]> www.ginac.de Git - ginac.git/blobdiff - ginac/power.cpp
[nitpick] power::expand_add(): don't use int instead of std::size_t.
[ginac.git] / ginac / power.cpp
index 0d24a04f950f312c54934ae5b8d2a0e994e7e117..a4a33c576ca415e0a3baa7e6b089fd8dae22b81f 100644 (file)
@@ -3,7 +3,7 @@
  *  Implementation of GiNaC's symbolic exponentiation (basis^exponent). */
 
 /*
- *  GiNaC Copyright (C) 1999-2003 Johannes Gutenberg University Mainz, Germany
+ *  GiNaC Copyright (C) 1999-2008 Johannes Gutenberg University Mainz, Germany
  *
  *  This program is free software; you can redistribute it and/or modify
  *  it under the terms of the GNU General Public License as published by
@@ -17,7 +17,7 @@
  *
  *  You should have received a copy of the GNU General Public License
  *  along with this program; if not, write to the Free Software
- *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
+ *  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
  */
 
 #include <vector>
 #include "indexed.h"
 #include "symbol.h"
 #include "lst.h"
-#include "print.h"
 #include "archive.h"
 #include "utils.h"
+#include "relational.h"
+#include "compiler.h"
 
 namespace GiNaC {
 
-GINAC_IMPLEMENT_REGISTERED_CLASS(power, basic)
+GINAC_IMPLEMENT_REGISTERED_CLASS_OPT(power, basic,
+  print_func<print_dflt>(&power::do_print_dflt).
+  print_func<print_latex>(&power::do_print_latex).
+  print_func<print_csrc>(&power::do_print_csrc).
+  print_func<print_python>(&power::do_print_python).
+  print_func<print_python_repr>(&power::do_print_python_repr).
+  print_func<print_csrc_cl_N>(&power::do_print_csrc_cl_N))
 
 typedef std::vector<int> intvector;
 
@@ -52,7 +59,7 @@ typedef std::vector<int> intvector;
 // default constructor
 //////////
 
-power::power() : inherited(TINFO_power) { }
+power::power() : inherited(&power::tinfo_static) { }
 
 //////////
 // other constructors
@@ -85,11 +92,58 @@ DEFAULT_UNARCHIVE(power)
 
 // public
 
+void power::print_power(const print_context & c, const char *powersymbol, const char *openbrace, const char *closebrace, unsigned level) const
+{
+       // Ordinary output of powers using '^' or '**'
+       if (precedence() <= level)
+               c.s << openbrace << '(';
+       basis.print(c, precedence());
+       c.s << powersymbol;
+       c.s << openbrace;
+       exponent.print(c, precedence());
+       c.s << closebrace;
+       if (precedence() <= level)
+               c.s << ')' << closebrace;
+}
+
+void power::do_print_dflt(const print_dflt & c, unsigned level) const
+{
+       if (exponent.is_equal(_ex1_2)) {
+
+               // Square roots are printed in a special way
+               c.s << "sqrt(";
+               basis.print(c);
+               c.s << ')';
+
+       } else
+               print_power(c, "^", "", "", level);
+}
+
+void power::do_print_latex(const print_latex & c, unsigned level) const
+{
+       if (is_exactly_a<numeric>(exponent) && ex_to<numeric>(exponent).is_negative()) {
+
+               // Powers with negative numeric exponents are printed as fractions
+               c.s << "\\frac{1}{";
+               power(basis, -exponent).eval().print(c);
+               c.s << '}';
+
+       } else if (exponent.is_equal(_ex1_2)) {
+
+               // Square roots are printed in a special way
+               c.s << "\\sqrt{";
+               basis.print(c);
+               c.s << '}';
+
+       } else
+               print_power(c, "^", "{", "}", level);
+}
+
 static void print_sym_pow(const print_context & c, const symbol &x, int exp)
 {
        // Optimal output of integer powers of symbols to aid compiler CSE.
        // C.f. ISO/IEC 14882:1998, section 1.9 [intro execution], paragraph 15
-       // to learn why such a parenthisation is really necessary.
+       // to learn why such a parenthesation is really necessary.
        if (exp == 1) {
                x.print(c);
        } else if (exp == 2) {
@@ -109,96 +163,64 @@ static void print_sym_pow(const print_context & c, const symbol &x, int exp)
        }
 }
 
