]> www.ginac.de Git - ginac.git/blobdiff - ginac/power.cpp
Additional transformations for mul and power [Sheplyakov].
[ginac.git] / ginac / power.cpp
index 11fcbffeebbfc3a5ae2180ef7156c67625e365f7..8829bbae597788f6908e2c4739d68da24ea42619 100644 (file)
@@ -3,7 +3,7 @@
  *  Implementation of GiNaC's symbolic exponentiation (basis^exponent). */
 
 /*
- *  GiNaC Copyright (C) 1999-2001 Johannes Gutenberg University Mainz, Germany
+ *  GiNaC Copyright (C) 1999-2007 Johannes Gutenberg University Mainz, Germany
  *
  *  This program is free software; you can redistribute it and/or modify
  *  it under the terms of the GNU General Public License as published by
  *
  *  You should have received a copy of the GNU General Public License
  *  along with this program; if not, write to the Free Software
- *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
+ *  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
  */
 
 #include <vector>
 #include <iostream>
 #include <stdexcept>
+#include <limits>
 
 #include "power.h"
 #include "expairseq.h"
 #include "mul.h"
 #include "ncmul.h"
 #include "numeric.h"
-#include "inifcns.h"
+#include "constant.h"
+#include "operators.h"
+#include "inifcns.h" // for log() in power::derivative()
+#include "matrix.h"
+#include "indexed.h"
 #include "symbol.h"
-#include "print.h"
+#include "lst.h"
 #include "archive.h"
-#include "debugmsg.h"
 #include "utils.h"
+#include "relational.h"
 
 namespace GiNaC {
 
-GINAC_IMPLEMENT_REGISTERED_CLASS(power, basic)
+GINAC_IMPLEMENT_REGISTERED_CLASS_OPT(power, basic,
+  print_func<print_dflt>(&power::do_print_dflt).
+  print_func<print_latex>(&power::do_print_latex).
+  print_func<print_csrc>(&power::do_print_csrc).
+  print_func<print_python>(&power::do_print_python).
+  print_func<print_python_repr>(&power::do_print_python_repr))
 
 typedef std::vector<int> intvector;
 
 //////////
-// default ctor, dtor, copy ctor assignment operator and helpers
+// default constructor
 //////////
 
-power::power() : basic(TINFO_power)
-{
-       debugmsg("power default ctor",LOGLEVEL_CONSTRUCT);
-}
-
-void power::copy(const power & other)
-{
-       inherited::copy(other);
-       basis = other.basis;
-       exponent = other.exponent;
-}
-
-DEFAULT_DESTROY(power)
+power::power() : inherited(&power::tinfo_static) { }
 
 //////////
-// other ctors
+// other constructors
 //////////
 
-power::power(const ex & lh, const ex & rh) : basic(TINFO_power), basis(lh), exponent(rh)
-{
-       debugmsg("power ctor from ex,ex",LOGLEVEL_CONSTRUCT);
-}
-
-/** Ctor from an ex and a bare numeric.  This is somewhat more efficient than
- *  the normal ctor from two ex whenever it can be used. */
-power::power(const ex & lh, const numeric & rh) : basic(TINFO_power), basis(lh), exponent(rh)
-{
-       debugmsg("power ctor from ex,numeric",LOGLEVEL_CONSTRUCT);
-}
+// all inlined
 
 //////////
 // archiving
 //////////
 
-power::power(const archive_node &n, const lst &sym_lst) : inherited(n, sym_lst)
+power::power(const archive_node &n, lst &sym_lst) : inherited(n, sym_lst)
 {
-       debugmsg("power ctor from archive_node", LOGLEVEL_CONSTRUCT);
        n.find_ex("basis", basis, sym_lst);
        n.find_ex("exponent", exponent, sym_lst);
 }
@@ -98,16 +85,63 @@ void power::archive(archive_node &n) const
 DEFAULT_UNARCHIVE(power)
 
 //////////
-// functions overriding virtual functions from bases classes
+// functions overriding virtual functions from base classes
 //////////
 
 // public
 
+void power::print_power(const print_context & c, const char *powersymbol, const char *openbrace, const char *closebrace, unsigned level) const
+{
+       // Ordinary output of powers using '^' or '**'
+       if (precedence() <= level)
+               c.s << openbrace << '(';
+       basis.print(c, precedence());
+       c.s << powersymbol;
+       c.s << openbrace;
+       exponent.print(c, precedence());
+       c.s << closebrace;
+       if (precedence() <= level)
+               c.s << ')' << closebrace;
+}
+
+void power::do_print_dflt(const print_dflt & c, unsigned level) const
+{
+       if (exponent.is_equal(_ex1_2)) {
+
+               // Square roots are printed in a special way
+               c.s << "sqrt(";
+               basis.print(c);
+               c.s << ')';
+
+       } else
+               print_power(c, "^", "", "", level);
+}
+
+void power::do_print_latex(const print_latex & c, unsigned level) const
+{
+       if (is_exactly_a<numeric>(exponent) && ex_to<numeric>(exponent).is_negative()) {
+
+               // Powers with negative numeric exponents are printed as fractions
+               c.s << "\\frac{1}{";
+               power(basis, -exponent).eval().print(c);
+               c.s << '}';
+
+       } else if (exponent.is_equal(_ex1_2)) {
+
+               // Square roots are printed in a special way
+               c.s << "\\sqrt{";
+               basis.print(c);
+               c.s << '}';
+
+       } else
+               print_power(c, "^", "{", "}", level);
+}
+
 static void print_sym_pow(const print_context & c, const symbol &x, int exp)
 {
        // Optimal output of integer powers of symbols to aid compiler CSE.
        // C.f. ISO/IEC 14882:1998, section 1.9 [intro execution], paragraph 15
-       // to learn why such a hack is really necessary.
+       // to learn why such a parenthesation is really necessary.
        if (exp == 1) {
                x.print(c);
        } else if (exp == 2) {
@@ -127,89 +161,60 @@ static void print_sym_pow(const print_context & c, const symbol &x, int exp)
        }
 }
 
-void power::print(const print_context & c, unsigned level) const
+void power::do_print_csrc(const print_csrc & c, unsigned level) const
 {
-       debugmsg("power print", LOGLEVEL_PRINT);
-
-       if (is_of_type(c, print_tree)) {
-
-               inherited::print(c, level);
-
-       } else if (is_of_type(c, print_csrc)) {
-
-               // Integer powers of symbols are printed in a special, optimized way
-               if (exponent.info(info_flags::integer)
-                && (is_ex_exactly_of_type(basis, symbol) || is_ex_exactly_of_type(basis, constant))) {
-                       int exp = ex_to_numeric(exponent).to_int();
-                       if (exp > 0)
-                               c.s << '(';
-                       else {
-                               exp = -exp;
-                               if (is_of_type(c, print_csrc_cl_N))
-                                       c.s << "recip(";
-                               else
-                                       c.s << "1.0/(";
-                       }
-                       print_sym_pow(c, ex_to_symbol(basis), exp);
-                       c.s << ')';
-
-               // <expr>^-1 is printed as "1.0/<expr>" or with the recip() function of CLN
-               } else if (exponent.compare(_num_1()) == 0) {
-                       if (is_of_type(c, print_csrc_cl_N))
+       // Integer powers of symbols are printed in a special, optimized way
+       if (exponent.info(info_flags::integer)
+        && (is_a<symbol>(basis) || is_a<constant>(basis))) {
+               int exp = ex_to<numeric>(exponent).to_int();
+               if (exp > 0)
+                       c.s << '(';
+               else {
+                       exp = -exp;
+                       if (is_a<print_csrc_cl_N>(c))
                                c.s << "recip(";
                        else
                                c.s << "1.0/(";
-                       basis.print(c);
-                       c.s << ')';
-
-               // Otherwise, use the pow() or expt() (CLN) functions
-               } else {
-                       if (is_of_type(c, print_csrc_cl_N))
-                               c.s << "expt(";
-                       else
-                               c.s << "pow(";
-                       basis.print(c);
-                       c.s << ',';
-                       exponent.print(c);
-                       c.s << ')';
                }
+               print_sym_pow(c, ex_to<symbol>(basis), exp);
+               c.s << ')';
 
