]> www.ginac.de Git - ginac.git/blobdiff - ginac/power.cpp
Move combinatorial helpers from power.cpp to utils.h.
[ginac.git] / ginac / power.cpp
index cbe63248afa6812b346f8c78c1c265cac73e8234..3c718027bdaa530782d063620fe75b20b440f681 100644 (file)
@@ -3,7 +3,7 @@
  *  Implementation of GiNaC's symbolic exponentiation (basis^exponent). */
 
 /*
- *  GiNaC Copyright (C) 1999-2008 Johannes Gutenberg University Mainz, Germany
+ *  GiNaC Copyright (C) 1999-2017 Johannes Gutenberg University Mainz, Germany
  *
  *  This program is free software; you can redistribute it and/or modify
  *  it under the terms of the GNU General Public License as published by
  *  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
  */
 
-#include <vector>
-#include <iostream>
-#include <stdexcept>
-#include <limits>
-
 #include "power.h"
 #include "expairseq.h"
 #include "add.h"
 #include "relational.h"
 #include "compiler.h"
 
+#include <iostream>
+#include <limits>
+#include <stdexcept>
+#include <vector>
+#include <algorithm>
+
 namespace GiNaC {
 
 GINAC_IMPLEMENT_REGISTERED_CLASS_OPT(power, basic,
@@ -53,8 +54,6 @@ GINAC_IMPLEMENT_REGISTERED_CLASS_OPT(power, basic,
   print_func<print_python_repr>(&power::do_print_python_repr).
   print_func<print_csrc_cl_N>(&power::do_print_csrc_cl_N))
 
-typedef std::vector<int> intvector;
-
 //////////
 // default constructor
 //////////
@@ -141,7 +140,7 @@ void power::do_print_latex(const print_latex & c, unsigned level) const
 static void print_sym_pow(const print_context & c, const symbol &x, int exp)
 {
        // Optimal output of integer powers of symbols to aid compiler CSE.
-       // C.f. ISO/IEC 14882:1998, section 1.9 [intro execution], paragraph 15
+       // C.f. ISO/IEC 14882:2011, section 1.9 [intro execution], paragraph 15
        // to learn why such a parenthesation is really necessary.
        if (exp == 1) {
                x.print(c);
@@ -180,8 +179,8 @@ void power::do_print_csrc_cl_N(const print_csrc_cl_N& c, unsigned level) const
 void power::do_print_csrc(const print_csrc & c, unsigned level) const
 {
        // Integer powers of symbols are printed in a special, optimized way
-       if (exponent.info(info_flags::integer)
-        && (is_a<symbol>(basis) || is_a<constant>(basis))) {
+       if (exponent.info(info_flags::integer) &&
+           (is_a<symbol>(basis) || is_a<constant>(basis))) {
                int exp = ex_to<numeric>(exponent).to_int();
                if (exp > 0)
                        c.s << '(';
@@ -230,16 +229,18 @@ bool power::info(unsigned inf) const
                case info_flags::cinteger_polynomial:
                case info_flags::rational_polynomial:
                case info_flags::crational_polynomial:
-                       return exponent.info(info_flags::nonnegint) &&
-                              basis.info(inf);
+                       return basis.info(inf) && exponent.info(info_flags::nonnegint);
                case info_flags::rational_function:
-                       return exponent.info(info_flags::integer) &&
-                              basis.info(inf);
-               case info_flags::algebraic:
-                       return !exponent.info(info_flags::integer) ||
-                              basis.info(inf);
+                       return basis.info(inf) && exponent.info(info_flags::integer);
+               case info_flags::real:
+                       return basis.info(inf) && exponent.info(info_flags::integer);
                case info_flags::expanded:
                        return (flags & status_flags::expanded);
+               case info_flags::positive:
+                       return basis.info(info_flags::positive) && exponent.info(info_flags::real);
+               case info_flags::nonnegative:
+                       return (basis.info(info_flags::positive) && exponent.info(info_flags::real)) ||
+                              (basis.info(info_flags::real) && exponent.info(info_flags::even));
                case info_flags::has_indices: {
                        if (flags & status_flags::has_indices)
                                return true;
@@ -278,18 +279,23 @@ ex power::map(map_function & f) const
 
        if (!are_ex_trivially_equal(basis, mapped_basis)
         || !are_ex_trivially_equal(exponent, mapped_exponent))
-               return (new power(mapped_basis, mapped_exponent))->setflag(status_flags::dynallocated);
+               return dynallocate<power>(mapped_basis, mapped_exponent);
        else
                return *this;
 }
 
 bool power::is_polynomial(const ex & var) const
 {
-       if (exponent.has(var))
-               return false;
-       if (!exponent.info(info_flags::nonnegint))
-               return false;
-       return basis.is_polynomial(var);
+       if (basis.is_polynomial(var)) {
+               if (basis.has(var))
+                       // basis is non-constant polynomial in var
+                       return exponent.info(info_flags::nonnegint);
+               else
+                       // basis is constant in var
+                       return !exponent.has(var);
+       }
+       // basis is a non-polynomial function of var
+       return false;
 }
 
 int power::degree(const ex & s) const
@@ -360,50 +366,40 @@ ex power::coeff(const ex & s, int n) const
  *  - ^(1,x) -> 1
  *  - ^(c1,c2) -> *(c1^n,c1^(c2-n))  (so that 0<(c2-n)<1, try to evaluate roots, possibly in numerator and denominator of c1)
  *  - ^(^(x,c1),c2) -> ^(x,c1*c2)  if x is positive and c1 is real.
- *  - ^(^(x,c1),c2) -> ^(x,c1*c2)  (c2 integer or -1 < c1 <= 1, case c1=1 should not happen, see below!)
+ *  - ^(^(x,c1),c2) -> ^(x,c1*c2)  (c2 integer or -1 < c1 <= 1 or (c1=-1 and c2>0), case c1=1 should not happen, see below!)
  *  - ^(*(x,y,z),c) -> *(x^c,y^c,z^c)  (if c integer)
  *  - ^(*(x,c1),c2) -> ^(x,c2)*c1^c2  (c1>0)
  *  - ^(*(x,c1),c2) -> ^(-x,c2)*c1^c2  (c1<0)
- *
- *  @param level cut-off in recursive evaluation */
-ex power::eval(int level) const
+ */
+ex power::eval() const
 {
-       if ((level==1) && (flags & status_flags::evaluated))
+       if (flags & status_flags::evaluated)
                return *this;
-       else if (level == -max_recursion_level)
-               throw(std::runtime_error("max recursion level reached"));
-       
-       const ex & ebasis    = level==1 ? basis    : basis.eval(level-1);
-       const ex & eexponent = level==1 ? exponent : exponent.eval(level-1);
-       
-       bool basis_is_numerical = false;
-       bool exponent_is_numerical = false;
-       const numeric *num_basis;
-       const numeric *num_exponent;
-       
-       if (is_exactly_a<numeric>(ebasis)) {
-               basis_is_numerical = true;
-               num_basis = &ex_to<numeric>(ebasis);
+
+       const numeric *num_basis = nullptr;
+       const numeric *num_exponent = nullptr;
+
+       if (is_exactly_a<numeric>(basis)) {
+               num_basis = &ex_to<numeric>(basis);
        }
-       if (is_exactly_a<numeric>(eexponent)) {
-               exponent_is_numerical = true;
-               num_exponent = &ex_to<numeric>(eexponent);
+       if (is_exactly_a<numeric>(exponent)) {
+               num_exponent = &ex_to<numeric>(exponent);
        }
        
