) {
                if (are_ex_trivially_equal(basis,expanded_basis) && are_ex_trivially_equal(exponent,expanded_exponent)) {
                        return this->hold();
@@ -621,12 +904,12 @@ ex power::expand(unsigned options) const
        int int_exponent = num_exponent.to_int();
        
        // (x+y)^n, n>0
-       if (int_exponent > 0 && is_ex_exactly_of_type(expanded_basis,add))
-               return expand_add(ex_to<add>(expanded_basis), int_exponent);
+       if (int_exponent > 0 && is_exactly_a<add>(expanded_basis))
+               return expand_add(ex_to<add>(expanded_basis), int_exponent, options);
        
        // (x*y)^n -> x^n * y^n
-       if (is_ex_exactly_of_type(expanded_basis,mul))
-               return expand_mul(ex_to<mul>(expanded_basis), num_exponent);
+       if (is_exactly_a<mul>(expanded_basis))
+               return expand_mul(ex_to<mul>(expanded_basis), num_exponent, options, true);
        
        // cannot expand further
        if (are_ex_trivially_equal(basis,expanded_basis) && are_ex_trivially_equal(exponent,expanded_exponent))
@@ -645,151 +928,388 @@ ex power::expand(unsigned options) const
 // non-virtual functions in this class
 //////////
 