-       } else {
+       // <expr>^-1 is printed as "1.0/<expr>" or with the recip() function of CLN
+       } else if (exponent.is_equal(_ex_1)) {
+               if (is_a<print_csrc_cl_N>(c))
+                       c.s << "recip(";
+               else
+                       c.s << "1.0/(";
+               basis.print(c);
+               c.s << ')';
 
-               if (exponent.is_equal(_ex1_2())) {
-                       if (is_of_type(c, print_latex))
-                               c.s << "\\sqrt{";
-                       else
-                               c.s << "sqrt(";
-                       basis.print(c);
-                       if (is_of_type(c, print_latex))
-                               c.s << '}';
-                       else
-                               c.s << ')';
-               } else {
-                       if (precedence() <= level) {
-                               if (is_of_type(c, print_latex))
-                                       c.s << "{(";
-                               else
-                                       c.s << "(";
-                       }
-                       basis.print(c, precedence());
-                       c.s << '^';
-                       if (is_of_type(c, print_latex))
-                               c.s << '{';
-                       exponent.print(c, precedence());
-                       if (is_of_type(c, print_latex))
-                               c.s << '}';
-                       if (precedence() <= level) {
-                               if (is_of_type(c, print_latex))
-                                       c.s << ")}";
-                               else
-                                       c.s << ')';
-                       }
-               }
+       // Otherwise, use the pow() or expt() (CLN) functions
+       } else {
+               if (is_a<print_csrc_cl_N>(c))
+                       c.s << "expt(";
+               else
+                       c.s << "pow(";
+               basis.print(c);
+               c.s << ',';
+               exponent.print(c);
+               c.s << ')';
        }
 }
 
+void power::do_print_python(const print_python & c, unsigned level) const
+{
+       print_power(c, "**", "", "", level);
+}
+
+void power::do_print_python_repr(const print_python_repr & c, unsigned level) const
+{
+       c.s << class_name() << '(';
+       basis.print(c);
+       c.s << ',';
+       exponent.print(c);
+       c.s << ')';
+}
+
 bool power::info(unsigned inf) const
 {
        switch (inf) {
@@ -218,103 +223,127 @@ bool power::info(unsigned inf) const
                case info_flags::cinteger_polynomial:
                case info_flags::rational_polynomial:
                case info_flags::crational_polynomial:
-                       return exponent.info(info_flags::nonnegint);
+                       return exponent.info(info_flags::nonnegint) &&
+                              basis.info(inf);
                case info_flags::rational_function:
-                       return exponent.info(info_flags::integer);
+                       return exponent.info(info_flags::integer) &&
+                              basis.info(inf);
                case info_flags::algebraic:
-                       return (!exponent.info(info_flags::integer) ||
-                                       basis.info(inf));
+                       return !exponent.info(info_flags::integer) ||
+                              basis.info(inf);
        }
        return inherited::info(inf);
 }
 
-unsigned power::nops() const
+size_t power::nops() const
 {
        return 2;
 }
 
-ex & power::let_op(int i)
+ex power::op(size_t i) const
 {
-       GINAC_ASSERT(i>=0);
        GINAC_ASSERT(i<2);
 
        return i==0 ? basis : exponent;
 }
 
-ex power::map(map_func f) const
+ex power::map(map_function & f) const
+{
+       const ex &mapped_basis = f(basis);
+       const ex &mapped_exponent = f(exponent);
+
+       if (!are_ex_trivially_equal(basis, mapped_basis)
+        || !are_ex_trivially_equal(exponent, mapped_exponent))
+               return (new power(mapped_basis, mapped_exponent))->setflag(status_flags::dynallocated);
+       else
+               return *this;
+}
+
+bool power::is_polynomial(const ex & var) const
 {
-       return (new power(f(basis), f(exponent)))->setflag(status_flags::dynallocated);
+       if (exponent.has(var))
+               return false;
+       if (!exponent.info(info_flags::nonnegint))
+               return false;
+       return basis.is_polynomial(var);
 }
 
 int power::degree(const ex & s) const
 {
-       if (is_exactly_of_type(*exponent.bp,numeric)) {
-               if (basis.is_equal(s)) {
-                       if (ex_to_numeric(exponent).is_integer())
-                               return ex_to_numeric(exponent).to_int();
-                       else
-                               return 0;
-               } else
-                       return basis.degree(s) * ex_to_numeric(exponent).to_int();
-       }
-       return 0;
+       if (is_equal(ex_to<basic>(s)))
+               return 1;
+       else if (is_exactly_a<numeric>(exponent) && ex_to<numeric>(exponent).is_integer()) {
+               if (basis.is_equal(s))
+                       return ex_to<numeric>(exponent).to_int();
+               else
+                       return basis.degree(s) * ex_to<numeric>(exponent).to_int();
+       } else if (basis.has(s))
+               throw(std::runtime_error("power::degree(): undefined degree because of non-integer exponent"));
+       else
+               return 0;
 }
 
 int power::ldegree(const ex & s) const 
 {
-       if (is_exactly_of_type(*exponent.bp,numeric)) {
-               if (basis.is_equal(s)) {
-                       if (ex_to_numeric(exponent).is_integer())
-                               return ex_to_numeric(exponent).to_int();
-                       else
-                               return 0;
-               } else
-                       return basis.ldegree(s) * ex_to_numeric(exponent).to_int();
-       }
-       return 0;
+       if (is_equal(ex_to<basic>(s)))
+               return 1;
+       else if (is_exactly_a<numeric>(exponent) && ex_to<numeric>(exponent).is_integer()) {
+               if (basis.is_equal(s))
+                       return ex_to<numeric>(exponent).to_int();
+               else
+                       return basis.ldegree(s) * ex_to<numeric>(exponent).to_int();
+       } else if (basis.has(s))
+               throw(std::runtime_error("power::ldegree(): undefined degree because of non-integer exponent"));
+       else
+               return 0;
 }
 
 ex power::coeff(const ex & s, int n) const
 {
-       if (!basis.is_equal(s)) {
+       if (is_equal(ex_to<basic>(s)))
+               return n==1 ? _ex1 : _ex0;
+       else if (!basis.is_equal(s)) {
                // basis not equal to s
                if (n == 0)
                        return *this;
                else
-                       return _ex0();
+                       return _ex0;
        } else {
                // basis equal to s
-               if (is_exactly_of_type(*exponent.bp, numeric) && ex_to_numeric(exponent).is_integer()) {
+               if (is_exactly_a<numeric>(exponent) && ex_to<numeric>(exponent).is_integer()) {
                        // integer exponent
-                       int int_exp = ex_to_numeric(exponent).to_int();
+                       int int_exp = ex_to<numeric>(exponent).to_int();
                        if (n == int_exp)
-                               return _ex1();
+                               return _ex1;
                        else
-                               return _ex0();
+                               return _ex0;
                } else {
                        // non-integer exponents are treated as zero
                        if (n == 0)
                                return *this;
                        else
-                               return _ex0();
+                               return _ex0;
                }
        }
 }
 
