]> www.ginac.de Git - ginac.git/blobdiff - ginac/power.cpp
Move combinatorial helpers from power.cpp to utils.h.
[ginac.git] / ginac / power.cpp
index 2aedc9bfbd28b7af727e7275b75edc30ae28a31b..3c718027bdaa530782d063620fe75b20b440f681 100644 (file)
@@ -3,7 +3,7 @@
  *  Implementation of GiNaC's symbolic exponentiation (basis^exponent). */
 
 /*
- *  GiNaC Copyright (C) 1999-2015 Johannes Gutenberg University Mainz, Germany
+ *  GiNaC Copyright (C) 1999-2017 Johannes Gutenberg University Mainz, Germany
  *
  *  This program is free software; you can redistribute it and/or modify
  *  it under the terms of the GNU General Public License as published by
@@ -229,21 +229,18 @@ bool power::info(unsigned inf) const
                case info_flags::cinteger_polynomial:
                case info_flags::rational_polynomial:
                case info_flags::crational_polynomial:
-                       return exponent.info(info_flags::nonnegint) &&
-                              basis.info(inf);
+                       return basis.info(inf) && exponent.info(info_flags::nonnegint);
                case info_flags::rational_function:
-                       return exponent.info(info_flags::integer) &&
-                              basis.info(inf);
-               case info_flags::algebraic:
-                       return !exponent.info(info_flags::integer) ||
-                              basis.info(inf);
+                       return basis.info(inf) && exponent.info(info_flags::integer);
+               case info_flags::real:
+                       return basis.info(inf) && exponent.info(info_flags::integer);
                case info_flags::expanded:
                        return (flags & status_flags::expanded);
                case info_flags::positive:
                        return basis.info(info_flags::positive) && exponent.info(info_flags::real);
                case info_flags::nonnegative:
                        return (basis.info(info_flags::positive) && exponent.info(info_flags::real)) ||
-                              (basis.info(info_flags::real) && exponent.info(info_flags::integer) && exponent.info(info_flags::even));
+                              (basis.info(info_flags::real) && exponent.info(info_flags::even));
                case info_flags::has_indices: {
                        if (flags & status_flags::has_indices)
                                return true;
@@ -373,42 +370,36 @@ ex power::coeff(const ex & s, int n) const
  *  - ^(*(x,y,z),c) -> *(x^c,y^c,z^c)  (if c integer)
  *  - ^(*(x,c1),c2) -> ^(x,c2)*c1^c2  (c1>0)
  *  - ^(*(x,c1),c2) -> ^(-x,c2)*c1^c2  (c1<0)
- *
- *  @param level cut-off in recursive evaluation */
-ex power::eval(int level) const
+ */
+ex power::eval() const
 {
-       if ((level==1) && (flags & status_flags::evaluated))
+       if (flags & status_flags::evaluated)
                return *this;
-       else if (level == -max_recursion_level)
-               throw(std::runtime_error("max recursion level reached"));
-       
-       const ex & ebasis    = level==1 ? basis    : basis.eval(level-1);
-       const ex & eexponent = level==1 ? exponent : exponent.eval(level-1);
-       
+
        const numeric *num_basis = nullptr;
        const numeric *num_exponent = nullptr;
-       
-       if (is_exactly_a<numeric>(ebasis)) {
-               num_basis = &ex_to<numeric>(ebasis);
+
+       if (is_exactly_a<numeric>(basis)) {
+               num_basis = &ex_to<numeric>(basis);
        }
-       if (is_exactly_a<numeric>(eexponent)) {
-               num_exponent = &ex_to<numeric>(eexponent);
+       if (is_exactly_a<numeric>(exponent)) {
+               num_exponent = &ex_to<numeric>(exponent);
        }
        
        // ^(x,0) -> 1  (0^0 also handled here)
-       if (eexponent.is_zero()) {
-               if (ebasis.is_zero())
+       if (exponent.is_zero()) {
+               if (basis.is_zero())
                        throw (std::domain_error("power::eval(): pow(0,0) is undefined"));
                else
                        return _ex1;
        }
        