        // ^(x,0) -> 1  (0^0 also handled here)
-       if (eexponent.is_zero()) {
-               if (ebasis.is_zero())
+       if (exponent.is_zero()) {
+               if (basis.is_zero())
                        throw (std::domain_error("power::eval(): pow(0,0) is undefined"));
                else
                        return _ex1;
        }
        
        // ^(x,1) -> x
-       if (eexponent.is_equal(_ex1))
-               return ebasis;
+       if (exponent.is_equal(_ex1))
+               return basis;
 
        // ^(0,c1) -> 0 or exception  (depending on real value of c1)
-       if (ebasis.is_zero() && exponent_is_numerical) {
+       if (basis.is_zero() && num_exponent) {
                if ((num_exponent->real()).is_zero())
                        throw (std::domain_error("power::eval(): pow(0,I) is undefined"));
                else if ((num_exponent->real()).is_negative())
@@ -413,29 +409,27 @@ ex power::eval(int level) const
        }
 
        // ^(1,x) -> 1
-       if (ebasis.is_equal(_ex1))
+       if (basis.is_equal(_ex1))
                return _ex1;
 
        // power of a function calculated by separate rules defined for this function
-       if (is_exactly_a<function>(ebasis))
-               return ex_to<function>(ebasis).power(eexponent);
+       if (is_exactly_a<function>(basis))
+               return ex_to<function>(basis).power(exponent);
 
        // Turn (x^c)^d into x^(c*d) in the case that x is positive and c is real.
-       if (is_exactly_a<power>(ebasis) && ebasis.op(0).info(info_flags::positive) && ebasis.op(1).info(info_flags::real))
-               return power(ebasis.op(0), ebasis.op(1) * eexponent);
+       if (is_exactly_a<power>(basis) && basis.op(0).info(info_flags::positive) && basis.op(1).info(info_flags::real))
+               return dynallocate<power>(basis.op(0), basis.op(1) * exponent);
 
-       if (exponent_is_numerical) {
+       if ( num_exponent ) {
 
                // ^(c1,c2) -> c1^c2  (c1, c2 numeric(),
                // except if c1,c2 are rational, but c1^c2 is not)
-               if (basis_is_numerical) {
+               if ( num_basis ) {
                        const bool basis_is_crational = num_basis->is_crational();
                        const bool exponent_is_crational = num_exponent->is_crational();
                        if (!basis_is_crational || !exponent_is_crational) {
                                // return a plain float
-                               return (new numeric(num_basis->power(*num_exponent)))->setflag(status_flags::dynallocated |
-                                                                                              status_flags::evaluated |
-                                                                                              status_flags::expanded);
+                               return dynallocate<numeric>(num_basis->power(*num_exponent));
                        }
 
                        const numeric res = num_basis->power(*num_exponent);
@@ -465,9 +459,9 @@ ex power::eval(int level) const
                                                const numeric res_bnum = bnum.power(*num_exponent);
                                                const numeric res_bden = bden.power(*num_exponent);
                                                if (res_bnum.is_integer())
-                                                       return (new mul(power(bden,-*num_exponent),res_bnum))->setflag(status_flags::dynallocated | status_flags::evaluated);
+                                                       return dynallocate<mul>(dynallocate<power>(bden,-*num_exponent),res_bnum).setflag(status_flags::evaluated);
                                                if (res_bden.is_integer())
-                                                       return (new mul(power(bnum,*num_exponent),res_bden.inverse()))->setflag(status_flags::dynallocated | status_flags::evaluated);
+                                                       return dynallocate<mul>(dynallocate<power>(bnum,*num_exponent),res_bden.inverse()).setflag(status_flags::evaluated);
                                        }
                                        return this->hold();
                                } else {
@@ -475,38 +469,38 @@ ex power::eval(int level) const
                                        // because otherwise we'll end up with something like
                                        //    (7/8)^(4/3)  ->  7/8*(1/2*7^(1/3))
                                        // instead of 7/16*7^(1/3).
-                                       ex prod = power(*num_basis,r.div(m));
-                                       return prod*power(*num_basis,q);
+                                       return pow(basis, r.div(m)) * pow(basis, q);
                                }
                        }
                }
        
                // ^(^(x,c1),c2) -> ^(x,c1*c2)
-               // (c1, c2 numeric(), c2 integer or -1 < c1 <= 1,
+               // (c1, c2 numeric(), c2 integer or -1 < c1 <= 1 or (c1=-1 and c2>0),
                // case c1==1 should not happen, see below!)
-               if (is_exactly_a<power>(ebasis)) {
-                       const power & sub_power = ex_to<power>(ebasis);
+               if (is_exactly_a<power>(basis)) {
+                       const power & sub_power = ex_to<power>(basis);
                        const ex & sub_basis = sub_power.basis;
                        const ex & sub_exponent = sub_power.exponent;
                        if (is_exactly_a<numeric>(sub_exponent)) {
                                const numeric & num_sub_exponent = ex_to<numeric>(sub_exponent);
                                GINAC_ASSERT(num_sub_exponent!=numeric(1));
-                               if (num_exponent->is_integer() || (abs(num_sub_exponent) - (*_num1_p)).is_negative()) {
-                                       return power(sub_basis,num_sub_exponent.mul(*num_exponent));
+                               if (num_exponent->is_integer() || (abs(num_sub_exponent) - (*_num1_p)).is_negative() ||
+                                   (num_sub_exponent == *_num_1_p && num_exponent->is_positive())) {
+                                       return dynallocate<power>(sub_basis, num_sub_exponent.mul(*num_exponent));
                                }
                        }
                }
        
                // ^(*(x,y,z),c1) -> *(x^c1,y^c1,z^c1) (c1 integer)
-               if (num_exponent->is_integer() && is_exactly_a<mul>(ebasis)) {
-                       return expand_mul(ex_to<mul>(ebasis), *num_exponent, 0);
+               if (num_exponent->is_integer() && is_exactly_a<mul>(basis)) {
+                       return expand_mul(ex_to<mul>(basis), *num_exponent, false);
                }
 