+/** Perform automatic term rewriting rules in this class.  In the following
+ *  x, x1, x2,... stand for a symbolic variables of type ex and c, c1, c2...
+ *  stand for such expressions that contain a plain number.
+ *  - ^(x,0) -> 1  (also handles ^(0,0))
+ *  - ^(x,1) -> x
+ *  - ^(0,c) -> 0 or exception  (depending on the real part of c)
+ *  - ^(1,x) -> 1
+ *  - ^(c1,c2) -> *(c1^n,c1^(c2-n))  (so that 0<(c2-n)<1, try to evaluate roots, possibly in numerator and denominator of c1)
+ *  - ^(^(x,c1),c2) -> ^(x,c1*c2)  if x is positive and c1 is real.
+ *  - ^(^(x,c1),c2) -> ^(x,c1*c2)  (c2 integer or -1 < c1 <= 1, case c1=1 should not happen, see below!)
+ *  - ^(*(x,y,z),c) -> *(x^c,y^c,z^c)  (if c integer)
+ *  - ^(*(x,c1),c2) -> ^(x,c2)*c1^c2  (c1>0)
+ *  - ^(*(x,c1),c2) -> ^(-x,c2)*c1^c2  (c1<0)
+ *
+ *  @param level cut-off in recursive evaluation */
 ex power::eval(int level) const
 {
-       // simplifications: ^(x,0) -> 1 (0^0 handled here)
-       //                  ^(x,1) -> x
-       //                  ^(0,c1) -> 0 or exception (depending on real value of c1)
-       //                  ^(1,x) -> 1
-       //                  ^(c1,c2) -> *(c1^n,c1^(c2-n)) (c1, c2 numeric(), 0<(c2-n)<1 except if c1,c2 are rational, but c1^c2 is not)
-       //                  ^(^(x,c1),c2) -> ^(x,c1*c2) (c1, c2 numeric(), c2 integer or -1 < c1 <= 1, case c1=1 should not happen, see below!)
-       //                  ^(*(x,y,z),c1) -> *(x^c1,y^c1,z^c1) (c1 integer)
-       //                  ^(*(x,c1),c2) -> ^(x,c2)*c1^c2 (c1, c2 numeric(), c1>0)
-       //                  ^(*(x,c1),c2) -> ^(-x,c2)*c1^c2 (c1, c2 numeric(), c1<0)
-       
-       debugmsg("power eval",LOGLEVEL_MEMBER_FUNCTION);
-       
        if ((level==1) && (flags & status_flags::evaluated))
                return *this;
        else if (level == -max_recursion_level)
@@ -325,77 +354,105 @@ ex power::eval(int level) const
        
        bool basis_is_numerical = false;
        bool exponent_is_numerical = false;
-       numeric * num_basis;
-       numeric * num_exponent;
+       const numeric *num_basis;
+       const numeric *num_exponent;
        
-       if (is_exactly_of_type(*ebasis.bp,numeric)) {
+       if (is_exactly_a<numeric>(ebasis)) {
                basis_is_numerical = true;
-               num_basis = static_cast<numeric *>(ebasis.bp);
+               num_basis = &ex_to<numeric>(ebasis);
        }
-       if (is_exactly_of_type(*eexponent.bp,numeric)) {
+       if (is_exactly_a<numeric>(eexponent)) {
                exponent_is_numerical = true;
-               num_exponent = static_cast<numeric *>(eexponent.bp);
+               num_exponent = &ex_to<numeric>(eexponent);
        }
        
-       // ^(x,0) -> 1 (0^0 also handled here)
+       // ^(x,0) -> 1  (0^0 also handled here)
        if (eexponent.is_zero()) {
                if (ebasis.is_zero())
                        throw (std::domain_error("power::eval(): pow(0,0) is undefined"));
                else
-                       return _ex1();
+                       return _ex1;
        }
        
        // ^(x,1) -> x
-       if (eexponent.is_equal(_ex1()))
+       if (eexponent.is_equal(_ex1))
                return ebasis;
-       
-       // ^(0,c1) -> 0 or exception (depending on real value of c1)
+
+       // ^(0,c1) -> 0 or exception  (depending on real value of c1)
        if (ebasis.is_zero() && exponent_is_numerical) {
                if ((num_exponent->real()).is_zero())
                        throw (std::domain_error("power::eval(): pow(0,I) is undefined"));
                else if ((num_exponent->real()).is_negative())
                        throw (pole_error("power::eval(): division by zero",1));
                else
-                       return _ex0();
+                       return _ex0;
        }
-       
+
        // ^(1,x) -> 1
-       if (ebasis.is_equal(_ex1()))
-               return _ex1();
-       
+       if (ebasis.is_equal(_ex1))
+               return _ex1;
+
+       // power of a function calculated by separate rules defined for this function
+       if (is_exactly_a<function>(ebasis))
+               return ex_to<function>(ebasis).power(eexponent);
+
+       // Turn (x^c)^d into x^(c*d) in the case that x is positive and c is real.
+       if (is_exactly_a<power>(ebasis) && ebasis.op(0).info(info_flags::positive) && ebasis.op(1).info(info_flags::real))
+               return power(ebasis.op(0), ebasis.op(1) * eexponent);
+
        if (exponent_is_numerical) {
 
-               // ^(c1,c2) -> c1^c2 (c1, c2 numeric(),
+               // ^(c1,c2) -> c1^c2  (c1, c2 numeric(),
                // except if c1,c2 are rational, but c1^c2 is not)
                if (basis_is_numerical) {
-                       bool basis_is_crational = num_basis->is_crational();
-                       bool exponent_is_crational = num_exponent->is_crational();
-                       numeric res = num_basis->power(*num_exponent);
-               
-                       if ((!basis_is_crational || !exponent_is_crational)
-                               || res.is_crational()) {
+                       const bool basis_is_crational = num_basis->is_crational();
+                       const bool exponent_is_crational = num_exponent->is_crational();
+                       if (!basis_is_crational || !exponent_is_crational) {
+                               // return a plain float
+                               return (new numeric(num_basis->power(*num_exponent)))->setflag(status_flags::dynallocated |
+                                                                                              status_flags::evaluated |
+                                                                                              status_flags::expanded);
+                       }
+
+                       const numeric res = num_basis->power(*num_exponent);
+                       if (res.is_crational()) {
                                return res;
                        }
                        GINAC_ASSERT(!num_exponent->is_integer());  // has been handled by now
 