        // ^(x,1) -> x
-       if (eexponent.is_equal(_ex1))
-               return ebasis;
+       if (exponent.is_equal(_ex1))
+               return basis;
 
        // ^(0,c1) -> 0 or exception  (depending on real value of c1)
-       if ( ebasis.is_zero() && num_exponent ) {
+       if (basis.is_zero() && num_exponent) {
                if ((num_exponent->real()).is_zero())
                        throw (std::domain_error("power::eval(): pow(0,I) is undefined"));
                else if ((num_exponent->real()).is_negative())
@@ -418,16 +409,16 @@ ex power::eval(int level) const
        }
 
        // ^(1,x) -> 1
-       if (ebasis.is_equal(_ex1))
+       if (basis.is_equal(_ex1))
                return _ex1;
 
        // power of a function calculated by separate rules defined for this function
-       if (is_exactly_a<function>(ebasis))
-               return ex_to<function>(ebasis).power(eexponent);
+       if (is_exactly_a<function>(basis))
+               return ex_to<function>(basis).power(exponent);
 
        // Turn (x^c)^d into x^(c*d) in the case that x is positive and c is real.
-       if (is_exactly_a<power>(ebasis) && ebasis.op(0).info(info_flags::positive) && ebasis.op(1).info(info_flags::real))
-               return power(ebasis.op(0), ebasis.op(1) * eexponent);
+       if (is_exactly_a<power>(basis) && basis.op(0).info(info_flags::positive) && basis.op(1).info(info_flags::real))
+               return dynallocate<power>(basis.op(0), basis.op(1) * exponent);
 
        if ( num_exponent ) {
 
@@ -478,8 +469,7 @@ ex power::eval(int level) const
                                        // because otherwise we'll end up with something like
                                        //    (7/8)^(4/3)  ->  7/8*(1/2*7^(1/3))
                                        // instead of 7/16*7^(1/3).
-                                       ex prod = power(*num_basis,r.div(m));
-                                       return prod*power(*num_basis,q);
+                                       return pow(basis, r.div(m)) * pow(basis, q);
                                }
                        }
                }
@@ -487,8 +477,8 @@ ex power::eval(int level) const
                // ^(^(x,c1),c2) -> ^(x,c1*c2)
                // (c1, c2 numeric(), c2 integer or -1 < c1 <= 1 or (c1=-1 and c2>0),
                // case c1==1 should not happen, see below!)
-               if (is_exactly_a<power>(ebasis)) {
-                       const power & sub_power = ex_to<power>(ebasis);
+               if (is_exactly_a<power>(basis)) {
+                       const power & sub_power = ex_to<power>(basis);
                        const ex & sub_basis = sub_power.basis;
                        const ex & sub_exponent = sub_power.exponent;
                        if (is_exactly_a<numeric>(sub_exponent)) {
@@ -496,21 +486,21 @@ ex power::eval(int level) const
                                GINAC_ASSERT(num_sub_exponent!=numeric(1));
                                if (num_exponent->is_integer() || (abs(num_sub_exponent) - (*_num1_p)).is_negative() ||
                                    (num_sub_exponent == *_num_1_p && num_exponent->is_positive())) {
-                                       return power(sub_basis,num_sub_exponent.mul(*num_exponent));
+                                       return dynallocate<power>(sub_basis, num_sub_exponent.mul(*num_exponent));
                                }
                        }
                }
        
                // ^(*(x,y,z),c1) -> *(x^c1,y^c1,z^c1) (c1 integer)
-               if (num_exponent->is_integer() && is_exactly_a<mul>(ebasis)) {
-                       return expand_mul(ex_to<mul>(ebasis), *num_exponent, 0);
+               if (num_exponent->is_integer() && is_exactly_a<mul>(basis)) {
+                       return expand_mul(ex_to<mul>(basis), *num_exponent, false);
                }
 