-/** expand a^n where a is an add and n is an integer.
+namespace {  // anonymous namespace for power::expand_add() helpers
+
+/** Helper class to generate all bounded combinatorial partitions of an integer
+ *  n with exactly m parts (including zero parts) in non-decreasing order.
+ */
+class partition_generator {
+private:
+       // Partitions n into m parts, not including zero parts.
+       // (Cf. OEIS sequence A008284; implementation adapted from Jörg Arndt's
+       // FXT library)
+       struct mpartition2
+       {
+               // partition: x[1] + x[2] + ... + x[m] = n and sentinel x[0] == 0
+               std::vector<int> x;
+               int n;   // n>0
+               int m;   // 0<m<=n
+               mpartition2(unsigned n_, unsigned m_)
+                 : x(m_+1), n(n_), m(m_)
+               {
+                       for (int k=1; k<m; ++k)
+                               x[k] = 1;
+                       x[m] = n - m + 1;
+               }
+               bool next_partition()
+               {
+                       int u = x[m];  // last element
+                       int k = m;
+                       int s = u;
+                       while (--k) {
+                               s += x[k];
+                               if (x[k] + 2 <= u)
+                                       break;
+                       }
+                       if (k==0)
+                               return false;  // current is last
+                       int f = x[k] + 1;
+                       while (k < m) {
+                               x[k] = f;
+                               s -= f;
+                               ++k;
+                       }
+                       x[m] = s;
+                       return true;
+               }
+       } mpgen;
+       int m;  // number of parts 0<m<=n
+       mutable std::vector<int> partition;  // current partition
+public:
+       partition_generator(unsigned n_, unsigned m_)
+         : mpgen(n_, 1), m(m_), partition(m_)
+       { }
+       // returns current partition in non-decreasing order, padded with zeros
+       const std::vector<int>& current() const
+       {
+               for (int i = 0; i < m - mpgen.m; ++i)
+                       partition[i] = 0;  // pad with zeros
+
+               for (int i = m - mpgen.m; i < m; ++i)
+                       partition[i] = mpgen.x[i - m + mpgen.m + 1];
+
+               return partition;
+       }
+       bool next()
+       {
+               if (!mpgen.next_partition()) {
+                       if (mpgen.m == m || mpgen.m == mpgen.n)
+                               return false;  // current is last
+                       // increment number of parts
+                       mpgen = mpartition2(mpgen.n, mpgen.m + 1);
+               }
+               return true;
+       }
+};
+
+/** Helper class to generate all compositions of a partition of an integer n,
+ *  starting with the compositions which has non-decreasing order.
+ */
+class composition_generator {
+private:
+       // Generates all distinct permutations of a multiset.
+       // (Based on Aaron Williams' algorithm 1 from "Loopless Generation of
+       // Multiset Permutations using a Constant Number of Variables by Prefix
+       // Shifts." <http://webhome.csc.uvic.ca/~haron/CoolMulti.pdf>)
+       struct coolmulti {
+               // element of singly linked list
+               struct element {
+                       int value;
+                       element* next;
+                       element(int val, element* n)
+                         : value(val), next(n) {}
+                       ~element()
+                       {   // recurses down to the end of the singly linked list
+                               delete next;
+                       }
+               };
+               element *head, *i, *after_i;
+               // NB: Partition must be sorted in non-decreasing order.
+               explicit coolmulti(const std::vector<int>& partition)
+               {
+                       head = NULL;
+                       for (unsigned n = 0; n < partition.size(); ++n) {
+                               head = new element(partition[n], head);
+                               if (n <= 1)
+                                       i = head;
+                       }
+                       after_i = i->next;
+               }
+               ~coolmulti()
+               {   // deletes singly linked list
+                       delete head;
+               }
+               void next_permutation()
+               {
+                       element *before_k;
+                       if (after_i->next != NULL && i->value >= after_i->next->value)
+                               before_k = after_i;
+                       else
+                               before_k = i;
+                       element *k = before_k->next;
+                       before_k->next = k->next;
+                       k->next = head;
+                       if (k->value < head->value)
+                               i = k;
+                       after_i = i->next;
+                       head = k;
+               }
+               bool finished() const
+               {
+                       return after_i->next == NULL && after_i->value >= head->value;
+               }
+       } cmgen;
+       bool atend;  // needed for simplifying iteration over permutations
+       bool trivial;  // likewise, true if all elements are equal
+       mutable std::vector<int> composition;  // current compositions
+public:
+       explicit composition_generator(const std::vector<int>& partition)
+         : cmgen(partition), atend(false), trivial(true), composition(partition.size())
+       {
+               for (unsigned i=1; i<partition.size(); ++i)
+                       trivial = trivial && (partition[0] == partition[i]);
+       }
+       const std::vector<int>& current() const
+       {
+               coolmulti::element* it = cmgen.head;
+               size_t i = 0;
+               while (it != NULL) {
+                       composition[i] = it->value;
+                       it = it->next;
+                       ++i;
+               }
+               return composition;
+       }
+       bool next()
+       {
+               // This ugly contortion is needed because the original coolmulti
+               // algorithm requires code duplication of the payload procedure,
+               // one before the loop and one inside it.
+               if (trivial || atend)
+                       return false;
+               cmgen.next_permutation();
+               atend = cmgen.finished();
+               return true;
+       }
+};
+
+/** Helper function to compute the multinomial coefficient n!/(p1!*p2!*...*pk!)
+ *  where n = p1+p2+...+pk, i.e. p is a partition of n.
+ */
+const numeric
+multinomial_coefficient(const std::vector<int> p)
+{
+       numeric n = 0, d = 1;
+       std::vector<int>::const_iterator it = p.begin(), itend = p.end();
+       while (it != itend) {
+               n += numeric(*it);
+               d *= factorial(numeric(*it));
+               ++it;
+       }
+       return factorial(numeric(n)) / d;
+}
+
+}  // anonymous namespace
+
+/** expand a^n where a is an add and n is a positive integer.
  *  @see power::expand */
-ex power::expand_add(const add & a, int n) const
+ex power::expand_add(const add & a, int n, unsigned options) const
 {
+       // The special case power(+(x,...y;x),2) can be optimized better.
        if (n==2)
-               return expand_add_2(a);
-       
-       int m = a.nops();
-       exvector sum;
-       sum.reserve((n+1)*(m-1));
-       intvector k(m-1);
-       intvector k_cum(m-1); // k_cum[l]:=sum(i=0,l,k[l]);
-       intvector upper_limit(m-1);
-       int l;
-       
-       for (int l=0; l<m-1; l++) {
-               k[l] = 0;
-               k_cum[l] = 0;
-               upper_limit[l] = n;
+               return expand_add_2(a, options);
+
+       // method:
+       //
+       // Consider base as the sum of all symbolic terms and the overall numeric
+       // coefficient and apply the binomial theorem:
+       // S = power(+(x,...,z;c),n)
+       //   = power(+(+(x,...,z;0);c),n)
+       //   = sum(binomial(n,k)*power(+(x,...,z;0),k)*c^(n-k), k=1..n) + c^n
+       // Then, apply the multinomial theorem to expand all power(+(x,...,z;0),k):
+       // The multinomial theorem is computed by an outer loop over all
+       // partitions of the exponent and an inner loop over all compositions of
+       // that partition. This method makes the expansion a combinatorial
+       // problem and allows us to directly construct the expanded sum and also
+       // to re-use the multinomial coefficients (since they depend only on the
+       // partition, not on the composition).
+       // 
+       // multinomial power(+(x,y,z;0),3) example:
+       // partition : compositions                : multinomial coefficient
+       // [0,0,3]   : [3,0,0],[0,3,0],[0,0,3]     : 3!/(3!*0!*0!) = 1
+       // [0,1,2]   : [2,1,0],[1,2,0],[2,0,1],... : 3!/(2!*1!*0!) = 3
+       // [1,1,1]   : [1,1,1]                     : 3!/(1!*1!*1!) = 6
+       //  =>  (x + y + z)^3 =
+       //        x^3 + y^3 + z^3