-                       // ^(c1,n/m) -> *(c1^q,c1^(n/m-q)), 0<(n/m-h)<1, q integer
+                       // ^(c1,n/m) -> *(c1^q,c1^(n/m-q)), 0<(n/m-q)<1, q integer
                        if (basis_is_crational && exponent_is_crational
-                               && num_exponent->is_real()
-                               && !num_exponent->is_integer()) {
-                               numeric n = num_exponent->numer();
-                               numeric m = num_exponent->denom();
+                           && num_exponent->is_real()
+                           && !num_exponent->is_integer()) {
+                               const numeric n = num_exponent->numer();
+                               const numeric m = num_exponent->denom();
                                numeric r;
                                numeric q = iquo(n, m, r);
                                if (r.is_negative()) {
-                                       r = r.add(m);
-                                       q = q.sub(_num1());
+                                       r += m;
+                                       --q;
                                }
-                               if (q.is_zero())  // the exponent was in the allowed range 0<(n/m)<1
+                               if (q.is_zero()) {  // the exponent was in the allowed range 0<(n/m)<1
+                                       if (num_basis->is_rational() && !num_basis->is_integer()) {
+                                               // try it for numerator and denominator separately, in order to
+                                               // partially simplify things like (5/8)^(1/3) -> 1/2*5^(1/3)
+                                               const numeric bnum = num_basis->numer();
+                                               const numeric bden = num_basis->denom();
+                                               const numeric res_bnum = bnum.power(*num_exponent);
+                                               const numeric res_bden = bden.power(*num_exponent);
+                                               if (res_bnum.is_integer())
+                                                       return (new mul(power(bden,-*num_exponent),res_bnum))->setflag(status_flags::dynallocated | status_flags::evaluated);
+                                               if (res_bden.is_integer())
+                                                       return (new mul(power(bnum,*num_exponent),res_bden.inverse()))->setflag(status_flags::dynallocated | status_flags::evaluated);
+                                       }
                                        return this->hold();
-                               else {
-                                       epvector res;
-                                       res.push_back(expair(ebasis,r.div(m)));
-                                       return (new mul(res,ex(num_basis->power_dyn(q))))->setflag(status_flags::dynallocated | status_flags::evaluated);
+                               } else {
+                                       // assemble resulting product, but allowing for a re-evaluation,
+                                       // because otherwise we'll end up with something like
+                                       //    (7/8)^(4/3)  ->  7/8*(1/2*7^(1/3))
+                                       // instead of 7/16*7^(1/3).
+                                       ex prod = power(*num_basis,r.div(m));
+                                       return prod*power(*num_basis,q);
                                }
                        }
                }
@@ -403,43 +460,68 @@ ex power::eval(int level) const
                // ^(^(x,c1),c2) -> ^(x,c1*c2)
                // (c1, c2 numeric(), c2 integer or -1 < c1 <= 1,
                // case c1==1 should not happen, see below!)
-               if (is_ex_exactly_of_type(ebasis,power)) {
-                       const power & sub_power = ex_to_power(ebasis);
+               if (is_exactly_a<power>(ebasis)) {
+                       const power & sub_power = ex_to<power>(ebasis);
                        const ex & sub_basis = sub_power.basis;
                        const ex & sub_exponent = sub_power.exponent;
-                       if (is_ex_exactly_of_type(sub_exponent,numeric)) {
-                               const numeric & num_sub_exponent = ex_to_numeric(sub_exponent);
+                       if (is_exactly_a<numeric>(sub_exponent)) {
+                               const numeric & num_sub_exponent = ex_to<numeric>(sub_exponent);
                                GINAC_ASSERT(num_sub_exponent!=numeric(1));
-                               if (num_exponent->is_integer() || (abs(num_sub_exponent) - _num1()).is_negative())
+                               if (num_exponent->is_integer() || (abs(num_sub_exponent) - (*_num1_p)).is_negative()) {
                                        return power(sub_basis,num_sub_exponent.mul(*num_exponent));
+                               }
                        }
                }
        
                // ^(*(x,y,z),c1) -> *(x^c1,y^c1,z^c1) (c1 integer)
-               if (num_exponent->is_integer() && is_ex_exactly_of_type(ebasis,mul)) {
-                       return expand_mul(ex_to_mul(ebasis), *num_exponent);
+               if (num_exponent->is_integer() && is_exactly_a<mul>(ebasis)) {
+                       return expand_mul(ex_to<mul>(ebasis), *num_exponent, 0);
                }
-       
-               // ^(*(...,x;c1),c2) -> ^(*(...,x;1),c2)*c1^c2 (c1, c2 numeric(), c1>0)
-               // ^(*(...,x,c1),c2) -> ^(*(...,x;-1),c2)*(-c1)^c2 (c1, c2 numeric(), c1<0)
-               if (is_ex_exactly_of_type(ebasis,mul)) {
+
+               // (2*x + 6*y)^(-4) -> 1/16*(x + 3*y)^(-4)
+               if (num_exponent->is_integer() && is_exactly_a<add>(ebasis)) {
+                       const numeric icont = ebasis.integer_content();
+                       const numeric& lead_coeff = 
+                               ex_to<numeric>(ex_to<add>(ebasis).seq.begin()->coeff).div_dyn(icont);
+
+                       const bool canonicalizable = lead_coeff.is_integer();
+                       const bool unit_normal = lead_coeff.is_pos_integer();
+
+                       if (icont != *_num1_p) {
+                               return (new mul(power(ebasis/icont, *num_exponent), power(icont, *num_exponent))
+                                      )->setflag(status_flags::dynallocated);
+                       }
+
+                       if (canonicalizable && (! unit_normal)) {
+                               if (num_exponent->is_even()) {
+                                       return power(-ebasis, *num_exponent);
+                               } else {
+                                       return (new mul(power(-ebasis, *num_exponent), *_num_1_p)
+                                              )->setflag(status_flags::dynallocated);
+                               }
+                       }
+               }
+
+               // ^(*(...,x;c1),c2) -> *(^(*(...,x;1),c2),c1^c2)  (c1, c2 numeric(), c1>0)
+               // ^(*(...,x;c1),c2) -> *(^(*(...,x;-1),c2),(-c1)^c2)  (c1, c2 numeric(), c1<0)
+               if (is_exactly_a<mul>(ebasis)) {
                        GINAC_ASSERT(!num_exponent->is_integer()); // should have been handled above
-                       const mul & mulref = ex_to_mul(ebasis);
-                       if (!mulref.overall_coeff.is_equal(_ex1())) {
-                               const numeric & num_coeff = ex_to_numeric(mulref.overall_coeff);
+                       const mul & mulref = ex_to<mul>(ebasis);
+                       if (!mulref.overall_coeff.is_equal(_ex1)) {
+                               const numeric & num_coeff = ex_to<numeric>(mulref.overall_coeff);
                                if (num_coeff.is_real()) {
                                        if (num_coeff.is_positive()) {
-                                               mul * mulp = new mul(mulref);
-                                               mulp->overall_coeff = _ex1();
+                                               mul *mulp = new mul(mulref);
+                                               mulp->overall_coeff = _ex1;
                                                mulp->clearflag(status_flags::evaluated);
                                                mulp->clearflag(status_flags::hash_calculated);
                                                return (new mul(power(*mulp,exponent),
                                                                power(num_coeff,*num_exponent)))->setflag(status_flags::dynallocated);
                                        } else {
-                                               GINAC_ASSERT(num_coeff.compare(_num0())<0);
-                                               if (num_coeff.compare(_num_1())!=0) {
-                                                       mul * mulp = new mul(mulref);
-                                                       mulp->overall_coeff = _ex_1();
+                                               GINAC_ASSERT(num_coeff.compare(*_num0_p)<0);
+                                               if (!num_coeff.is_equal(*_num_1_p)) {
+                                                       mul *mulp = new mul(mulref);
+                                                       mulp->overall_coeff = _ex_1;
                                                        mulp->clearflag(status_flags::evaluated);
                                                        mulp->clearflag(status_flags::hash_calculated);
                                                        return (new mul(power(*mulp,exponent),
@@ -450,24 +532,24 @@ ex power::eval(int level) const
                        }
                }
 