                // (2*x + 6*y)^(-4) -> 1/16*(x + 3*y)^(-4)
-               if (num_exponent->is_integer() && is_exactly_a<add>(ebasis)) {
-                       numeric icont = ebasis.integer_content();
+               if (num_exponent->is_integer() && is_exactly_a<add>(basis)) {
+                       numeric icont = basis.integer_content();
                        const numeric lead_coeff = 
-                               ex_to<numeric>(ex_to<add>(ebasis).seq.begin()->coeff).div(icont);
+                               ex_to<numeric>(ex_to<add>(basis).seq.begin()->coeff).div(icont);
 
                        const bool canonicalizable = lead_coeff.is_integer();
                        const bool unit_normal = lead_coeff.is_pos_integer();
@@ -514,46 +508,43 @@ ex power::eval(int level) const
                                icont = icont.mul(*_num_1_p);
                        
                        if (canonicalizable && (icont != *_num1_p)) {
-                               const add& addref = ex_to<add>(ebasis);
-                               add* addp = new add(addref);
-                               addp->setflag(status_flags::dynallocated);
-                               addp->clearflag(status_flags::hash_calculated);
-                               addp->overall_coeff = ex_to<numeric>(addp->overall_coeff).div_dyn(icont);
-                               for (epvector::iterator i = addp->seq.begin(); i != addp->seq.end(); ++i)
-                                       i->coeff = ex_to<numeric>(i->coeff).div_dyn(icont);
+                               const add& addref = ex_to<add>(basis);
+                               add & addp = dynallocate<add>(addref);
+                               addp.clearflag(status_flags::hash_calculated);
+                               addp.overall_coeff = ex_to<numeric>(addp.overall_coeff).div_dyn(icont);
+                               for (auto & i : addp.seq)
+                                       i.coeff = ex_to<numeric>(i.coeff).div_dyn(icont);
 
                                const numeric c = icont.power(*num_exponent);
                                if (likely(c != *_num1_p))
-                                       return (new mul(power(*addp, *num_exponent), c))->setflag(status_flags::dynallocated);
+                                       return dynallocate<mul>(dynallocate<power>(addp, *num_exponent), c);
                                else
-                                       return power(*addp, *num_exponent);
+                                       return dynallocate<power>(addp, *num_exponent);
                        }
                }
 
                // ^(*(...,x;c1),c2) -> *(^(*(...,x;1),c2),c1^c2)  (c1, c2 numeric(), c1>0)
                // ^(*(...,x;c1),c2) -> *(^(*(...,x;-1),c2),(-c1)^c2)  (c1, c2 numeric(), c1<0)
-               if (is_exactly_a<mul>(ebasis)) {
+               if (is_exactly_a<mul>(basis)) {
                        GINAC_ASSERT(!num_exponent->is_integer()); // should have been handled above
-                       const mul & mulref = ex_to<mul>(ebasis);
+                       const mul & mulref = ex_to<mul>(basis);
                        if (!mulref.overall_coeff.is_equal(_ex1)) {
                                const numeric & num_coeff = ex_to<numeric>(mulref.overall_coeff);
                                if (num_coeff.is_real()) {
                                        if (num_coeff.is_positive()) {
-                                               mul *mulp = new mul(mulref);
-                                               mulp->overall_coeff = _ex1;
-                                               mulp->clearflag(status_flags::evaluated);
-                                               mulp->clearflag(status_flags::hash_calculated);
-                                               return (new mul(power(*mulp,exponent),
-                                                               power(num_coeff,*num_exponent)))->setflag(status_flags::dynallocated);
+                                               mul & mulp = dynallocate<mul>(mulref);
+                                               mulp.overall_coeff = _ex1;
+                                               mulp.clearflag(status_flags::evaluated | status_flags::hash_calculated);
+                                               return dynallocate<mul>(dynallocate<power>(mulp, exponent),
+                                                                       dynallocate<power>(num_coeff, *num_exponent));
                                        } else {
                                                GINAC_ASSERT(num_coeff.compare(*_num0_p)<0);
                                                if (!num_coeff.is_equal(*_num_1_p)) {
-                                                       mul *mulp = new mul(mulref);
-                                                       mulp->overall_coeff = _ex_1;
-                                                       mulp->clearflag(status_flags::evaluated);
-                                                       mulp->clearflag(status_flags::hash_calculated);
-                                                       return (new mul(power(*mulp,exponent),
-                                                                       power(abs(num_coeff),*num_exponent)))->setflag(status_flags::dynallocated);
+                                                       mul & mulp = dynallocate<mul>(mulref);
+                                                       mulp.overall_coeff = _ex_1;
+                                                       mulp.clearflag(status_flags::evaluated | status_flags::hash_calculated);
+                                                       return dynallocate<mul>(dynallocate<power>(mulp, exponent),
+                                                                               dynallocate<power>(abs(num_coeff), *num_exponent));
                                                }
                                        }
                                }
@@ -562,39 +553,26 @@ ex power::eval(int level) const
 
                // ^(nc,c1) -> ncmul(nc,nc,...) (c1 positive integer, unless nc is a matrix)
                if (num_exponent->is_pos_integer() &&
-                   ebasis.return_type() != return_types::commutative &&
-                   !is_a<matrix>(ebasis)) {
-                       return ncmul(exvector(num_exponent->to_int(), ebasis), true);
+                   basis.return_type() != return_types::commutative &&
+                   !is_a<matrix>(basis)) {
+                       return ncmul(exvector(num_exponent->to_int(), basis));
                }
        }
-       
-       if (are_ex_trivially_equal(ebasis,basis) &&
-           are_ex_trivially_equal(eexponent,exponent)) {
-               return this->hold();
-       }
-       return (new power(ebasis, eexponent))->setflag(status_flags::dynallocated |
-                                                      status_flags::evaluated);
+
+       return this->hold();
 }
 
-ex power::evalf(int level) const
+ex power::evalf() const
 {
-       ex ebasis;
+       ex ebasis = basis.evalf();
        ex eexponent;
        
-       if (level==1) {
-               ebasis = basis;
+       if (!is_exactly_a<numeric>(exponent))
+               eexponent = exponent.evalf();
+       else
                eexponent = exponent;
-       } else if (level == -max_recursion_level) {
-               throw(std::runtime_error("max recursion level reached"));
-       } else {
-               ebasis = basis.evalf(level-1);
-               if (!is_exactly_a<numeric>(exponent))
-                       eexponent = exponent.evalf(level-1);
-               else
-                       eexponent = exponent;
-       }
 