-void power::print(const print_context & c, unsigned level) const
+void power::do_print_csrc_cl_N(const print_csrc_cl_N& c, unsigned level) const
 {
-       if (is_a<print_tree>(c)) {
-
-               inherited::print(c, level);
-
-       } else if (is_a<print_csrc>(c)) {
-
-               // Integer powers of symbols are printed in a special, optimized way
-               if (exponent.info(info_flags::integer)
-                && (is_a<symbol>(basis) || is_a<constant>(basis))) {
-                       int exp = ex_to<numeric>(exponent).to_int();
-                       if (exp > 0)
-                               c.s << '(';
-                       else {
-                               exp = -exp;
-                               if (is_a<print_csrc_cl_N>(c))
-                                       c.s << "recip(";
-                               else
-                                       c.s << "1.0/(";
-                       }
-                       print_sym_pow(c, ex_to<symbol>(basis), exp);
-                       c.s << ')';
-
-               // <expr>^-1 is printed as "1.0/<expr>" or with the recip() function of CLN
-               } else if (exponent.is_equal(_ex_1)) {
-                       if (is_a<print_csrc_cl_N>(c))
-                               c.s << "recip(";
-                       else
-                               c.s << "1.0/(";
-                       basis.print(c);
-                       c.s << ')';
+       if (exponent.is_equal(_ex_1)) {
+               c.s << "recip(";
+               basis.print(c);
+               c.s << ')';
+               return;
+       }
+       c.s << "expt(";
+       basis.print(c);
+       c.s << ", ";
+       exponent.print(c);
+       c.s << ')';
+}
 
-               // Otherwise, use the pow() or expt() (CLN) functions
-               } else {
-                       if (is_a<print_csrc_cl_N>(c))
-                               c.s << "expt(";
-                       else
-                               c.s << "pow(";
-                       basis.print(c);
-                       c.s << ',';
-                       exponent.print(c);
-                       c.s << ')';
+void power::do_print_csrc(const print_csrc & c, unsigned level) const
+{
+       // Integer powers of symbols are printed in a special, optimized way
+       if (exponent.info(info_flags::integer)
+        && (is_a<symbol>(basis) || is_a<constant>(basis))) {
+               int exp = ex_to<numeric>(exponent).to_int();
+               if (exp > 0)
+                       c.s << '(';
+               else {
+                       exp = -exp;
+                       c.s << "1.0/(";
                }
+               print_sym_pow(c, ex_to<symbol>(basis), exp);
+               c.s << ')';
 
-       } else if (is_a<print_python_repr>(c)) {
+       // <expr>^-1 is printed as "1.0/<expr>" or with the recip() function of CLN
+       } else if (exponent.is_equal(_ex_1)) {
+               c.s << "1.0/(";
+               basis.print(c);
+               c.s << ')';
 
-               c.s << class_name() << '(';
+       // Otherwise, use the pow() function
+       } else {
+               c.s << "pow(";
                basis.print(c);
                c.s << ',';
                exponent.print(c);
                c.s << ')';
+       }
+}
 
-       } else {
-
-               bool is_tex = is_a<print_latex>(c);
-
-               if (is_tex && is_exactly_a<numeric>(exponent) && ex_to<numeric>(exponent).is_negative()) {
-
-                       // Powers with negative numeric exponents are printed as fractions in TeX
-                       c.s << "\\frac{1}{";
-                       power(basis, -exponent).eval().print(c);
-                       c.s << "}";
-
-               } else if (exponent.is_equal(_ex1_2)) {
-
-                       // Square roots are printed in a special way
-                       c.s << (is_tex ? "\\sqrt{" : "sqrt(");
-                       basis.print(c);
-                       c.s << (is_tex ? '}' : ')');
-
-               } else {
+void power::do_print_python(const print_python & c, unsigned level) const
+{
+       print_power(c, "**", "", "", level);
+}
 
-                       // Ordinary output of powers using '^' or '**'
-                       if (precedence() <= level)
-                               c.s << (is_tex ? "{(" : "(");
-                       basis.print(c, precedence());
-                       if (is_a<print_python>(c))
-                               c.s << "**";
-                       else
-                               c.s << '^';
-                       if (is_tex)
-                               c.s << '{';
-                       exponent.print(c, precedence());
-                       if (is_tex)
-                               c.s << '}';
-                       if (precedence() <= level)
-                               c.s << (is_tex ? ")}" : ")");
-               }
-       }
+void power::do_print_python_repr(const print_python_repr & c, unsigned level) const
+{
+       c.s << class_name() << '(';
+       basis.print(c);
+       c.s << ',';
+       exponent.print(c);
+       c.s << ')';
 }
 