+       //      + 3*x^2*y + 3*x*y^2 + 3*y^2*z + 3*y*z^2 + 3*x*z^2 + 3*x^2*z
+       //      + 6*x*y*z
+       //
+       // multinomial power(+(x,y,z;0),4) example:
+       // partition : compositions                : multinomial coefficient
+       // [0,0,4]   : [4,0,0],[0,4,0],[0,0,4]     : 4!/(4!*0!*0!) = 1
+       // [0,1,3]   : [3,1,0],[1,3,0],[3,0,1],... : 4!/(3!*1!*0!) = 4
+       // [0,2,2]   : [2,2,0],[2,0,2],[0,2,2]     : 4!/(2!*2!*0!) = 6
+       // [1,1,2]   : [2,1,1],[1,2,1],[1,1,2]     : 4!/(2!*1!*1!) = 12
+       // (no [1,1,1,1] partition since it has too many parts)
+       //  =>  (x + y + z)^4 =
+       //        x^4 + y^4 + z^4
+       //      + 4*x^3*y + 4*x*y^3 + 4*y^3*z + 4*y*z^3 + 4*x*z^3 + 4*x^3*z
+       //      + 6*x^2*y^2 + 6*y^2*z^2 + 6*x^2*z^2
+       //      + 12*x^2*y*z + 12*x*y^2*z + 12*x*y*z^2
+       //
+       // Summary:
+       // r = 0
+       // for k from 0 to n:
+       //     f = c^(n-k)*binomial(n,k)
+       //     for p in all partitions of n with m parts (including zero parts):
+       //         h = f * multinomial coefficient of p
+       //         for c in all compositions of p:
+       //             t = 1
+       //             for e in all elements of c:
+       //                 t = t * a[e]^e
+       //             r = r + h*t
+       // return r
+
+       epvector result;
+       // The number of terms will be the number of combinatorial compositions,
+       // i.e. the number of unordered arrangements of m nonnegative integers
+       // which sum up to n.  It is frequently written as C_n(m) and directly
+       // related with binomial coefficients: binomial(n+m-1,m-1).
+       size_t result_size = binomial(numeric(n+a.nops()-1), numeric(a.nops()-1)).to_int();
+       if (!a.overall_coeff.is_zero()) {
+               // the result's overall_coeff is one of the terms
+               --result_size;
        }
-       
-       while (true) {
-               exvector term;
-               term.reserve(m+1);
-               for (l=0; l<m-1; l++) {
-                       const ex & b = a.op(l);
-                       GINAC_ASSERT(!is_ex_exactly_of_type(b,add));
-                       GINAC_ASSERT(!is_ex_exactly_of_type(b,power) ||
-                                    !is_ex_exactly_of_type(ex_to<power>(b).exponent,numeric) ||
-                                    !ex_to<numeric>(ex_to<power>(b).exponent).is_pos_integer() ||
-                                    !is_ex_exactly_of_type(ex_to<power>(b).basis,add) ||
-                                    !is_ex_exactly_of_type(ex_to<power>(b).basis,mul) ||
-                                    !is_ex_exactly_of_type(ex_to<power>(b).basis,power));
-                       if (is_ex_exactly_of_type(b,mul))
-                               term.push_back(expand_mul(ex_to<mul>(b),numeric(k[l])));
-                       else
-                               term.push_back(power(b,k[l]));
-               }
-               
-               const ex & b = a.op(l);
-               GINAC_ASSERT(!is_ex_exactly_of_type(b,add));
-               GINAC_ASSERT(!is_ex_exactly_of_type(b,power) ||
-                            !is_ex_exactly_of_type(ex_to<power>(b).exponent,numeric) ||
-                            !ex_to<numeric>(ex_to<power>(b).exponent).is_pos_integer() ||
-                            !is_ex_exactly_of_type(ex_to<power>(b).basis,add) ||
-                            !is_ex_exactly_of_type(ex_to<power>(b).basis,mul) ||
-                            !is_ex_exactly_of_type(ex_to<power>(b).basis,power));
-               if (is_ex_exactly_of_type(b,mul))
-                       term.push_back(expand_mul(ex_to<mul>(b),numeric(n-k_cum[m-2])));
-               else
-                       term.push_back(power(b,n-k_cum[m-2]));
-               
-               numeric f = binomial(numeric(n),numeric(k[0]));
-               for (l=1; l<m-1; l++)
-                       f *= binomial(numeric(n-k_cum[l-1]),numeric(k[l]));
-               
-               term.push_back(f);
-               
-               // TODO: Can we optimize this?  Alex seemed to think so...
-               sum.push_back((new mul(term))->setflag(status_flags::dynallocated));
-               
-               // increment k[]
-               l = m-2;
-               while ((l>=0) && ((++k[l])>upper_limit[l])) {
-                       k[l] = 0;    
-                       --l;
+       result.reserve(result_size);
+
+       // Iterate over all terms in binomial expansion of
+       // S = power(+(x,...,z;c),n)
+       //   = sum(binomial(n,k)*power(+(x,...,z;0),k)*c^(n-k), k=1..n) + c^n
+       for (int k = 1; k <= n; ++k) {
+               numeric binomial_coefficient;  // binomial(n,k)*c^(n-k)
+               if (a.overall_coeff.is_zero()) {
+                       // degenerate case with zero overall_coeff:
+                       // apply multinomial theorem directly to power(+(x,...z;0),n)
+                       binomial_coefficient = 1;
+                       if (k < n) {
+                               continue;
+                       }
+               } else {
+                       binomial_coefficient = binomial(numeric(n), numeric(k)) * pow(ex_to<numeric>(a.overall_coeff), numeric(n-k));
                }
-               if (l<0) break;
-               
-               // recalc k_cum[] and upper_limit[]
-               if (l==0)
-                       k_cum[0] = k[0];
-               else
-                       k_cum[l] = k_cum[l-1]+k[l];
-               
-               for (int i=l+1; i<m-1; i++)
-                       k_cum[i] = k_cum[i-1]+k[i];
-               
-               for (int i=l+1; i<m-1; i++)
-                       upper_limit[i] = n-k_cum[i-1];
+
+               // Multinomial expansion of power(+(x,...,z;0),k)*c^(n-k):
+               // Iterate over all partitions of k with exactly as many parts as
+               // there are symbolic terms in the basis (including zero parts).
+               partition_generator partitions(k, a.seq.size());
+               do {
+                       const std::vector<int>& partition = partitions.current();
+                       const numeric coeff = multinomial_coefficient(partition) * binomial_coefficient;
+
+                       // Iterate over all compositions of the current partition.
+                       composition_generator compositions(partition);
+                       do {
+                               const std::vector<int>& exponent = compositions.current();
+                               exvector term;
+                               term.reserve(n);
+                               numeric factor = coeff;
+                               for (unsigned i = 0; i < exponent.size(); ++i) {
+                                       const ex & r = a.seq[i].rest;
+                                       const ex & c = a.seq[i].coeff;
+                                       GINAC_ASSERT(!is_exactly_a<add>(r));
+                                       GINAC_ASSERT(!is_exactly_a<power>(r) ||
+                                                    !is_exactly_a<numeric>(ex_to<power>(r).exponent) ||
+                                                    !ex_to<numeric>(ex_to<power>(r).exponent).is_pos_integer() ||
+                                                    !is_exactly_a<add>(ex_to<power>(r).basis) ||
+                                                    !is_exactly_a<mul>(ex_to<power>(r).basis) ||
+                                                    !is_exactly_a<power>(ex_to<power>(r).basis));
+                                       if (exponent[i] == 0) {
+                                               // optimize away
+                                       } else if (exponent[i] == 1) {
+                                               // optimized
+                                               term.push_back(r);
+                                               factor = factor.mul(ex_to<numeric>(c));
+                                       } else { // general case exponent[i] > 1
+                                               term.push_back((new power(r, exponent[i]))->setflag(status_flags::dynallocated));
+                                               factor = factor.mul(ex_to<numeric>(c).power(exponent[i]));
+                                       }
+                               }
+                               result.push_back(a.combine_ex_with_coeff_to_pair(mul(term).expand(options), factor));
+                       } while (compositions.next());
+               } while (partitions.next());
+       }
+
+       GINAC_ASSERT(result.size() == result_size);
+
+       if (a.overall_coeff.is_zero()) {
+               return (new add(result))->setflag(status_flags::dynallocated |
+                                                 status_flags::expanded);
+       } else {
+               return (new add(result, ex_to<numeric>(a.overall_coeff).power(n)))->setflag(status_flags::dynallocated |
+                                                                                           status_flags::expanded);
        }
-       return (new add(sum))->setflag(status_flags::dynallocated |
-                                      status_flags::expanded );
 }
 