-       return power(ebasis,eexponent);
+       return dynallocate<power>(ebasis, eexponent);
 }
 
 ex power::evalm() const
@@ -603,10 +581,10 @@ ex power::evalm() const
        const ex eexponent = exponent.evalm();
        if (is_a<matrix>(ebasis)) {
                if (is_exactly_a<numeric>(eexponent)) {
-                       return (new matrix(ex_to<matrix>(ebasis).pow(eexponent)))->setflag(status_flags::dynallocated);
+                       return dynallocate<matrix>(ex_to<matrix>(ebasis).pow(eexponent));
                }
        }
-       return (new power(ebasis, eexponent))->setflag(status_flags::dynallocated);
+       return dynallocate<power>(ebasis, eexponent);
 }
 
 bool power::has(const ex & other, unsigned options) const
@@ -615,20 +593,18 @@ bool power::has(const ex & other, unsigned options) const
                return basic::has(other, options);
        if (!is_a<power>(other))
                return basic::has(other, options);
-       if (!exponent.info(info_flags::integer)
-                       || !other.op(1).info(info_flags::integer))
+       if (!exponent.info(info_flags::integer) ||
+           !other.op(1).info(info_flags::integer))
                return basic::has(other, options);
-       if (exponent.info(info_flags::posint)
-                       && other.op(1).info(info_flags::posint)
-                       && ex_to<numeric>(exponent).to_int()
-                                       > ex_to<numeric>(other.op(1)).to_int()
-                       && basis.match(other.op(0)))
+       if (exponent.info(info_flags::posint) &&
+           other.op(1).info(info_flags::posint) &&
+           ex_to<numeric>(exponent) > ex_to<numeric>(other.op(1)) &&
+           basis.match(other.op(0)))
                return true;
-       if (exponent.info(info_flags::negint)
-                       && other.op(1).info(info_flags::negint)
-                       && ex_to<numeric>(exponent).to_int()
-                                       < ex_to<numeric>(other.op(1)).to_int()
-                       && basis.match(other.op(0)))
+       if (exponent.info(info_flags::negint) &&
+           other.op(1).info(info_flags::negint) &&
+           ex_to<numeric>(exponent) < ex_to<numeric>(other.op(1)) &&
+           basis.match(other.op(0)))
                return true;
        return basic::has(other, options);
 }
@@ -648,13 +624,13 @@ ex power::subs(const exmap & m, unsigned options) const
        if (!(options & subs_options::algebraic))
                return subs_one_level(m, options);
 
-       for (exmap::const_iterator it = m.begin(); it != m.end(); ++it) {
+       for (auto & it : m) {
                int nummatches = std::numeric_limits<int>::max();
                exmap repls;
-               if (tryfactsubs(*this, it->first, nummatches, repls)) {
-                       ex anum = it->second.subs(repls, subs_options::no_pattern);
-                       ex aden = it->first.subs(repls, subs_options::no_pattern);
-                       ex result = (*this)*power(anum/aden, nummatches);
+               if (tryfactsubs(*this, it.first, nummatches, repls)) {
+                       ex anum = it.second.subs(repls, subs_options::no_pattern);
+                       ex aden = it.first.subs(repls, subs_options::no_pattern);
+                       ex result = (*this) * pow(anum/aden, nummatches);
                        return (ex_to<basic>(result)).subs_one_level(m, options);
                }
        }
@@ -669,66 +645,95 @@ ex power::eval_ncmul(const exvector & v) const
 
 ex power::conjugate() const
 {
-       ex newbasis = basis.conjugate();
-       ex newexponent = exponent.conjugate();
-       if (are_ex_trivially_equal(basis, newbasis) && are_ex_trivially_equal(exponent, newexponent)) {
-               return *this;
+       // conjugate(pow(x,y))==pow(conjugate(x),conjugate(y)) unless on the
+       // branch cut which runs along the negative real axis.
+       if (basis.info(info_flags::positive)) {
+               ex newexponent = exponent.conjugate();
+               if (are_ex_trivially_equal(exponent, newexponent)) {
+                       return *this;
+               }
+               return dynallocate<power>(basis, newexponent);
        }
-       return (new power(newbasis, newexponent))->setflag(status_flags::dynallocated);
+       if (exponent.info(info_flags::integer)) {
+               ex newbasis = basis.conjugate();
+               if (are_ex_trivially_equal(basis, newbasis)) {
+                       return *this;
+               }
+               return dynallocate<power>(newbasis, exponent);
+       }
+       return conjugate_function(*this).hold();
 }
 
 ex power::real_part() const
 {
+       // basis == a+I*b, exponent == c+I*d
+       const ex a = basis.real_part();
+       const ex c = exponent.real_part();
+       if (basis.is_equal(a) && exponent.is_equal(c)) {
+               // Re(a^c)
+               return *this;
+       }
+
+       const ex b = basis.imag_part();
        if (exponent.info(info_flags::integer)) {
-               ex basis_real = basis.real_part();
-               if (basis_real == basis)
-                       return *this;
-               realsymbol a("a"),b("b");
-               ex result;
-               if (exponent.info(info_flags::posint))
-                       result = power(a+I*b,exponent);
-               else
-                       result = power(a/(a*a+b*b)-I*b/(a*a+b*b),-exponent);
-               result = result.expand();
-               result = result.real_part();
-               result = result.subs(lst( a==basis_real, b==basis.imag_part() ));
+               // Re((a+I*b)^c)  w/  c âˆˆ â„¤
+               long N = ex_to<numeric>(c).to_long();
+               // Use real terms in Binomial expansion to construct
+               // Re(expand(pow(a+I*b, N))).
+               long NN = N > 0 ? N : -N;
+               ex numer = N > 0 ? _ex1 : pow(pow(a,2) + pow(b,2), NN);
+               ex result = 0;
+               for (long n = 0; n <= NN; n += 2) {
+                       ex term = binomial(NN, n) * pow(a, NN-n) * pow(b, n) / numer;
+                       if (n % 4 == 0) {
+                               result += term;  // sign: I^n w/ n == 4*m
+                       } else {
+                               result -= term;  // sign: I^n w/ n == 4*m+2
+                       }
+               }
                return result;
        }
-       
-       ex a = basis.real_part();
-       ex b = basis.imag_part();
-       ex c = exponent.real_part();
-       ex d = exponent.imag_part();
-       return power(abs(basis),c)*exp(-d*atan2(b,a))*cos(c*atan2(b,a)+d*log(abs(basis)));
+
+       // Re((a+I*b)^(c+I*d))
+       const ex d = exponent.imag_part();
+       return pow(abs(basis),c) * exp(-d*atan2(b,a)) * cos(c*atan2(b,a)+d*log(abs(basis)));
 }
 