-               // ^(nc,c1) -> ncmul(nc,nc,...) (c1 positive integer)
-               if (num_exponent->is_pos_integer() && ebasis.return_type() != return_types::commutative) {
+               // ^(nc,c1) -> ncmul(nc,nc,...) (c1 positive integer, unless nc is a matrix)
+               if (num_exponent->is_pos_integer() &&
+                   ebasis.return_type() != return_types::commutative &&
+                   !is_a<matrix>(ebasis)) {
                        return ncmul(exvector(num_exponent->to_int(), ebasis), true);
                }
        }
        
        if (are_ex_trivially_equal(ebasis,basis) &&
-               are_ex_trivially_equal(eexponent,exponent)) {
+           are_ex_trivially_equal(eexponent,exponent)) {
                return this->hold();
        }
        return (new power(ebasis, eexponent))->setflag(status_flags::dynallocated |
-                                                                                                  status_flags::evaluated);
+                                                      status_flags::evaluated);
 }
 
 ex power::evalf(int level) const
 {
-       debugmsg("power evalf",LOGLEVEL_MEMBER_FUNCTION);
-
        ex ebasis;
        ex eexponent;
        
@@ -478,7 +560,7 @@ ex power::evalf(int level) const
                throw(std::runtime_error("max recursion level reached"));
        } else {
                ebasis = basis.evalf(level-1);
-               if (!is_ex_exactly_of_type(eexponent,numeric))
+               if (!is_exactly_a<numeric>(exponent))
                        eexponent = exponent.evalf(level-1);
                else
                        eexponent = exponent;
@@ -487,93 +569,204 @@ ex power::evalf(int level) const
        return power(ebasis,eexponent);
 }
 
-ex power::subs(const lst & ls, const lst & lr, bool no_pattern) const
+ex power::evalm() const
 {
-       const ex &subsed_basis = basis.subs(ls, lr, no_pattern);
-       const ex &subsed_exponent = exponent.subs(ls, lr, no_pattern);
+       const ex ebasis = basis.evalm();
+       const ex eexponent = exponent.evalm();
+       if (is_a<matrix>(ebasis)) {
+               if (is_exactly_a<numeric>(eexponent)) {
+                       return (new matrix(ex_to<matrix>(ebasis).pow(eexponent)))->setflag(status_flags::dynallocated);
+               }
+       }
+       return (new power(ebasis, eexponent))->setflag(status_flags::dynallocated);
+}
 
-       if (are_ex_trivially_equal(basis, subsed_basis)
-        && are_ex_trivially_equal(exponent, subsed_exponent))
-               return basic::subs(ls, lr, no_pattern);
-       else
-               return ex(power(subsed_basis, subsed_exponent)).bp->basic::subs(ls, lr, no_pattern);
+bool power::has(const ex & other, unsigned options) const
+{
+       if (!(options & has_options::algebraic))
+               return basic::has(other, options);
+       if (!is_a<power>(other))
+               return basic::has(other, options);
+       if (!exponent.info(info_flags::integer)
+                       || !other.op(1).info(info_flags::integer))
+               return basic::has(other, options);
+       if (exponent.info(info_flags::posint)
+                       && other.op(1).info(info_flags::posint)
+                       && ex_to<numeric>(exponent).to_int()
+                                       > ex_to<numeric>(other.op(1)).to_int()
+                       && basis.match(other.op(0)))
+               return true;
+       if (exponent.info(info_flags::negint)
+                       && other.op(1).info(info_flags::negint)
+                       && ex_to<numeric>(exponent).to_int()
+                                       < ex_to<numeric>(other.op(1)).to_int()
+                       && basis.match(other.op(0)))
+               return true;
+       return basic::has(other, options);
+}
+
+// from mul.cpp
+extern bool tryfactsubs(const ex &, const ex &, int &, lst &);
+
+ex power::subs(const exmap & m, unsigned options) const
+{      
+       const ex &subsed_basis = basis.subs(m, options);
+       const ex &subsed_exponent = exponent.subs(m, options);
+
+       if (!are_ex_trivially_equal(basis, subsed_basis)
+        || !are_ex_trivially_equal(exponent, subsed_exponent)) 
+               return power(subsed_basis, subsed_exponent).subs_one_level(m, options);
+
+       if (!(options & subs_options::algebraic))
+               return subs_one_level(m, options);
+
+       for (exmap::const_iterator it = m.begin(); it != m.end(); ++it) {
+               int nummatches = std::numeric_limits<int>::max();
+               lst repls;
+               if (tryfactsubs(*this, it->first, nummatches, repls))
+                       return (ex_to<basic>((*this) * power(it->second.subs(ex(repls), subs_options::no_pattern) / it->first.subs(ex(repls), subs_options::no_pattern), nummatches))).subs_one_level(m, options);
+       }
+
+       return subs_one_level(m, options);
+}
+
+ex power::eval_ncmul(const exvector & v) const
+{
+       return inherited::eval_ncmul(v);
 }
 
-ex power::simplify_ncmul(const exvector & v) const
+ex power::conjugate() const
 {
-       return inherited::simplify_ncmul(v);
+       ex newbasis = basis.conjugate();
+       ex newexponent = exponent.conjugate();
+       if (are_ex_trivially_equal(basis, newbasis) && are_ex_trivially_equal(exponent, newexponent)) {
+               return *this;
+       }
+       return (new power(newbasis, newexponent))->setflag(status_flags::dynallocated);
+}
+
+ex power::real_part() const
+{
+       if (exponent.info(info_flags::integer)) {
+               ex basis_real = basis.real_part();
+               if (basis_real == basis)
+                       return *this;
+               realsymbol a("a"),b("b");
+               ex result;
+               if (exponent.info(info_flags::posint))
+                       result = power(a+I*b,exponent);
+               else
+                       result = power(a/(a*a+b*b)-I*b/(a*a+b*b),-exponent);
+               result = result.expand();
+               result = result.real_part();
+               result = result.subs(lst( a==basis_real, b==basis.imag_part() ));
+               return result;
+       }
+       
+       ex a = basis.real_part();
+       ex b = basis.imag_part();
+       ex c = exponent.real_part();
+       ex d = exponent.imag_part();
+       return power(abs(basis),c)*exp(-d*atan2(b,a))*cos(c*atan2(b,a)+d*log(abs(basis)));
+}
+
+ex power::imag_part() const
+{
+       if (exponent.info(info_flags::integer)) {
+               ex basis_real = basis.real_part();
+               if (basis_real == basis)
+                       return 0;
+               realsymbol a("a"),b("b");
+               ex result;
+               if (exponent.info(info_flags::posint))
+                       result = power(a+I*b,exponent);
+               else
+                       result = power(a/(a*a+b*b)-I*b/(a*a+b*b),-exponent);
+               result = result.expand();
+               result = result.imag_part();
+               result = result.subs(lst( a==basis_real, b==basis.imag_part() ));
+               return result;
+       }
+       
+       ex a=basis.real_part();
+       ex b=basis.imag_part();
+       ex c=exponent.real_part();
+       ex d=exponent.imag_part();
+       return
+               power(abs(basis),c)*exp(-d*atan2(b,a))*sin(c*atan2(b,a)+d*log(abs(basis)));
 }
 