 
 /** Special case of power::expand_add. Expands a^2 where a is an add.
  *  @see power::expand_add */
-ex power::expand_add_2(const add & a) const
+ex power::expand_add_2(const add & a, unsigned options) const
 {
        epvector sum;
-       unsigned a_nops = a.nops();
+       size_t a_nops = a.nops();
        sum.reserve((a_nops*(a_nops+1))/2);
        epvector::const_iterator last = a.seq.end();
-       
+
        // power(+(x,...,z;c),2)=power(+(x,...,z;0),2)+2*c*+(x,...,z;0)+c*c
        // first part: ignore overall_coeff and expand other terms
        for (epvector::const_iterator cit0=a.seq.begin(); cit0!=last; ++cit0) {
                const ex & r = cit0->rest;
                const ex & c = cit0->coeff;
                
-               GINAC_ASSERT(!is_ex_exactly_of_type(r,add));
-               GINAC_ASSERT(!is_ex_exactly_of_type(r,power) ||
-                            !is_ex_exactly_of_type(ex_to<power>(r).exponent,numeric) ||
+               GINAC_ASSERT(!is_exactly_a<add>(r));
+               GINAC_ASSERT(!is_exactly_a<power>(r) ||
+                            !is_exactly_a<numeric>(ex_to<power>(r).exponent) ||
                             !ex_to<numeric>(ex_to<power>(r).exponent).is_pos_integer() ||
-                            !is_ex_exactly_of_type(ex_to<power>(r).basis,add) ||
-                            !is_ex_exactly_of_type(ex_to<power>(r).basis,mul) ||
-                            !is_ex_exactly_of_type(ex_to<power>(r).basis,power));
+                            !is_exactly_a<add>(ex_to<power>(r).basis) ||
+                            !is_exactly_a<mul>(ex_to<power>(r).basis) ||
+                            !is_exactly_a<power>(ex_to<power>(r).basis));
                