 bool power::info(unsigned inf) const
@@ -209,12 +231,31 @@ bool power::info(unsigned inf) const
                case info_flags::cinteger_polynomial:
                case info_flags::rational_polynomial:
                case info_flags::crational_polynomial:
-                       return exponent.info(info_flags::nonnegint);
+                       return exponent.info(info_flags::nonnegint) &&
+                              basis.info(inf);
                case info_flags::rational_function:
-                       return exponent.info(info_flags::integer);
+                       return exponent.info(info_flags::integer) &&
+                              basis.info(inf);
                case info_flags::algebraic:
-                       return (!exponent.info(info_flags::integer) ||
-                                       basis.info(inf));
+                       return !exponent.info(info_flags::integer) ||
+                              basis.info(inf);
+               case info_flags::expanded:
+                       return (flags & status_flags::expanded);
+               case info_flags::has_indices: {
+                       if (flags & status_flags::has_indices)
+                               return true;
+                       else if (flags & status_flags::has_no_indices)
+                               return false;
+                       else if (basis.info(info_flags::has_indices)) {
+                               setflag(status_flags::has_indices);
+                               clearflag(status_flags::has_no_indices);
+                               return true;
+                       } else {
+                               clearflag(status_flags::has_indices);
+                               setflag(status_flags::has_no_indices);
+                               return false;
+                       }
+               }
        }
        return inherited::info(inf);
 }
@@ -233,7 +274,23 @@ ex power::op(size_t i) const
 
 ex power::map(map_function & f) const
 {
-       return (new power(f(basis), f(exponent)))->setflag(status_flags::dynallocated);
+       const ex &mapped_basis = f(basis);
+       const ex &mapped_exponent = f(exponent);
+
+       if (!are_ex_trivially_equal(basis, mapped_basis)
+        || !are_ex_trivially_equal(exponent, mapped_exponent))
+               return (new power(mapped_basis, mapped_exponent))->setflag(status_flags::dynallocated);
+       else
+               return *this;
+}
+
+bool power::is_polynomial(const ex & var) const
+{
+       if (exponent.has(var))
+               return false;
+       if (!exponent.info(info_flags::nonnegint))
+               return false;
+       return basis.is_polynomial(var);
 }
 
 int power::degree(const ex & s) const
@@ -303,6 +360,7 @@ ex power::coeff(const ex & s, int n) const
  *  - ^(0,c) -> 0 or exception  (depending on the real part of c)
  *  - ^(1,x) -> 1
  *  - ^(c1,c2) -> *(c1^n,c1^(c2-n))  (so that 0<(c2-n)<1, try to evaluate roots, possibly in numerator and denominator of c1)
+ *  - ^(^(x,c1),c2) -> ^(x,c1*c2)  if x is positive and c1 is real.
  *  - ^(^(x,c1),c2) -> ^(x,c1*c2)  (c2 integer or -1 < c1 <= 1, case c1=1 should not happen, see below!)
  *  - ^(*(x,y,z),c) -> *(x^c,y^c,z^c)  (if c integer)
  *  - ^(*(x,c1),c2) -> ^(x,c2)*c1^c2  (c1>0)
@@ -359,6 +417,14 @@ ex power::eval(int level) const
        if (ebasis.is_equal(_ex1))
                return _ex1;
 
+       // power of a function calculated by separate rules defined for this function
+       if (is_exactly_a<function>(ebasis))
+               return ex_to<function>(ebasis).power(eexponent);
+
+       // Turn (x^c)^d into x^(c*d) in the case that x is positive and c is real.
+       if (is_exactly_a<power>(ebasis) && ebasis.op(0).info(info_flags::positive) && ebasis.op(1).info(info_flags::real))
+               return power(ebasis.op(0), ebasis.op(1) * eexponent);
+
        if (exponent_is_numerical) {
 
                // ^(c1,c2) -> c1^c2  (c1, c2 numeric(),
@@ -426,16 +492,45 @@ ex power::eval(int level) const
                        if (is_exactly_a<numeric>(sub_exponent)) {
                                const numeric & num_sub_exponent = ex_to<numeric>(sub_exponent);
                                GINAC_ASSERT(num_sub_exponent!=numeric(1));
-                               if (num_exponent->is_integer() || (abs(num_sub_exponent) - _num1).is_negative())
+                               if (num_exponent->is_integer() || (abs(num_sub_exponent) - (*_num1_p)).is_negative()) {
                                        return power(sub_basis,num_sub_exponent.mul(*num_exponent));
+                               }
                        }
                }
        