 // protected
 
+// protected
+
 /** Implementation of ex::diff() for a power.
  *  @see ex::diff */
 ex power::derivative(const symbol & s) const
 {
-       if (exponent.info(info_flags::real)) {
+       if (is_a<numeric>(exponent)) {
                // D(b^r) = r * b^(r-1) * D(b) (faster than the formula below)
                epvector newseq;
                newseq.reserve(2);
-               newseq.push_back(expair(basis, exponent - _ex1()));
-               newseq.push_back(expair(basis.diff(s), _ex1()));
+               newseq.push_back(expair(basis, exponent - _ex1));
+               newseq.push_back(expair(basis.diff(s), _ex1));
                return mul(newseq, exponent);
        } else {
                // D(b^e) = b^e * (D(e)*ln(b) + e*D(b)/b)
                return mul(*this,
                           add(mul(exponent.diff(s), log(basis)),
-                          mul(mul(exponent, basis.diff(s)), power(basis, _ex_1()))));
+                          mul(mul(exponent, basis.diff(s)), power(basis, _ex_1))));
        }
 }
 
 int power::compare_same_type(const basic & other) const
 {
-       GINAC_ASSERT(is_exactly_of_type(other, power));
-       const power & o=static_cast<const power &>(const_cast<basic &>(other));
+       GINAC_ASSERT(is_exactly_a<power>(other));
+       const power &o = static_cast<const power &>(other);
 
-       int cmpval;
-       cmpval=basis.compare(o.basis);
-       if (cmpval==0) {
+       int cmpval = basis.compare(o.basis);
+       if (cmpval)
+               return cmpval;
+       else
                return exponent.compare(o.exponent);
-       }
-       return cmpval;
 }
 
-unsigned power::return_type(void) const
+unsigned power::return_type() const
 {
        return basis.return_type();
 }
-   
-unsigned power::return_type_tinfo(void) const
+
+tinfo_t power::return_type_tinfo() const
 {
        return basis.return_type_tinfo();
 }
 
 ex power::expand(unsigned options) const
 {
-       if (flags & status_flags::expanded)
+       if (options == 0 && (flags & status_flags::expanded))
                return *this;
        
-       ex expanded_basis = basis.expand(options);
-       ex expanded_exponent = exponent.expand(options);
+       const ex expanded_basis = basis.expand(options);
+       const ex expanded_exponent = exponent.expand(options);
        
        // x^(a+b) -> x^a * x^b
-       if (is_ex_exactly_of_type(expanded_exponent, add)) {
-               const add &a = ex_to_add(expanded_exponent);
+       if (is_exactly_a<add>(expanded_exponent)) {
+               const add &a = ex_to<add>(expanded_exponent);
                exvector distrseq;
                distrseq.reserve(a.seq.size() + 1);
                epvector::const_iterator last = a.seq.end();
                epvector::const_iterator cit = a.seq.begin();
                while (cit!=last) {
                        distrseq.push_back(power(expanded_basis, a.recombine_pair_to_ex(*cit)));
-                       cit++;
+                       ++cit;
                }
                
                // Make sure that e.g. (x+y)^(2+a) expands the (x+y)^2 factor
-               if (ex_to_numeric(a.overall_coeff).is_integer()) {
-                       const numeric &num_exponent = ex_to_numeric(a.overall_coeff);
+               if (ex_to<numeric>(a.overall_coeff).is_integer()) {
+                       const numeric &num_exponent = ex_to<numeric>(a.overall_coeff);
                        int int_exponent = num_exponent.to_int();
-                       if (int_exponent > 0 && is_ex_exactly_of_type(expanded_basis, add))
-                               distrseq.push_back(expand_add(ex_to_add(expanded_basis), int_exponent));
+                       if (int_exponent > 0 && is_exactly_a<add>(expanded_basis))
+                               distrseq.push_back(expand_add(ex_to<add>(expanded_basis), int_exponent, options));
                        else
                                distrseq.push_back(power(expanded_basis, a.overall_coeff));
                } else
@@ -581,35 +774,35 @@ ex power::expand(unsigned options) const
                
                // Make sure that e.g. (x+y)^(1+a) -> x*(x+y)^a + y*(x+y)^a
                ex r = (new mul(distrseq))->setflag(status_flags::dynallocated);
-               return r.expand();
+               return r.expand(options);
        }
        
-       if (!is_ex_exactly_of_type(expanded_exponent, numeric) ||
-               !ex_to_numeric(expanded_exponent).is_integer()) {
+       if (!is_exactly_a<numeric>(expanded_exponent) ||
+               !ex_to<numeric>(expanded_exponent).is_integer()) {
                if (are_ex_trivially_equal(basis,expanded_basis) && are_ex_trivially_equal(exponent,expanded_exponent)) {
                        return this->hold();
                } else {
-                       return (new power(expanded_basis,expanded_exponent))->setflag(status_flags::dynallocated | status_flags::expanded);
+                       return (new power(expanded_basis,expanded_exponent))->setflag(status_flags::dynallocated | (options == 0 ? status_flags::expanded : 0));
                }
        }
        
        // integer numeric exponent
-       const numeric & num_exponent = ex_to_numeric(expanded_exponent);
+       const numeric & num_exponent = ex_to<numeric>(expanded_exponent);
        int int_exponent = num_exponent.to_int();
        
        // (x+y)^n, n>0
-       if (int_exponent > 0 && is_ex_exactly_of_type(expanded_basis,add))
-               return expand_add(ex_to_add(expanded_basis), int_exponent);
+       if (int_exponent > 0 && is_exactly_a<add>(expanded_basis))
+               return expand_add(ex_to<add>(expanded_basis), int_exponent, options);
        
        // (x*y)^n -> x^n * y^n
-       if (is_ex_exactly_of_type(expanded_basis,mul))
-               return expand_mul(ex_to_mul(expanded_basis), num_exponent);
+       if (is_exactly_a<mul>(expanded_basis))
+               return expand_mul(ex_to<mul>(expanded_basis), num_exponent, options, true);
        
        // cannot expand further
        if (are_ex_trivially_equal(basis,expanded_basis) && are_ex_trivially_equal(exponent,expanded_exponent))
                return this->hold();
        else
-               return (new power(expanded_basis,expanded_exponent))->setflag(status_flags::dynallocated | status_flags::expanded);
+               return (new power(expanded_basis,expanded_exponent))->setflag(status_flags::dynallocated | (options == 0 ? status_flags::expanded : 0));
 }
 
 //////////
@@ -622,149 +815,139 @@ ex power::expand(unsigned options) const
 // non-virtual functions in this class
 //////////
 