 ex power::imag_part() const
 {
+       // basis == a+I*b, exponent == c+I*d
+       const ex a = basis.real_part();
+       const ex c = exponent.real_part();
+       if (basis.is_equal(a) && exponent.is_equal(c)) {
+               // Im(a^c)
+               return 0;
+       }
+
+       const ex b = basis.imag_part();
        if (exponent.info(info_flags::integer)) {
-               ex basis_real = basis.real_part();
-               if (basis_real == basis)
-                       return 0;
-               realsymbol a("a"),b("b");
-               ex result;
-               if (exponent.info(info_flags::posint))
-                       result = power(a+I*b,exponent);
-               else
-                       result = power(a/(a*a+b*b)-I*b/(a*a+b*b),-exponent);
-               result = result.expand();
-               result = result.imag_part();
-               result = result.subs(lst( a==basis_real, b==basis.imag_part() ));
+               // Im((a+I*b)^c)  w/  c âˆˆ â„¤
+               long N = ex_to<numeric>(c).to_long();
+               // Use imaginary terms in Binomial expansion to construct
+               // Im(expand(pow(a+I*b, N))).
+               long p = N > 0 ? 1 : 3;  // modulus for positive sign
+               long NN = N > 0 ? N : -N;
+               ex numer = N > 0 ? _ex1 : pow(pow(a,2) + pow(b,2), NN);
+               ex result = 0;
+               for (long n = 1; n <= NN; n += 2) {
+                       ex term = binomial(NN, n) * pow(a, NN-n) * pow(b, n) / numer;
+                       if (n % 4 == p) {
+                               result += term;  // sign: I^n w/ n == 4*m+p
+                       } else {
+                               result -= term;  // sign: I^n w/ n == 4*m+2+p
+                       }
+               }
                return result;
        }
-       
-       ex a=basis.real_part();
-       ex b=basis.imag_part();
-       ex c=exponent.real_part();
-       ex d=exponent.imag_part();
-       return
-               power(abs(basis),c)*exp(-d*atan2(b,a))*sin(c*atan2(b,a)+d*log(abs(basis)));
-}
 
-// protected
+       // Im((a+I*b)^(c+I*d))
+       const ex d = exponent.imag_part();
+       return pow(abs(basis),c) * exp(-d*atan2(b,a)) * sin(c*atan2(b,a)+d*log(abs(basis)));
+}
 
 // protected
 
@@ -738,16 +743,11 @@ ex power::derivative(const symbol & s) const
 {
        if (is_a<numeric>(exponent)) {
                // D(b^r) = r * b^(r-1) * D(b) (faster than the formula below)
-               epvector newseq;
-               newseq.reserve(2);
-               newseq.push_back(expair(basis, exponent - _ex1));
-               newseq.push_back(expair(basis.diff(s), _ex1));
-               return mul(newseq, exponent);
+               const epvector newseq = {expair(basis, exponent - _ex1), expair(basis.diff(s), _ex1)};
+               return dynallocate<mul>(std::move(newseq), exponent);
        } else {
                // D(b^e) = b^e * (D(e)*ln(b) + e*D(b)/b)
-               return mul(*this,
-                          add(mul(exponent.diff(s), log(basis)),
-                          mul(mul(exponent, basis.diff(s)), power(basis, _ex_1))));
+               return *this * (exponent.diff(s)*log(basis) + exponent*basis.diff(s)*pow(basis, _ex_1));
        }
 }
 
@@ -781,6 +781,48 @@ ex power::expand(unsigned options) const
                return *this;
        }
 
+       // (x*p)^c -> x^c * p^c, if p>0
+       // makes sense before expanding the basis
+       if (is_exactly_a<mul>(basis) && !basis.info(info_flags::indefinite)) {
+               const mul &m = ex_to<mul>(basis);
+               exvector prodseq;
+               epvector powseq;
+               prodseq.reserve(m.seq.size() + 1);
+               powseq.reserve(m.seq.size() + 1);
+               bool possign = true;
+
+               // search for positive/negative factors
+               for (auto & cit : m.seq) {
+                       ex e=m.recombine_pair_to_ex(cit);
+                       if (e.info(info_flags::positive))
+                               prodseq.push_back(pow(e, exponent).expand(options));
+                       else if (e.info(info_flags::negative)) {
+                               prodseq.push_back(pow(-e, exponent).expand(options));
+                               possign = !possign;
+                       } else
+                               powseq.push_back(cit);
+               }
+
+               // take care on the numeric coefficient
+               ex coeff=(possign? _ex1 : _ex_1);
+               if (m.overall_coeff.info(info_flags::positive) && m.overall_coeff != _ex1)
+                       prodseq.push_back(pow(m.overall_coeff, exponent));
+               else if (m.overall_coeff.info(info_flags::negative) && m.overall_coeff != _ex_1)
+                       prodseq.push_back(pow(-m.overall_coeff, exponent));
+               else
+                       coeff *= m.overall_coeff;
+
+               // If positive/negative factors are found, then extract them.
+               // In either case we set a flag to avoid the second run on a part
+               // which does not have positive/negative terms.
+               if (prodseq.size() > 0) {
+                       ex newbasis = dynallocate<mul>(std::move(powseq), coeff);
+                       ex_to<basic>(newbasis).setflag(status_flags::purely_indefinite);
+                       return dynallocate<mul>(std::move(prodseq)) * pow(newbasis, exponent);
+               } else
+                       ex_to<basic>(basis).setflag(status_flags::purely_indefinite);
+       }
+
        const ex expanded_basis = basis.expand(options);
        const ex expanded_exponent = exponent.expand(options);
        
@@ -789,26 +831,23 @@ ex power::expand(unsigned options) const
                const add &a = ex_to<add>(expanded_exponent);
                exvector distrseq;
                distrseq.reserve(a.seq.size() + 1);
-               epvector::const_iterator last = a.seq.end();
-               epvector::const_iterator cit = a.seq.begin();
-               while (cit!=last) {
-                       distrseq.push_back(power(expanded_basis, a.recombine_pair_to_ex(*cit)));
-                       ++cit;
+               for (auto & cit : a.seq) {
+                       distrseq.push_back(pow(expanded_basis, a.recombine_pair_to_ex(cit)));
                }
                
                // Make sure that e.g. (x+y)^(2+a) expands the (x+y)^2 factor
                if (ex_to<numeric>(a.overall_coeff).is_integer()) {
                        const numeric &num_exponent = ex_to<numeric>(a.overall_coeff);
-                       int int_exponent = num_exponent.to_int();
+                       long int_exponent = num_exponent.to_int();
                        if (int_exponent > 0 && is_exactly_a<add>(expanded_basis))
                                distrseq.push_back(expand_add(ex_to<add>(expanded_basis), int_exponent, options));
                        else
-                               distrseq.push_back(power(expanded_basis, a.overall_coeff));
+                               distrseq.push_back(pow(expanded_basis, a.overall_coeff));
                } else
-                       distrseq.push_back(power(expanded_basis, a.overall_coeff));
+                       distrseq.push_back(pow(expanded_basis, a.overall_coeff));
                