                // (2*x + 6*y)^(-4) -> 1/16*(x + 3*y)^(-4)
-               if (num_exponent->is_integer() && is_exactly_a<add>(ebasis)) {
-                       numeric icont = ebasis.integer_content();
+               if (num_exponent->is_integer() && is_exactly_a<add>(basis)) {
+                       numeric icont = basis.integer_content();
                        const numeric lead_coeff = 
-                               ex_to<numeric>(ex_to<add>(ebasis).seq.begin()->coeff).div(icont);
+                               ex_to<numeric>(ex_to<add>(basis).seq.begin()->coeff).div(icont);
 
                        const bool canonicalizable = lead_coeff.is_integer();
                        const bool unit_normal = lead_coeff.is_pos_integer();
@@ -518,7 +508,7 @@ ex power::eval(int level) const
                                icont = icont.mul(*_num_1_p);
                        
                        if (canonicalizable && (icont != *_num1_p)) {
-                               const add& addref = ex_to<add>(ebasis);
+                               const add& addref = ex_to<add>(basis);
                                add & addp = dynallocate<add>(addref);
                                addp.clearflag(status_flags::hash_calculated);
                                addp.overall_coeff = ex_to<numeric>(addp.overall_coeff).div_dyn(icont);
@@ -535,9 +525,9 @@ ex power::eval(int level) const
 
                // ^(*(...,x;c1),c2) -> *(^(*(...,x;1),c2),c1^c2)  (c1, c2 numeric(), c1>0)
                // ^(*(...,x;c1),c2) -> *(^(*(...,x;-1),c2),(-c1)^c2)  (c1, c2 numeric(), c1<0)
-               if (is_exactly_a<mul>(ebasis)) {
+               if (is_exactly_a<mul>(basis)) {
                        GINAC_ASSERT(!num_exponent->is_integer()); // should have been handled above
-                       const mul & mulref = ex_to<mul>(ebasis);
+                       const mul & mulref = ex_to<mul>(basis);
                        if (!mulref.overall_coeff.is_equal(_ex1)) {
                                const numeric & num_coeff = ex_to<numeric>(mulref.overall_coeff);
                                if (num_coeff.is_real()) {
@@ -563,38 +553,26 @@ ex power::eval(int level) const
 
                // ^(nc,c1) -> ncmul(nc,nc,...) (c1 positive integer, unless nc is a matrix)
                if (num_exponent->is_pos_integer() &&
-                   ebasis.return_type() != return_types::commutative &&
-                   !is_a<matrix>(ebasis)) {
-                       return ncmul(exvector(num_exponent->to_int(), ebasis));
+                   basis.return_type() != return_types::commutative &&
+                   !is_a<matrix>(basis)) {
+                       return ncmul(exvector(num_exponent->to_int(), basis));
                }
        }
-       
-       if (are_ex_trivially_equal(ebasis,basis) &&
-           are_ex_trivially_equal(eexponent,exponent)) {
-               return this->hold();
-       }
-       return dynallocate<power>(ebasis, eexponent).setflag(status_flags::evaluated);
+
+       return this->hold();
 }
 
-ex power::evalf(int level) const
+ex power::evalf() const
 {
-       ex ebasis;
+       ex ebasis = basis.evalf();
        ex eexponent;
        
-       if (level==1) {
-               ebasis = basis;
+       if (!is_exactly_a<numeric>(exponent))
+               eexponent = exponent.evalf();
+       else
                eexponent = exponent;
-       } else if (level == -max_recursion_level) {
-               throw(std::runtime_error("max recursion level reached"));
-       } else {
-               ebasis = basis.evalf(level-1);
-               if (!is_exactly_a<numeric>(exponent))
-                       eexponent = exponent.evalf(level-1);
-               else
-                       eexponent = exponent;
-       }
 