-/** expand a^n where a is an add and n is an integer.
+/** expand a^n where a is an add and n is a positive integer.
  *  @see power::expand */
-ex power::expand_add(const add & a, int n) const
+ex power::expand_add(const add & a, int n, unsigned options) const
 {
        if (n==2)
-               return expand_add_2(a);
-       
-       int m = a.nops();
-       exvector sum;
-       sum.reserve((n+1)*(m-1));
+               return expand_add_2(a, options);
+
+       const size_t m = a.nops();
+       exvector result;
+       // The number of terms will be the number of combinatorial compositions,
+       // i.e. the number of unordered arrangements of m nonnegative integers
+       // which sum up to n.  It is frequently written as C_n(m) and directly
+       // related with binomial coefficients:
+       result.reserve(binomial(numeric(n+m-1), numeric(m-1)).to_int());
        intvector k(m-1);
        intvector k_cum(m-1); // k_cum[l]:=sum(i=0,l,k[l]);
        intvector upper_limit(m-1);
        int l;
-       
-       for (int l=0; l<m-1; l++) {
+
+       for (size_t l=0; l<m-1; ++l) {
                k[l] = 0;
                k_cum[l] = 0;
                upper_limit[l] = n;
        }
-       
-       while (1) {
+
+       while (true) {
                exvector term;
                term.reserve(m+1);
-               for (l=0; l<m-1; l++) {
+               for (l=0; l<m-1; ++l) {
                        const ex & b = a.op(l);
-                       GINAC_ASSERT(!is_ex_exactly_of_type(b,add));
-                       GINAC_ASSERT(!is_ex_exactly_of_type(b,power) ||
-                                    !is_ex_exactly_of_type(ex_to_power(b).exponent,numeric) ||
-                                    !ex_to_numeric(ex_to_power(b).exponent).is_pos_integer() ||
-                                    !is_ex_exactly_of_type(ex_to_power(b).basis,add) ||
-                                    !is_ex_exactly_of_type(ex_to_power(b).basis,mul) ||
-                                    !is_ex_exactly_of_type(ex_to_power(b).basis,power));
-                       if (is_ex_exactly_of_type(b,mul))
-                               term.push_back(expand_mul(ex_to_mul(b),numeric(k[l])));
+                       GINAC_ASSERT(!is_exactly_a<add>(b));
+                       GINAC_ASSERT(!is_exactly_a<power>(b) ||
+                                    !is_exactly_a<numeric>(ex_to<power>(b).exponent) ||
+                                    !ex_to<numeric>(ex_to<power>(b).exponent).is_pos_integer() ||
+                                    !is_exactly_a<add>(ex_to<power>(b).basis) ||
+                                    !is_exactly_a<mul>(ex_to<power>(b).basis) ||
+                                    !is_exactly_a<power>(ex_to<power>(b).basis));
+                       if (is_exactly_a<mul>(b))
+                               term.push_back(expand_mul(ex_to<mul>(b), numeric(k[l]), options, true));
                        else
                                term.push_back(power(b,k[l]));
                }
-               
+
                const ex & b = a.op(l);
-               GINAC_ASSERT(!is_ex_exactly_of_type(b,add));
-               GINAC_ASSERT(!is_ex_exactly_of_type(b,power) ||
-                            !is_ex_exactly_of_type(ex_to_power(b).exponent,numeric) ||
-                            !ex_to_numeric(ex_to_power(b).exponent).is_pos_integer() ||
-                            !is_ex_exactly_of_type(ex_to_power(b).basis,add) ||
-                            !is_ex_exactly_of_type(ex_to_power(b).basis,mul) ||
-                            !is_ex_exactly_of_type(ex_to_power(b).basis,power));
-               if (is_ex_exactly_of_type(b,mul))
-                       term.push_back(expand_mul(ex_to_mul(b),numeric(n-k_cum[m-2])));
+               GINAC_ASSERT(!is_exactly_a<add>(b));
+               GINAC_ASSERT(!is_exactly_a<power>(b) ||
+                            !is_exactly_a<numeric>(ex_to<power>(b).exponent) ||
+                            !ex_to<numeric>(ex_to<power>(b).exponent).is_pos_integer() ||
+                            !is_exactly_a<add>(ex_to<power>(b).basis) ||
+                            !is_exactly_a<mul>(ex_to<power>(b).basis) ||
+                            !is_exactly_a<power>(ex_to<power>(b).basis));
+               if (is_exactly_a<mul>(b))
+                       term.push_back(expand_mul(ex_to<mul>(b), numeric(n-k_cum[m-2]), options, true));
                else
                        term.push_back(power(b,n-k_cum[m-2]));
-               
+
                numeric f = binomial(numeric(n),numeric(k[0]));
-               for (l=1; l<m-1; l++)
+               for (l=1; l<m-1; ++l)
                        f *= binomial(numeric(n-k_cum[l-1]),numeric(k[l]));
-               
+
                term.push_back(f);
-               
-               /*
-               cout << "begin term" << endl;
-               for (int i=0; i<m-1; i++) {
-                       cout << "k[" << i << "]=" << k[i] << endl;
-                       cout << "k_cum[" << i << "]=" << k_cum[i] << endl;
-                       cout << "upper_limit[" << i << "]=" << upper_limit[i] << endl;
-               }
-               for_each(term.begin(), term.end(), ostream_iterator<ex>(cout, "\n"));
-               cout << "end term" << endl;
-               */
-               
-               // TODO: optimize this
-               sum.push_back((new mul(term))->setflag(status_flags::dynallocated));
-               
+
+               result.push_back(ex((new mul(term))->setflag(status_flags::dynallocated)).expand(options));
+
                // increment k[]
                l = m-2;
-               while ((l>=0)&&((++k[l])>upper_limit[l])) {
-                       k[l] = 0;    
-                       l--;
+               while ((l>=0) && ((++k[l])>upper_limit[l])) {
+                       k[l] = 0;
+                       --l;
                }
                if (l<0) break;
-               
+
                // recalc k_cum[] and upper_limit[]
-               if (l==0)
-                       k_cum[0] = k[0];
-               else
-                       k_cum[l] = k_cum[l-1]+k[l];
-               
-               for (int i=l+1; i<m-1; i++)
+               k_cum[l] = (l==0 ? k[0] : k_cum[l-1]+k[l]);
+
+               for (size_t i=l+1; i<m-1; ++i)
                        k_cum[i] = k_cum[i-1]+k[i];
-               
-               for (int i=l+1; i<m-1; i++)
+
+               for (size_t i=l+1; i<m-1; ++i)
                        upper_limit[i] = n-k_cum[i-1];
        }
-       return (new add(sum))->setflag(status_flags::dynallocated |
-                                                                  status_flags::expanded );
+
+       return (new add(result))->setflag(status_flags::dynallocated |
+                                         status_flags::expanded);
 }
 
 
 /** Special case of power::expand_add. Expands a^2 where a is an add.
  *  @see power::expand_add */
-ex power::expand_add_2(const add & a) const
+ex power::expand_add_2(const add & a, unsigned options) const
 {
        epvector sum;
-       unsigned a_nops = a.nops();
+       size_t a_nops = a.nops();
        sum.reserve((a_nops*(a_nops+1))/2);
        epvector::const_iterator last = a.seq.end();
-       
+
        // power(+(x,...,z;c),2)=power(+(x,...,z;0),2)+2*c*+(x,...,z;0)+c*c
        // first part: ignore overall_coeff and expand other terms
        for (epvector::const_iterator cit0=a.seq.begin(); cit0!=last; ++cit0) {
-               const ex & r = (*cit0).rest;
-               const ex & c = (*cit0).coeff;
+               const ex & r = cit0->rest;
+               const ex & c = cit0->coeff;
                