                // ^(*(x,y,z),c1) -> *(x^c1,y^c1,z^c1) (c1 integer)
                if (num_exponent->is_integer() && is_exactly_a<mul>(ebasis)) {
-                       return expand_mul(ex_to<mul>(ebasis), *num_exponent);
+                       return expand_mul(ex_to<mul>(ebasis), *num_exponent, 0);
                }
-       
+
+               // (2*x + 6*y)^(-4) -> 1/16*(x + 3*y)^(-4)
+               if (num_exponent->is_integer() && is_exactly_a<add>(ebasis)) {
+                       numeric icont = ebasis.integer_content();
+                       const numeric lead_coeff = 
+                               ex_to<numeric>(ex_to<add>(ebasis).seq.begin()->coeff).div(icont);
+
+                       const bool canonicalizable = lead_coeff.is_integer();
+                       const bool unit_normal = lead_coeff.is_pos_integer();
+                       if (canonicalizable && (! unit_normal))
+                               icont = icont.mul(*_num_1_p);
+                       
+                       if (canonicalizable && (icont != *_num1_p)) {
+                               const add& addref = ex_to<add>(ebasis);
+                               add* addp = new add(addref);
+                               addp->setflag(status_flags::dynallocated);
+                               addp->clearflag(status_flags::hash_calculated);
+                               addp->overall_coeff = ex_to<numeric>(addp->overall_coeff).div_dyn(icont);
+                               for (epvector::iterator i = addp->seq.begin(); i != addp->seq.end(); ++i)
+                                       i->coeff = ex_to<numeric>(i->coeff).div_dyn(icont);
+
+                               const numeric c = icont.power(*num_exponent);
+                               if (likely(c != *_num1_p))
+                                       return (new mul(power(*addp, *num_exponent), c))->setflag(status_flags::dynallocated);
+                               else
+                                       return power(*addp, *num_exponent);
+                       }
+               }
+
                // ^(*(...,x;c1),c2) -> *(^(*(...,x;1),c2),c1^c2)  (c1, c2 numeric(), c1>0)
                // ^(*(...,x;c1),c2) -> *(^(*(...,x;-1),c2),(-c1)^c2)  (c1, c2 numeric(), c1<0)
                if (is_exactly_a<mul>(ebasis)) {
@@ -452,8 +547,8 @@ ex power::eval(int level) const
                                                return (new mul(power(*mulp,exponent),
                                                                power(num_coeff,*num_exponent)))->setflag(status_flags::dynallocated);
                                        } else {
-                                               GINAC_ASSERT(num_coeff.compare(_num0)<0);
-                                               if (!num_coeff.is_equal(_num_1)) {
+                                               GINAC_ASSERT(num_coeff.compare(*_num0_p)<0);
+                                               if (!num_coeff.is_equal(*_num_1_p)) {
                                                        mul *mulp = new mul(mulref);
                                                        mulp->overall_coeff = _ex_1;
                                                        mulp->clearflag(status_flags::evaluated);
@@ -515,30 +610,57 @@ ex power::evalm() const
        return (new power(ebasis, eexponent))->setflag(status_flags::dynallocated);
 }
 
+bool power::has(const ex & other, unsigned options) const
+{
+       if (!(options & has_options::algebraic))
+               return basic::has(other, options);
+       if (!is_a<power>(other))
+               return basic::has(other, options);
+       if (!exponent.info(info_flags::integer)
+                       || !other.op(1).info(info_flags::integer))
+               return basic::has(other, options);
+       if (exponent.info(info_flags::posint)
+                       && other.op(1).info(info_flags::posint)
+                       && ex_to<numeric>(exponent).to_int()
+                                       > ex_to<numeric>(other.op(1)).to_int()
+                       && basis.match(other.op(0)))
+               return true;
+       if (exponent.info(info_flags::negint)
+                       && other.op(1).info(info_flags::negint)
+                       && ex_to<numeric>(exponent).to_int()
+                                       < ex_to<numeric>(other.op(1)).to_int()
+                       && basis.match(other.op(0)))
+               return true;
+       return basic::has(other, options);
+}
+
 // from mul.cpp
-extern bool tryfactsubs(const ex &, const ex &, int &, lst &);
+extern bool tryfactsubs(const ex &, const ex &, int &, exmap&);
 