-       return power(ebasis,eexponent);
+       return dynallocate<power>(ebasis, eexponent);
 }
 
 ex power::evalm() const
@@ -652,7 +630,7 @@ ex power::subs(const exmap & m, unsigned options) const
                if (tryfactsubs(*this, it.first, nummatches, repls)) {
                        ex anum = it.second.subs(repls, subs_options::no_pattern);
                        ex aden = it.first.subs(repls, subs_options::no_pattern);
-                       ex result = (*this)*power(anum/aden, nummatches);
+                       ex result = (*this) * pow(anum/aden, nummatches);
                        return (ex_to<basic>(result)).subs_one_level(m, options);
                }
        }
@@ -701,12 +679,12 @@ ex power::real_part() const
                // Re((a+I*b)^c)  w/  c ∈ ℤ
                long N = ex_to<numeric>(c).to_long();
                // Use real terms in Binomial expansion to construct
-               // Re(expand(power(a+I*b, N))).
+               // Re(expand(pow(a+I*b, N))).
                long NN = N > 0 ? N : -N;
-               ex numer = N > 0 ? _ex1 : power(power(a,2) + power(b,2), NN);
+               ex numer = N > 0 ? _ex1 : pow(pow(a,2) + pow(b,2), NN);
                ex result = 0;
                for (long n = 0; n <= NN; n += 2) {
-                       ex term = binomial(NN, n) * power(a, NN-n) * power(b, n) / numer;
+                       ex term = binomial(NN, n) * pow(a, NN-n) * pow(b, n) / numer;
                        if (n % 4 == 0) {
                                result += term;  // sign: I^n w/ n == 4*m
                        } else {
@@ -718,11 +696,12 @@ ex power::real_part() const
 
        // Re((a+I*b)^(c+I*d))
        const ex d = exponent.imag_part();
-       return power(abs(basis),c)*exp(-d*atan2(b,a))*cos(c*atan2(b,a)+d*log(abs(basis)));
+       return pow(abs(basis),c) * exp(-d*atan2(b,a)) * cos(c*atan2(b,a)+d*log(abs(basis)));
 }
 
 ex power::imag_part() const
 {
+       // basis == a+I*b, exponent == c+I*d
        const ex a = basis.real_part();
        const ex c = exponent.real_part();
        if (basis.is_equal(a) && exponent.is_equal(c)) {
@@ -735,13 +714,13 @@ ex power::imag_part() const
                // Im((a+I*b)^c)  w/  c ∈ ℤ
                long N = ex_to<numeric>(c).to_long();
                // Use imaginary terms in Binomial expansion to construct
-               // Im(expand(power(a+I*b, N))).
+               // Im(expand(pow(a+I*b, N))).
                long p = N > 0 ? 1 : 3;  // modulus for positive sign
                long NN = N > 0 ? N : -N;
-               ex numer = N > 0 ? _ex1 : power(power(a,2) + power(b,2), NN);
+               ex numer = N > 0 ? _ex1 : pow(pow(a,2) + pow(b,2), NN);
                ex result = 0;
                for (long n = 1; n <= NN; n += 2) {
-                       ex term = binomial(NN, n) * power(a, NN-n) * power(b, n) / numer;
+                       ex term = binomial(NN, n) * pow(a, NN-n) * pow(b, n) / numer;
                        if (n % 4 == p) {
                                result += term;  // sign: I^n w/ n == 4*m+p
                        } else {
@@ -753,7 +732,7 @@ ex power::imag_part() const
 
        // Im((a+I*b)^(c+I*d))
        const ex d = exponent.imag_part();
-       return power(abs(basis),c)*exp(-d*atan2(b,a))*sin(c*atan2(b,a)+d*log(abs(basis)));
+       return pow(abs(basis),c) * exp(-d*atan2(b,a)) * sin(c*atan2(b,a)+d*log(abs(basis)));
 }
 