                // Make sure that e.g. (x+y)^(1+a) -> x*(x+y)^a + y*(x+y)^a
-               ex r = (new mul(distrseq))->setflag(status_flags::dynallocated);
+               ex r = dynallocate<mul>(distrseq);
                return r.expand(options);
        }
        
@@ -817,13 +856,13 @@ ex power::expand(unsigned options) const
                if (are_ex_trivially_equal(basis,expanded_basis) && are_ex_trivially_equal(exponent,expanded_exponent)) {
                        return this->hold();
                } else {
-                       return (new power(expanded_basis,expanded_exponent))->setflag(status_flags::dynallocated | (options == 0 ? status_flags::expanded : 0));
+                       return dynallocate<power>(expanded_basis, expanded_exponent).setflag(options == 0 ? status_flags::expanded : 0);
                }
        }
        
        // integer numeric exponent
        const numeric & num_exponent = ex_to<numeric>(expanded_exponent);
-       int int_exponent = num_exponent.to_int();
+       long int_exponent = num_exponent.to_long();
        
        // (x+y)^n, n>0
        if (int_exponent > 0 && is_exactly_a<add>(expanded_basis))
@@ -837,7 +876,7 @@ ex power::expand(unsigned options) const
        if (are_ex_trivially_equal(basis,expanded_basis) && are_ex_trivially_equal(exponent,expanded_exponent))
                return this->hold();
        else
-               return (new power(expanded_basis,expanded_exponent))->setflag(status_flags::dynallocated | (options == 0 ? status_flags::expanded : 0));
+               return dynallocate<power>(expanded_basis, expanded_exponent).setflag(options == 0 ? status_flags::expanded : 0);
 }
 
 //////////
@@ -852,109 +891,163 @@ ex power::expand(unsigned options) const
 
 /** expand a^n where a is an add and n is a positive integer.
  *  @see power::expand */
-ex power::expand_add(const add & a, int n, unsigned options) const
+ex power::expand_add(const add & a, long n, unsigned options)
 {
+       // The special case power(+(x,...y;x),2) can be optimized better.
        if (n==2)
                return expand_add_2(a, options);
 
-       const size_t m = a.nops();
-       exvector result;
+       // method:
+       //
+       // Consider base as the sum of all symbolic terms and the overall numeric
+       // coefficient and apply the binomial theorem:
+       // S = power(+(x,...,z;c),n)
+       //   = power(+(+(x,...,z;0);c),n)
+       //   = sum(binomial(n,k)*power(+(x,...,z;0),k)*c^(n-k), k=1..n) + c^n
+       // Then, apply the multinomial theorem to expand all power(+(x,...,z;0),k):
+       // The multinomial theorem is computed by an outer loop over all
+       // partitions of the exponent and an inner loop over all compositions of
+       // that partition. This method makes the expansion a combinatorial
+       // problem and allows us to directly construct the expanded sum and also
+       // to re-use the multinomial coefficients (since they depend only on the
+       // partition, not on the composition).
+       // 
+       // multinomial power(+(x,y,z;0),3) example:
+       // partition : compositions                : multinomial coefficient
+       // [0,0,3]   : [3,0,0],[0,3,0],[0,0,3]     : 3!/(3!*0!*0!) = 1
+       // [0,1,2]   : [2,1,0],[1,2,0],[2,0,1],... : 3!/(2!*1!*0!) = 3
+       // [1,1,1]   : [1,1,1]                     : 3!/(1!*1!*1!) = 6
+       //  =>  (x + y + z)^3 =
+       //        x^3 + y^3 + z^3
+       //      + 3*x^2*y + 3*x*y^2 + 3*y^2*z + 3*y*z^2 + 3*x*z^2 + 3*x^2*z
+       //      + 6*x*y*z
+       //
+       // multinomial power(+(x,y,z;0),4) example:
+       // partition : compositions                : multinomial coefficient
+       // [0,0,4]   : [4,0,0],[0,4,0],[0,0,4]     : 4!/(4!*0!*0!) = 1
+       // [0,1,3]   : [3,1,0],[1,3,0],[3,0,1],... : 4!/(3!*1!*0!) = 4
+       // [0,2,2]   : [2,2,0],[2,0,2],[0,2,2]     : 4!/(2!*2!*0!) = 6
+       // [1,1,2]   : [2,1,1],[1,2,1],[1,1,2]     : 4!/(2!*1!*1!) = 12
+       // (no [1,1,1,1] partition since it has too many parts)
+       //  =>  (x + y + z)^4 =
+       //        x^4 + y^4 + z^4
+       //      + 4*x^3*y + 4*x*y^3 + 4*y^3*z + 4*y*z^3 + 4*x*z^3 + 4*x^3*z
+       //      + 6*x^2*y^2 + 6*y^2*z^2 + 6*x^2*z^2
+       //      + 12*x^2*y*z + 12*x*y^2*z + 12*x*y*z^2
+       //
+       // Summary:
+       // r = 0
+       // for k from 0 to n:
+       //     f = c^(n-k)*binomial(n,k)
+       //     for p in all partitions of n with m parts (including zero parts):
+       //         h = f * multinomial coefficient of p
+       //         for c in all compositions of p:
+       //             t = 1
+       //             for e in all elements of c:
+       //                 t = t * a[e]^e
+       //             r = r + h*t
+       // return r
+
+       epvector result;
        // The number of terms will be the number of combinatorial compositions,
        // i.e. the number of unordered arrangements of m nonnegative integers
        // which sum up to n.  It is frequently written as C_n(m) and directly
-       // related with binomial coefficients:
-       result.reserve(binomial(numeric(n+m-1), numeric(m-1)).to_int());
-       intvector k(m-1);
-       intvector k_cum(m-1); // k_cum[l]:=sum(i=0,l,k[l]);
-       intvector upper_limit(m-1);
-
-       for (size_t l=0; l<m-1; ++l) {
-               k[l] = 0;
-               k_cum[l] = 0;
-               upper_limit[l] = n;
+       // related with binomial coefficients: binomial(n+m-1,m-1).
+       size_t result_size = binomial(numeric(n+a.nops()-1), numeric(a.nops()-1)).to_long();
+       if (!a.overall_coeff.is_zero()) {
+               // the result's overall_coeff is one of the terms
+               --result_size;
        }
-
-       while (true) {
-               exvector term;
-               term.reserve(m+1);
-               for (std::size_t l = 0; l < m - 1; ++l) {
-                       const ex & b = a.op(l);
-                       GINAC_ASSERT(!is_exactly_a<add>(b));
-                       GINAC_ASSERT(!is_exactly_a<power>(b) ||
-                                    !is_exactly_a<numeric>(ex_to<power>(b).exponent) ||
-                                    !ex_to<numeric>(ex_to<power>(b).exponent).is_pos_integer() ||
-                                    !is_exactly_a<add>(ex_to<power>(b).basis) ||
-                                    !is_exactly_a<mul>(ex_to<power>(b).basis) ||
-                                    !is_exactly_a<power>(ex_to<power>(b).basis));
-                       if (is_exactly_a<mul>(b))
-                               term.push_back(expand_mul(ex_to<mul>(b), numeric(k[l]), options, true));
-                       else
-                               term.push_back(power(b,k[l]));
-               }
-
-               const ex & b = a.op(m - 1);
-               GINAC_ASSERT(!is_exactly_a<add>(b));
-               GINAC_ASSERT(!is_exactly_a<power>(b) ||
-                            !is_exactly_a<numeric>(ex_to<power>(b).exponent) ||
-                            !ex_to<numeric>(ex_to<power>(b).exponent).is_pos_integer() ||
-                            !is_exactly_a<add>(ex_to<power>(b).basis) ||
-                            !is_exactly_a<mul>(ex_to<power>(b).basis) ||
-                            !is_exactly_a<power>(ex_to<power>(b).basis));
-               if (is_exactly_a<mul>(b))
-                       term.push_back(expand_mul(ex_to<mul>(b), numeric(n-k_cum[m-2]), options, true));
-               else
-                       term.push_back(power(b,n-k_cum[m-2]));
-
-               numeric f = binomial(numeric(n),numeric(k[0]));
-               for (std::size_t l = 1; l < m - 1; ++l)
-                       f *= binomial(numeric(n-k_cum[l-1]),numeric(k[l]));
-
-               term.push_back(f);
-
-               result.push_back(ex((new mul(term))->setflag(status_flags::dynallocated)).expand(options));
-
-               // increment k[]
-               bool done = false;
-               std::size_t l = m - 2;
-               while ((++k[l]) > upper_limit[l]) {
-                       k[l] = 0;
-                       if (l != 0)
-                               --l;
-                       else {
-                               done = true;
-                               break;
+       result.reserve(result_size);
+
+       // Iterate over all terms in binomial expansion of
+       // S = power(+(x,...,z;c),n)
+       //   = sum(binomial(n,k)*power(+(x,...,z;0),k)*c^(n-k), k=1..n) + c^n
+       for (int k = 1; k <= n; ++k) {
+               numeric binomial_coefficient;  // binomial(n,k)*c^(n-k)
+               if (a.overall_coeff.is_zero()) {
+                       // degenerate case with zero overall_coeff:
+                       // apply multinomial theorem directly to power(+(x,...z;0),n)
+                       binomial_coefficient = 1;
+                       if (k < n) {
+                               continue;
                        }
+               } else {
+                       binomial_coefficient = binomial(numeric(n), numeric(k)) * pow(ex_to<numeric>(a.overall_coeff), numeric(n-k));
                }
-               if (done)
-                       break;
-
-               // recalc k_cum[] and upper_limit[]
-               k_cum[l] = (l==0 ? k[0] : k_cum[l-1]+k[l]);
-
-               for (size_t i=l+1; i<m-1; ++i)
-                       k_cum[i] = k_cum[i-1]+k[i];
 