-ex power::subs(const lst & ls, const lst & lr, unsigned options) const
+ex power::subs(const exmap & m, unsigned options) const
 {      
-       const ex &subsed_basis = basis.subs(ls, lr, options);
-       const ex &subsed_exponent = exponent.subs(ls, lr, options);
+       const ex &subsed_basis = basis.subs(m, options);
+       const ex &subsed_exponent = exponent.subs(m, options);
 
        if (!are_ex_trivially_equal(basis, subsed_basis)
         || !are_ex_trivially_equal(exponent, subsed_exponent)) 
-               return power(subsed_basis, subsed_exponent).subs_one_level(ls, lr, options);
+               return power(subsed_basis, subsed_exponent).subs_one_level(m, options);
 
-       if (!(options & subs_options::subs_algebraic))
-               return subs_one_level(ls, lr, options);
+       if (!(options & subs_options::algebraic))
+               return subs_one_level(m, options);
 
-       lst::const_iterator its, itr;
-       for (its = ls.begin(), itr = lr.begin(); its != ls.end(); ++its, ++itr) {
+       for (exmap::const_iterator it = m.begin(); it != m.end(); ++it) {
                int nummatches = std::numeric_limits<int>::max();
-               lst repls;
-               if (tryfactsubs(*this, *its, nummatches, repls))
-                       return (ex_to<basic>((*this) * power(itr->subs(ex(repls), subs_options::subs_no_pattern) / its->subs(ex(repls), subs_options::subs_no_pattern), nummatches))).subs_one_level(ls, lr, options);
+               exmap repls;
+               if (tryfactsubs(*this, it->first, nummatches, repls)) {
+                       ex anum = it->second.subs(repls, subs_options::no_pattern);
+                       ex aden = it->first.subs(repls, subs_options::no_pattern);
+                       ex result = (*this)*power(anum/aden, nummatches);
+                       return (ex_to<basic>(result)).subs_one_level(m, options);
+               }
        }
 
-       return subs_one_level(ls, lr, options);
+       return subs_one_level(m, options);
 }
 
 ex power::eval_ncmul(const exvector & v) const
@@ -546,13 +668,76 @@ ex power::eval_ncmul(const exvector & v) const
        return inherited::eval_ncmul(v);
 }
 
+ex power::conjugate() const
+{
+       ex newbasis = basis.conjugate();
+       ex newexponent = exponent.conjugate();
+       if (are_ex_trivially_equal(basis, newbasis) && are_ex_trivially_equal(exponent, newexponent)) {
+               return *this;
+       }
+       return (new power(newbasis, newexponent))->setflag(status_flags::dynallocated);
+}
+
+ex power::real_part() const
+{
+       if (exponent.info(info_flags::integer)) {
+               ex basis_real = basis.real_part();
+               if (basis_real == basis)
+                       return *this;
+               realsymbol a("a"),b("b");
+               ex result;
+               if (exponent.info(info_flags::posint))
+                       result = power(a+I*b,exponent);
+               else
+                       result = power(a/(a*a+b*b)-I*b/(a*a+b*b),-exponent);
+               result = result.expand();
+               result = result.real_part();
+               result = result.subs(lst( a==basis_real, b==basis.imag_part() ));
+               return result;
+       }
+       
+       ex a = basis.real_part();
+       ex b = basis.imag_part();
+       ex c = exponent.real_part();
+       ex d = exponent.imag_part();
+       return power(abs(basis),c)*exp(-d*atan2(b,a))*cos(c*atan2(b,a)+d*log(abs(basis)));
+}
+
+ex power::imag_part() const
+{
+       if (exponent.info(info_flags::integer)) {
+               ex basis_real = basis.real_part();
+               if (basis_real == basis)
+                       return 0;
+               realsymbol a("a"),b("b");
+               ex result;
+               if (exponent.info(info_flags::posint))
+                       result = power(a+I*b,exponent);
+               else
+                       result = power(a/(a*a+b*b)-I*b/(a*a+b*b),-exponent);
+               result = result.expand();
+               result = result.imag_part();
+               result = result.subs(lst( a==basis_real, b==basis.imag_part() ));
+               return result;
+       }
+       
+       ex a=basis.real_part();
+       ex b=basis.imag_part();
+       ex c=exponent.real_part();
+       ex d=exponent.imag_part();
+       return
+               power(abs(basis),c)*exp(-d*atan2(b,a))*sin(c*atan2(b,a)+d*log(abs(basis)));
+}
+
+// protected
+
 // protected
 