-               if (are_ex_trivially_equal(c,_ex1())) {
-                       if (is_ex_exactly_of_type(r,mul)) {
-                               sum.push_back(expair(expand_mul(ex_to<mul>(r),_num2()),
-                                                    _ex1()));
+               if (c.is_equal(_ex1)) {
+                       if (is_exactly_a<mul>(r)) {
+                               sum.push_back(a.combine_ex_with_coeff_to_pair(expand_mul(ex_to<mul>(r), *_num2_p, options, true),
+                                                                             _ex1));
                        } else {
-                               sum.push_back(expair((new power(r,_ex2()))->setflag(status_flags::dynallocated),
-                                                    _ex1()));
+                               sum.push_back(a.combine_ex_with_coeff_to_pair((new power(r,_ex2))->setflag(status_flags::dynallocated),
+                                                                             _ex1));
                        }
                } else {
-                       if (is_ex_exactly_of_type(r,mul)) {
-                               sum.push_back(expair(expand_mul(ex_to<mul>(r),_num2()),
-                                                    ex_to<numeric>(c).power_dyn(_num2())));
+                       if (is_exactly_a<mul>(r)) {
+                               sum.push_back(a.combine_ex_with_coeff_to_pair(expand_mul(ex_to<mul>(r), *_num2_p, options, true),
+                                                    ex_to<numeric>(c).power_dyn(*_num2_p)));
                        } else {
-                               sum.push_back(expair((new power(r,_ex2()))->setflag(status_flags::dynallocated),
-                                                    ex_to<numeric>(c).power_dyn(_num2())));
+                               sum.push_back(a.combine_ex_with_coeff_to_pair((new power(r,_ex2))->setflag(status_flags::dynallocated),
+                                                    ex_to<numeric>(c).power_dyn(*_num2_p)));
                        }
                }
-                       
+
                for (epvector::const_iterator cit1=cit0+1; cit1!=last; ++cit1) {
                        const ex & r1 = cit1->rest;
                        const ex & c1 = cit1->coeff;
-                       sum.push_back(a.combine_ex_with_coeff_to_pair((new mul(r,r1))->setflag(status_flags::dynallocated),
-                                                                     _num2().mul(ex_to<numeric>(c)).mul_dyn(ex_to<numeric>(c1))));
+                       sum.push_back(a.combine_ex_with_coeff_to_pair(mul(r,r1).expand(options),
+                                                                     _num2_p->mul(ex_to<numeric>(c)).mul_dyn(ex_to<numeric>(c1))));
                }
        }
        