-               for (size_t i=l+1; i<m-1; ++i)
-                       upper_limit[i] = n-k_cum[i-1];
+               // Multinomial expansion of power(+(x,...,z;0),k)*c^(n-k):
+               // Iterate over all partitions of k with exactly as many parts as
+               // there are symbolic terms in the basis (including zero parts).
+               partition_generator partitions(k, a.seq.size());
+               do {
+                       const std::vector<int>& partition = partitions.current();
+                       // All monomials of this partition have the same number of terms and the same coefficient.
+                       const unsigned msize = std::count_if(partition.begin(), partition.end(), [](int i) { return i > 0; });
+                       const numeric coeff = multinomial_coefficient(partition) * binomial_coefficient;
+
+                       // Iterate over all compositions of the current partition.
+                       composition_generator compositions(partition);
+                       do {
+                               const std::vector<int>& exponent = compositions.current();
+                               epvector monomial;
+                               monomial.reserve(msize);
+                               numeric factor = coeff;
+                               for (unsigned i = 0; i < exponent.size(); ++i) {
+                                       const ex & r = a.seq[i].rest;
+                                       GINAC_ASSERT(!is_exactly_a<add>(r));
+                                       GINAC_ASSERT(!is_exactly_a<power>(r) ||
+                                                    !is_exactly_a<numeric>(ex_to<power>(r).exponent) ||
+                                                    !ex_to<numeric>(ex_to<power>(r).exponent).is_pos_integer() ||
+                                                    !is_exactly_a<add>(ex_to<power>(r).basis) ||
+                                                    !is_exactly_a<mul>(ex_to<power>(r).basis) ||
+                                                    !is_exactly_a<power>(ex_to<power>(r).basis));
+                                       GINAC_ASSERT(is_exactly_a<numeric>(a.seq[i].coeff));
+                                       const numeric & c = ex_to<numeric>(a.seq[i].coeff);
+                                       if (exponent[i] == 0) {
+                                               // optimize away
+                                       } else if (exponent[i] == 1) {
+                                               // optimized
+                                               monomial.push_back(expair(r, _ex1));
+                                               if (c != *_num1_p)
+                                                       factor = factor.mul(c);
+                                       } else { // general case exponent[i] > 1
+                                               monomial.push_back(expair(r, exponent[i]));
+                                               if (c != *_num1_p)
+                                                       factor = factor.mul(c.power(exponent[i]));
+                                       }
+                               }
+                               result.push_back(expair(mul(std::move(monomial)).expand(options), factor));
+                       } while (compositions.next());
+               } while (partitions.next());
        }
 
-       return (new add(result))->setflag(status_flags::dynallocated |
-                                         status_flags::expanded);
+       GINAC_ASSERT(result.size() == result_size);
+       if (a.overall_coeff.is_zero()) {
+               return dynallocate<add>(std::move(result)).setflag(status_flags::expanded);
+       } else {
+               return dynallocate<add>(std::move(result), ex_to<numeric>(a.overall_coeff).power(n)).setflag(status_flags::expanded);
+       }
 }
 
 
 /** Special case of power::expand_add. Expands a^2 where a is an add.
  *  @see power::expand_add */
-ex power::expand_add_2(const add & a, unsigned options) const
+ex power::expand_add_2(const add & a, unsigned options)
 {
-       epvector sum;
-       size_t a_nops = a.nops();
-       sum.reserve((a_nops*(a_nops+1))/2);
-       epvector::const_iterator last = a.seq.end();
+       epvector result;
+       size_t result_size = (a.nops() * (a.nops()+1)) / 2;
+       if (!a.overall_coeff.is_zero()) {
+               // the result's overall_coeff is one of the terms
+               --result_size;
+       }
+       result.reserve(result_size);
+
+       auto last = a.seq.end();
 