 /** Implementation of ex::diff() for a power.
  *  @see ex::diff */
 ex power::derivative(const symbol & s) const
 {
-       if (exponent.info(info_flags::real)) {
+       if (is_a<numeric>(exponent)) {
                // D(b^r) = r * b^(r-1) * D(b) (faster than the formula below)
                epvector newseq;
                newseq.reserve(2);
@@ -583,17 +768,20 @@ unsigned power::return_type() const
 {
        return basis.return_type();
 }
-   
-unsigned power::return_type_tinfo() const
+
+tinfo_t power::return_type_tinfo() const
 {
        return basis.return_type_tinfo();
 }
 
 ex power::expand(unsigned options) const
 {
-       if (options == 0 && (flags & status_flags::expanded))
+       if (is_a<symbol>(basis) && exponent.info(info_flags::integer)) {
+               // A special case worth optimizing.
+               setflag(status_flags::expanded);
                return *this;
-       
+       }
+
        const ex expanded_basis = basis.expand(options);
        const ex expanded_exponent = exponent.expand(options);
        
@@ -614,7 +802,7 @@ ex power::expand(unsigned options) const
                        const numeric &num_exponent = ex_to<numeric>(a.overall_coeff);
                        int int_exponent = num_exponent.to_int();
                        if (int_exponent > 0 && is_exactly_a<add>(expanded_basis))
-                               distrseq.push_back(expand_add(ex_to<add>(expanded_basis), int_exponent));
+                               distrseq.push_back(expand_add(ex_to<add>(expanded_basis), int_exponent, options));
                        else
                                distrseq.push_back(power(expanded_basis, a.overall_coeff));
                } else
@@ -622,7 +810,7 @@ ex power::expand(unsigned options) const
                
                // Make sure that e.g. (x+y)^(1+a) -> x*(x+y)^a + y*(x+y)^a
                ex r = (new mul(distrseq))->setflag(status_flags::dynallocated);
-               return r.expand();
+               return r.expand(options);
        }
        
        if (!is_exactly_a<numeric>(expanded_exponent) ||
@@ -640,11 +828,11 @@ ex power::expand(unsigned options) const
        
        // (x+y)^n, n>0
        if (int_exponent > 0 && is_exactly_a<add>(expanded_basis))
-               return expand_add(ex_to<add>(expanded_basis), int_exponent);
+               return expand_add(ex_to<add>(expanded_basis), int_exponent, options);
        
        // (x*y)^n -> x^n * y^n
        if (is_exactly_a<mul>(expanded_basis))
-               return expand_mul(ex_to<mul>(expanded_basis), num_exponent);
+               return expand_mul(ex_to<mul>(expanded_basis), num_exponent, options, true);
        
        // cannot expand further
        if (are_ex_trivially_equal(basis,expanded_basis) && are_ex_trivially_equal(exponent,expanded_exponent))
@@ -665,22 +853,21 @@ ex power::expand(unsigned options) const
 
 /** expand a^n where a is an add and n is a positive integer.
  *  @see power::expand */
-ex power::expand_add(const add & a, int n) const
+ex power::expand_add(const add & a, int n, unsigned options) const
 {
        if (n==2)
-               return expand_add_2(a);
+               return expand_add_2(a, options);
 
        const size_t m = a.nops();
        exvector result;
        // The number of terms will be the number of combinatorial compositions,
-       // i.e. the number of unordered arrangement of m nonnegative integers
+       // i.e. the number of unordered arrangements of m nonnegative integers
        // which sum up to n.  It is frequently written as C_n(m) and directly
        // related with binomial coefficients:
        result.reserve(binomial(numeric(n+m-1), numeric(m-1)).to_int());
        intvector k(m-1);
        intvector k_cum(m-1); // k_cum[l]:=sum(i=0,l,k[l]);
        intvector upper_limit(m-1);
-       int l;
 
        for (size_t l=0; l<m-1; ++l) {
                k[l] = 0;
@@ -691,7 +878,7 @@ ex power::expand_add(const add & a, int n) const
        while (true) {
                exvector term;
                term.reserve(m+1);
-               for (l=0; l<m-1; ++l) {
+               for (std::size_t l = 0; l < m - 1; ++l) {
                        const ex & b = a.op(l);
                        GINAC_ASSERT(!is_exactly_a<add>(b));
                        GINAC_ASSERT(!is_exactly_a<power>(b) ||
@@ -701,12 +888,12 @@ ex power::expand_add(const add & a, int n) const
                                     !is_exactly_a<mul>(ex_to<power>(b).basis) ||
                                     !is_exactly_a<power>(ex_to<power>(b).basis));
                        if (is_exactly_a<mul>(b))
-                               term.push_back(expand_mul(ex_to<mul>(b),numeric(k[l])));
+                               term.push_back(expand_mul(ex_to<mul>(b), numeric(k[l]), options, true));
                        else
                                term.push_back(power(b,k[l]));
                }
 