-               GINAC_ASSERT(!is_ex_exactly_of_type(r,add));
-               GINAC_ASSERT(!is_ex_exactly_of_type(r,power) ||
-                            !is_ex_exactly_of_type(ex_to_power(r).exponent,numeric) ||
-                            !ex_to_numeric(ex_to_power(r).exponent).is_pos_integer() ||
-                            !is_ex_exactly_of_type(ex_to_power(r).basis,add) ||
-                            !is_ex_exactly_of_type(ex_to_power(r).basis,mul) ||
-                            !is_ex_exactly_of_type(ex_to_power(r).basis,power));
+               GINAC_ASSERT(!is_exactly_a<add>(r));
+               GINAC_ASSERT(!is_exactly_a<power>(r) ||
+                            !is_exactly_a<numeric>(ex_to<power>(r).exponent) ||
+                            !ex_to<numeric>(ex_to<power>(r).exponent).is_pos_integer() ||
+                            !is_exactly_a<add>(ex_to<power>(r).basis) ||
+                            !is_exactly_a<mul>(ex_to<power>(r).basis) ||
+                            !is_exactly_a<power>(ex_to<power>(r).basis));
                
-               if (are_ex_trivially_equal(c,_ex1())) {
-                       if (is_ex_exactly_of_type(r,mul)) {
-                               sum.push_back(expair(expand_mul(ex_to_mul(r),_num2()),
-                                                    _ex1()));
+               if (c.is_equal(_ex1)) {
+                       if (is_exactly_a<mul>(r)) {
+                               sum.push_back(expair(expand_mul(ex_to<mul>(r), *_num2_p, options, true),
+                                                    _ex1));
                        } else {
-                               sum.push_back(expair((new power(r,_ex2()))->setflag(status_flags::dynallocated),
-                                                    _ex1()));
+                               sum.push_back(expair((new power(r,_ex2))->setflag(status_flags::dynallocated),
+                                                    _ex1));
                        }
                } else {
-                       if (is_ex_exactly_of_type(r,mul)) {
-                               sum.push_back(expair(expand_mul(ex_to_mul(r),_num2()),
-                                                    ex_to_numeric(c).power_dyn(_num2())));
+                       if (is_exactly_a<mul>(r)) {
+                               sum.push_back(a.combine_ex_with_coeff_to_pair(expand_mul(ex_to<mul>(r), *_num2_p, options, true),
+                                                    ex_to<numeric>(c).power_dyn(*_num2_p)));
                        } else {
-                               sum.push_back(expair((new power(r,_ex2()))->setflag(status_flags::dynallocated),
-                                                    ex_to_numeric(c).power_dyn(_num2())));
+                               sum.push_back(a.combine_ex_with_coeff_to_pair((new power(r,_ex2))->setflag(status_flags::dynallocated),
+                                                    ex_to<numeric>(c).power_dyn(*_num2_p)));
                        }
                }
-                       
+
                for (epvector::const_iterator cit1=cit0+1; cit1!=last; ++cit1) {
-                       const ex & r1 = (*cit1).rest;
-                       const ex & c1 = (*cit1).coeff;
+                       const ex & r1 = cit1->rest;
+                       const ex & c1 = cit1->coeff;
                        sum.push_back(a.combine_ex_with_coeff_to_pair((new mul(r,r1))->setflag(status_flags::dynallocated),
-                                                                     _num2().mul(ex_to_numeric(c)).mul_dyn(ex_to_numeric(c1))));
+                                                                     _num2_p->mul(ex_to<numeric>(c)).mul_dyn(ex_to<numeric>(c1))));
                }
        }
        
@@ -772,10 +955,12 @@ ex power::expand_add_2(const add & a) const
        
        // second part: add terms coming from overall_factor (if != 0)
        if (!a.overall_coeff.is_zero()) {
-               for (epvector::const_iterator cit=a.seq.begin(); cit!=a.seq.end(); ++cit) {
-                       sum.push_back(a.combine_pair_with_coeff_to_pair(*cit,ex_to_numeric(a.overall_coeff).mul_dyn(_num2())));
+               epvector::const_iterator i = a.seq.begin(), end = a.seq.end();
+               while (i != end) {
+                       sum.push_back(a.combine_pair_with_coeff_to_pair(*i, ex_to<numeric>(a.overall_coeff).mul_dyn(*_num2_p)));
+                       ++i;
                }
-               sum.push_back(expair(ex_to_numeric(a.overall_coeff).power_dyn(_num2()),_ex1()));
+               sum.push_back(expair(ex_to<numeric>(a.overall_coeff).power_dyn(*_num2_p),_ex1));
        }
        
        GINAC_ASSERT(sum.size()==(a_nops*(a_nops+1))/2);
@@ -783,47 +968,50 @@ ex power::expand_add_2(const add & a) const
        return (new add(sum))->setflag(status_flags::dynallocated | status_flags::expanded);
 }
 
-/** Expand factors of m in m^n where m is a mul and n is and integer
+/** Expand factors of m in m^n where m is a mul and n is an integer.
  *  @see power::expand */
-ex power::expand_mul(const mul & m, const numeric & n) const
+ex power::expand_mul(const mul & m, const numeric & n, unsigned options, bool from_expand) const
 {
-       if (n.is_zero())
-               return _ex1();
-       
+       GINAC_ASSERT(n.is_integer());
+
+       if (n.is_zero()) {
+               return _ex1;
+       }
+
+       // Leave it to multiplication since dummy indices have to be renamed
+       if (get_all_dummy_indices(m).size() > 0 && n.is_positive()) {
+               ex result = m;
+               exvector va = get_all_dummy_indices(m);
+               sort(va.begin(), va.end(), ex_is_less());
+
+               for (int i=1; i < n.to_int(); i++)
+                       result *= rename_dummy_indices_uniquely(va, m);
+               return result;
+       }
+
        epvector distrseq;
        distrseq.reserve(m.seq.size());
+       bool need_reexpand = false;
+
        epvector::const_iterator last = m.seq.end();
        epvector::const_iterator cit = m.seq.begin();
        while (cit!=last) {
-               if (is_ex_exactly_of_type((*cit).rest,numeric)) {
-                       distrseq.push_back(m.combine_pair_with_coeff_to_pair(*cit,n));
-               } else {
-                       // it is safe not to call mul::combine_pair_with_coeff_to_pair()
-                       // since n is an integer
-                       distrseq.push_back(expair((*cit).rest, ex_to_numeric((*cit).coeff).mul(n)));
+               expair p = m.combine_pair_with_coeff_to_pair(*cit, n);
+               if (from_expand && is_exactly_a<add>(cit->rest) && ex_to<numeric>(p.coeff).is_pos_integer()) {
+                       // this happens when e.g. (a+b)^(1/2) gets squared and
+                       // the resulting product needs to be reexpanded
+                       need_reexpand = true;
                }
+               distrseq.push_back(p);
                ++cit;
        }
-       return (new mul(distrseq,ex_to_numeric(m.overall_coeff).power_dyn(n)))->setflag(status_flags::dynallocated);
-}
-
-/*
-ex power::expand_noncommutative(const ex & basis, const numeric & exponent,
-                                                               unsigned options) const
-{
-       ex rest_power = ex(power(basis,exponent.add(_num_1()))).
-                       expand(options | expand_options::internal_do_not_expand_power_operands);
-
-       return ex(mul(rest_power,basis),0).
-              expand(options | expand_options::internal_do_not_expand_mul_operands);
-}
-*/
 
-// helper function
-
-ex sqrt(const ex & a)
-{
-       return power(a,_ex1_2());
+       const mul & result = static_cast<const mul &>((new mul(distrseq, ex_to<numeric>(m.overall_coeff).power_dyn(n)))->setflag(status_flags::dynallocated));
+       if (need_reexpand)
+               return ex(result).expand(options);
+       if (from_expand)
+               return result.setflag(status_flags::expanded);
+       return result;
 }
 
 } // namespace GiNaC