        // power(+(x,...,z;c),2)=power(+(x,...,z;0),2)+2*c*+(x,...,z;0)+c*c
        // first part: ignore overall_coeff and expand other terms
-       for (epvector::const_iterator cit0=a.seq.begin(); cit0!=last; ++cit0) {
+       for (auto cit0=a.seq.begin(); cit0!=last; ++cit0) {
                const ex & r = cit0->rest;
                const ex & c = cit0->coeff;
                
@@ -968,50 +1061,48 @@ ex power::expand_add_2(const add & a, unsigned options) const
                
                if (c.is_equal(_ex1)) {
                        if (is_exactly_a<mul>(r)) {
-                               sum.push_back(expair(expand_mul(ex_to<mul>(r), *_num2_p, options, true),
-                                                    _ex1));
+                               result.push_back(expair(expand_mul(ex_to<mul>(r), *_num2_p, options, true),
+                                                       _ex1));
                        } else {
-                               sum.push_back(expair((new power(r,_ex2))->setflag(status_flags::dynallocated),
-                                                    _ex1));
+                               result.push_back(expair(dynallocate<power>(r, _ex2),
+                                                       _ex1));
                        }
                } else {
                        if (is_exactly_a<mul>(r)) {
-                               sum.push_back(a.combine_ex_with_coeff_to_pair(expand_mul(ex_to<mul>(r), *_num2_p, options, true),
-                                                    ex_to<numeric>(c).power_dyn(*_num2_p)));
+                               result.push_back(expair(expand_mul(ex_to<mul>(r), *_num2_p, options, true),
+                                                       ex_to<numeric>(c).power_dyn(*_num2_p)));
                        } else {
-                               sum.push_back(a.combine_ex_with_coeff_to_pair((new power(r,_ex2))->setflag(status_flags::dynallocated),
-                                                    ex_to<numeric>(c).power_dyn(*_num2_p)));
+                               result.push_back(expair(dynallocate<power>(r, _ex2),
+                                                       ex_to<numeric>(c).power_dyn(*_num2_p)));
                        }
                }
 
-               for (epvector::const_iterator cit1=cit0+1; cit1!=last; ++cit1) {
+               for (auto cit1=cit0+1; cit1!=last; ++cit1) {
                        const ex & r1 = cit1->rest;
                        const ex & c1 = cit1->coeff;
-                       sum.push_back(a.combine_ex_with_coeff_to_pair((new mul(r,r1))->setflag(status_flags::dynallocated),
-                                                                     _num2_p->mul(ex_to<numeric>(c)).mul_dyn(ex_to<numeric>(c1))));
+                       result.push_back(expair(mul(r,r1).expand(options),
+                                               _num2_p->mul(ex_to<numeric>(c)).mul_dyn(ex_to<numeric>(c1))));
                }
        }
        
-       GINAC_ASSERT(sum.size()==(a.seq.size()*(a.seq.size()+1))/2);
-       
-       // second part: add terms coming from overall_factor (if != 0)
+       // second part: add terms coming from overall_coeff (if != 0)
        if (!a.overall_coeff.is_zero()) {
-               epvector::const_iterator i = a.seq.begin(), end = a.seq.end();
-               while (i != end) {
-                       sum.push_back(a.combine_pair_with_coeff_to_pair(*i, ex_to<numeric>(a.overall_coeff).mul_dyn(*_num2_p)));
-                       ++i;
-               }
-               sum.push_back(expair(ex_to<numeric>(a.overall_coeff).power_dyn(*_num2_p),_ex1));
+               for (auto & i : a.seq)
+                       result.push_back(a.combine_pair_with_coeff_to_pair(i, ex_to<numeric>(a.overall_coeff).mul_dyn(*_num2_p)));
+       }
+
+       GINAC_ASSERT(result.size() == result_size);
+
+       if (a.overall_coeff.is_zero()) {
+               return dynallocate<add>(std::move(result)).setflag(status_flags::expanded);
+       } else {
+               return dynallocate<add>(std::move(result), ex_to<numeric>(a.overall_coeff).power(2)).setflag(status_flags::expanded);
        }
-       
-       GINAC_ASSERT(sum.size()==(a_nops*(a_nops+1))/2);
-       
-       return (new add(sum))->setflag(status_flags::dynallocated | status_flags::expanded);
 }
 
 /** Expand factors of m in m^n where m is a mul and n is an integer.
  *  @see power::expand */
-ex power::expand_mul(const mul & m, const numeric & n, unsigned options, bool from_expand) const
+ex power::expand_mul(const mul & m, const numeric & n, unsigned options, bool from_expand)
 {
        GINAC_ASSERT(n.is_integer());
 
@@ -1020,12 +1111,12 @@ ex power::expand_mul(const mul & m, const numeric & n, unsigned options, bool fr
        }
 
        // do not bother to rename indices if there are no any.
-       if ((!(options & expand_options::expand_rename_idx)) 
-                       && m.info(info_flags::has_indices))
+       if (!(options & expand_options::expand_rename_idx) &&
+           m.info(info_flags::has_indices))
                options |= expand_options::expand_rename_idx;
        // Leave it to multiplication since dummy indices have to be renamed
        if ((options & expand_options::expand_rename_idx) &&
-               (get_all_dummy_indices(m).size() > 0) && n.is_positive()) {
+           (get_all_dummy_indices(m).size() > 0) && n.is_positive()) {
                ex result = m;
                exvector va = get_all_dummy_indices(m);
                sort(va.begin(), va.end(), ex_is_less());
@@ -1039,20 +1130,17 @@ ex power::expand_mul(const mul & m, const numeric & n, unsigned options, bool fr
        distrseq.reserve(m.seq.size());
        bool need_reexpand = false;
 
-       epvector::const_iterator last = m.seq.end();
-       epvector::const_iterator cit = m.seq.begin();
-       while (cit!=last) {
-               expair p = m.combine_pair_with_coeff_to_pair(*cit, n);
-               if (from_expand && is_exactly_a<add>(cit->rest) && ex_to<numeric>(p.coeff).is_pos_integer()) {
+       for (auto & cit : m.seq) {
+               expair p = m.combine_pair_with_coeff_to_pair(cit, n);
+               if (from_expand && is_exactly_a<add>(cit.rest) && ex_to<numeric>(p.coeff).is_pos_integer()) {
                        // this happens when e.g. (a+b)^(1/2) gets squared and
                        // the resulting product needs to be reexpanded
                        need_reexpand = true;
                }
                distrseq.push_back(p);
-               ++cit;
        }
 
-       const mul & result = static_cast<const mul &>((new mul(distrseq, ex_to<numeric>(m.overall_coeff).power_dyn(n)))->setflag(status_flags::dynallocated));
+       const mul & result = dynallocate<mul>(std::move(distrseq), ex_to<numeric>(m.overall_coeff).power_dyn(n));
        if (need_reexpand)
                return ex(result).expand(options);
        if (from_expand)