-               const ex & b = a.op(l);
+               const ex & b = a.op(m - 1);
                GINAC_ASSERT(!is_exactly_a<add>(b));
                GINAC_ASSERT(!is_exactly_a<power>(b) ||
                             !is_exactly_a<numeric>(ex_to<power>(b).exponent) ||
@@ -715,25 +902,32 @@ ex power::expand_add(const add & a, int n) const
                             !is_exactly_a<mul>(ex_to<power>(b).basis) ||
                             !is_exactly_a<power>(ex_to<power>(b).basis));
                if (is_exactly_a<mul>(b))
-                       term.push_back(expand_mul(ex_to<mul>(b),numeric(n-k_cum[m-2])));
+                       term.push_back(expand_mul(ex_to<mul>(b), numeric(n-k_cum[m-2]), options, true));
                else
                        term.push_back(power(b,n-k_cum[m-2]));
 
                numeric f = binomial(numeric(n),numeric(k[0]));
-               for (l=1; l<m-1; ++l)
+               for (std::size_t l = 1; l < m - 1; ++l)
                        f *= binomial(numeric(n-k_cum[l-1]),numeric(k[l]));
 
                term.push_back(f);
 
-               result.push_back((new mul(term))->setflag(status_flags::dynallocated));
+               result.push_back(ex((new mul(term))->setflag(status_flags::dynallocated)).expand(options));
 
                // increment k[]
-               l = m-2;
-               while ((l>=0) && ((++k[l])>upper_limit[l])) {
+               bool done = false;
+               std::size_t l = m - 2;
+               while ((++k[l]) > upper_limit[l]) {
                        k[l] = 0;
-                       --l;
+                       if (l != 0)
+                               --l;
+                       else {
+                               done = true;
+                               break;
+                       }
                }
-               if (l<0) break;
+               if (done)
+                       break;
 
                // recalc k_cum[] and upper_limit[]
                k_cum[l] = (l==0 ? k[0] : k_cum[l-1]+k[l]);
@@ -752,7 +946,7 @@ ex power::expand_add(const add & a, int n) const
 
 /** Special case of power::expand_add. Expands a^2 where a is an add.
  *  @see power::expand_add */
-ex power::expand_add_2(const add & a) const
+ex power::expand_add_2(const add & a, unsigned options) const
 {
        epvector sum;
        size_t a_nops = a.nops();
@@ -775,7 +969,7 @@ ex power::expand_add_2(const add & a) const
                
                if (c.is_equal(_ex1)) {
                        if (is_exactly_a<mul>(r)) {
-                               sum.push_back(expair(expand_mul(ex_to<mul>(r),_num2),
+                               sum.push_back(expair(expand_mul(ex_to<mul>(r), *_num2_p, options, true),
                                                     _ex1));
                        } else {
                                sum.push_back(expair((new power(r,_ex2))->setflag(status_flags::dynallocated),
@@ -783,11 +977,11 @@ ex power::expand_add_2(const add & a) const
                        }
                } else {
                        if (is_exactly_a<mul>(r)) {
-                               sum.push_back(a.combine_ex_with_coeff_to_pair(expand_mul(ex_to<mul>(r),_num2),
-                                                    ex_to<numeric>(c).power_dyn(_num2)));
+                               sum.push_back(a.combine_ex_with_coeff_to_pair(expand_mul(ex_to<mul>(r), *_num2_p, options, true),
+                                                    ex_to<numeric>(c).power_dyn(*_num2_p)));
                        } else {
                                sum.push_back(a.combine_ex_with_coeff_to_pair((new power(r,_ex2))->setflag(status_flags::dynallocated),
-                                                    ex_to<numeric>(c).power_dyn(_num2)));
+                                                    ex_to<numeric>(c).power_dyn(*_num2_p)));
                        }
                }
 