        GINAC_ASSERT(sum.size()==(a.seq.size()*(a.seq.size()+1))/2);
        
-       // second part: add terms coming from overall_factor (if != 0)
+       // second part: add terms coming from overall_coeff (if != 0)
        if (!a.overall_coeff.is_zero()) {
                epvector::const_iterator i = a.seq.begin(), end = a.seq.end();
                while (i != end) {
-                       sum.push_back(a.combine_pair_with_coeff_to_pair(*i, ex_to<numeric>(a.overall_coeff).mul_dyn(_num2())));
+                       sum.push_back(a.combine_pair_with_coeff_to_pair(*i, ex_to<numeric>(a.overall_coeff).mul_dyn(*_num2_p)));
                        ++i;
                }
-               sum.push_back(expair(ex_to<numeric>(a.overall_coeff).power_dyn(_num2()),_ex1()));
+               sum.push_back(expair(ex_to<numeric>(a.overall_coeff).power_dyn(*_num2_p),_ex1));
        }
        
        GINAC_ASSERT(sum.size()==(a_nops*(a_nops+1))/2);
@@ -797,35 +1317,57 @@ ex power::expand_add_2(const add & a) const
        return (new add(sum))->setflag(status_flags::dynallocated | status_flags::expanded);
 }
 
-/** Expand factors of m in m^n where m is a mul and n is and integer
+/** Expand factors of m in m^n where m is a mul and n is an integer.
  *  @see power::expand */
-ex power::expand_mul(const mul & m, const numeric & n) const
+ex power::expand_mul(const mul & m, const numeric & n, unsigned options, bool from_expand) const
 {
-       if (n.is_zero())
-               return _ex1();
-       
+       GINAC_ASSERT(n.is_integer());
+
+       if (n.is_zero()) {
+               return _ex1;
+       }
+
+       // do not bother to rename indices if there are no any.
+       if (!(options & expand_options::expand_rename_idx) &&
+           m.info(info_flags::has_indices))
+               options |= expand_options::expand_rename_idx;
+       // Leave it to multiplication since dummy indices have to be renamed
+       if ((options & expand_options::expand_rename_idx) &&
+           (get_all_dummy_indices(m).size() > 0) && n.is_positive()) {
+               ex result = m;
+               exvector va = get_all_dummy_indices(m);
+               sort(va.begin(), va.end(), ex_is_less());
+
+               for (int i=1; i < n.to_int(); i++)
+                       result *= rename_dummy_indices_uniquely(va, m);
+               return result;
+       }
+
        epvector distrseq;
        distrseq.reserve(m.seq.size());
+       bool need_reexpand = false;
+
        epvector::const_iterator last = m.seq.end();
        epvector::const_iterator cit = m.seq.begin();
        while (cit!=last) {
-               if (is_ex_exactly_of_type((*cit).rest,numeric)) {
-                       distrseq.push_back(m.combine_pair_with_coeff_to_pair(*cit,n));
-               } else {
-                       // it is safe not to call mul::combine_pair_with_coeff_to_pair()
-                       // since n is an integer
-                       distrseq.push_back(expair((*cit).rest, ex_to<numeric>((*cit).coeff).mul(n)));
+               expair p = m.combine_pair_with_coeff_to_pair(*cit, n);
+               if (from_expand && is_exactly_a<add>(cit->rest) && ex_to<numeric>(p.coeff).is_pos_integer()) {
+                       // this happens when e.g. (a+b)^(1/2) gets squared and
+                       // the resulting product needs to be reexpanded
+                       need_reexpand = true;
                }
+               distrseq.push_back(p);
                ++cit;
        }
-       return (new mul(distrseq,ex_to<numeric>(m.overall_coeff).power_dyn(n)))->setflag(status_flags::dynallocated);
-}
 
-// helper function
-
-ex sqrt(const ex & a)
-{
-       return power(a,_ex1_2());
+       const mul & result = static_cast<const mul &>((new mul(distrseq, ex_to<numeric>(m.overall_coeff).power_dyn(n)))->setflag(status_flags::dynallocated));
+       if (need_reexpand)
+               return ex(result).expand(options);
+       if (from_expand)
+               return result.setflag(status_flags::expanded);
+       return result;
 }
 
+GINAC_BIND_UNARCHIVER(power);
+
 } // namespace GiNaC