@@ -795,7 +989,7 @@ ex power::expand_add_2(const add & a) const
                        const ex & r1 = cit1->rest;
                        const ex & c1 = cit1->coeff;
                        sum.push_back(a.combine_ex_with_coeff_to_pair((new mul(r,r1))->setflag(status_flags::dynallocated),
-                                                                     _num2.mul(ex_to<numeric>(c)).mul_dyn(ex_to<numeric>(c1))));
+                                                                     _num2_p->mul(ex_to<numeric>(c)).mul_dyn(ex_to<numeric>(c1))));
                }
        }
        
@@ -805,10 +999,10 @@ ex power::expand_add_2(const add & a) const
        if (!a.overall_coeff.is_zero()) {
                epvector::const_iterator i = a.seq.begin(), end = a.seq.end();
                while (i != end) {
-                       sum.push_back(a.combine_pair_with_coeff_to_pair(*i, ex_to<numeric>(a.overall_coeff).mul_dyn(_num2)));
+                       sum.push_back(a.combine_pair_with_coeff_to_pair(*i, ex_to<numeric>(a.overall_coeff).mul_dyn(*_num2_p)));
                        ++i;
                }
-               sum.push_back(expair(ex_to<numeric>(a.overall_coeff).power_dyn(_num2),_ex1));
+               sum.push_back(expair(ex_to<numeric>(a.overall_coeff).power_dyn(*_num2_p),_ex1));
        }
        
        GINAC_ASSERT(sum.size()==(a_nops*(a_nops+1))/2);
@@ -816,30 +1010,55 @@ ex power::expand_add_2(const add & a) const
        return (new add(sum))->setflag(status_flags::dynallocated | status_flags::expanded);
 }
 
-/** Expand factors of m in m^n where m is a mul and n is and integer.
+/** Expand factors of m in m^n where m is a mul and n is an integer.
  *  @see power::expand */
-ex power::expand_mul(const mul & m, const numeric & n) const
+ex power::expand_mul(const mul & m, const numeric & n, unsigned options, bool from_expand) const
 {
        GINAC_ASSERT(n.is_integer());
 
-       if (n.is_zero())
+       if (n.is_zero()) {
                return _ex1;
+       }
+
+       // do not bother to rename indices if there are no any.
+       if ((!(options & expand_options::expand_rename_idx)) 
+                       && m.info(info_flags::has_indices))
+               options |= expand_options::expand_rename_idx;
+       // Leave it to multiplication since dummy indices have to be renamed
+       if ((options & expand_options::expand_rename_idx) &&
+               (get_all_dummy_indices(m).size() > 0) && n.is_positive()) {
+               ex result = m;
+               exvector va = get_all_dummy_indices(m);
+               sort(va.begin(), va.end(), ex_is_less());
+
+               for (int i=1; i < n.to_int(); i++)
+                       result *= rename_dummy_indices_uniquely(va, m);
+               return result;
+       }
 
        epvector distrseq;
        distrseq.reserve(m.seq.size());
+       bool need_reexpand = false;
+
        epvector::const_iterator last = m.seq.end();
        epvector::const_iterator cit = m.seq.begin();
        while (cit!=last) {
-               if (is_exactly_a<numeric>(cit->rest)) {
-                       distrseq.push_back(m.combine_pair_with_coeff_to_pair(*cit, n));
-               } else {
-                       // it is safe not to call mul::combine_pair_with_coeff_to_pair()
-                       // since n is an integer
-                       distrseq.push_back(expair(cit->rest, ex_to<numeric>(cit->coeff).mul(n)));
+               expair p = m.combine_pair_with_coeff_to_pair(*cit, n);
+               if (from_expand && is_exactly_a<add>(cit->rest) && ex_to<numeric>(p.coeff).is_pos_integer()) {
+                       // this happens when e.g. (a+b)^(1/2) gets squared and
+                       // the resulting product needs to be reexpanded
+                       need_reexpand = true;
                }
+               distrseq.push_back(p);
                ++cit;
        }
-       return (new mul(distrseq, ex_to<numeric>(m.overall_coeff).power_dyn(n)))->setflag(status_flags::dynallocated);
+
+       const mul & result = static_cast<const mul &>((new mul(distrseq, ex_to<numeric>(m.overall_coeff).power_dyn(n)))->setflag(status_flags::dynallocated));
+       if (need_reexpand)
+               return ex(result).expand(options);
+       if (from_expand)
+               return result.setflag(status_flags::expanded);
+       return result;
 }
 
 } // namespace GiNaC