 // protected
@@ -764,16 +743,11 @@ ex power::derivative(const symbol & s) const
 {
        if (is_a<numeric>(exponent)) {
                // D(b^r) = r * b^(r-1) * D(b) (faster than the formula below)
-               epvector newseq;
-               newseq.reserve(2);
-               newseq.push_back(expair(basis, exponent - _ex1));
-               newseq.push_back(expair(basis.diff(s), _ex1));
-               return mul(std::move(newseq), exponent);
+               const epvector newseq = {expair(basis, exponent - _ex1), expair(basis.diff(s), _ex1)};
+               return dynallocate<mul>(std::move(newseq), exponent);
        } else {
                // D(b^e) = b^e * (D(e)*ln(b) + e*D(b)/b)
-               return mul(*this,
-                          add(mul(exponent.diff(s), log(basis)),
-                          mul(mul(exponent, basis.diff(s)), power(basis, _ex_1))));
+               return *this * (exponent.diff(s)*log(basis) + exponent*basis.diff(s)*pow(basis, _ex_1));
        }
 }
 
@@ -832,9 +806,9 @@ ex power::expand(unsigned options) const
                // take care on the numeric coefficient
                ex coeff=(possign? _ex1 : _ex_1);
                if (m.overall_coeff.info(info_flags::positive) && m.overall_coeff != _ex1)
-                       prodseq.push_back(power(m.overall_coeff, exponent));
+                       prodseq.push_back(pow(m.overall_coeff, exponent));
                else if (m.overall_coeff.info(info_flags::negative) && m.overall_coeff != _ex_1)
-                       prodseq.push_back(power(-m.overall_coeff, exponent));
+                       prodseq.push_back(pow(-m.overall_coeff, exponent));
                else
                        coeff *= m.overall_coeff;
 
@@ -842,7 +816,7 @@ ex power::expand(unsigned options) const
                // In either case we set a flag to avoid the second run on a part
                // which does not have positive/negative terms.
                if (prodseq.size() > 0) {
-                       ex newbasis = coeff*mul(std::move(powseq));
+                       ex newbasis = dynallocate<mul>(std::move(powseq), coeff);
                        ex_to<basic>(newbasis).setflag(status_flags::purely_indefinite);
                        return dynallocate<mul>(std::move(prodseq)) * pow(newbasis, exponent);
                } else
@@ -858,7 +832,7 @@ ex power::expand(unsigned options) const
                exvector distrseq;
                distrseq.reserve(a.seq.size() + 1);
                for (auto & cit : a.seq) {
-                       distrseq.push_back(power(expanded_basis, a.recombine_pair_to_ex(cit)));
+                       distrseq.push_back(pow(expanded_basis, a.recombine_pair_to_ex(cit)));
                }
                
                // Make sure that e.g. (x+y)^(2+a) expands the (x+y)^2 factor
@@ -868,9 +842,9 @@ ex power::expand(unsigned options) const
                        if (int_exponent > 0 && is_exactly_a<add>(expanded_basis))
                                distrseq.push_back(expand_add(ex_to<add>(expanded_basis), int_exponent, options));
                        else
-                               distrseq.push_back(power(expanded_basis, a.overall_coeff));
+                               distrseq.push_back(pow(expanded_basis, a.overall_coeff));
                } else
-                       distrseq.push_back(power(expanded_basis, a.overall_coeff));
+                       distrseq.push_back(pow(expanded_basis, a.overall_coeff));
                
                // Make sure that e.g. (x+y)^(1+a) -> x*(x+y)^a + y*(x+y)^a
                ex r = dynallocate<mul>(distrseq);
@@ -915,188 +889,6 @@ ex power::expand(unsigned options) const
 // non-virtual functions in this class
 //////////
 
-namespace {  // anonymous namespace for power::expand_add() helpers
-
-/** Helper class to generate all bounded combinatorial partitions of an integer
- *  n with exactly m parts (including zero parts) in non-decreasing order.
- */
-class partition_generator {
-private:
-       // Partitions n into m parts, not including zero parts.
-       // (Cf. OEIS sequence A008284; implementation adapted from Jörg Arndt's
-       // FXT library)
-       struct mpartition2
-       {
-               // partition: x[1] + x[2] + ... + x[m] = n and sentinel x[0] == 0
-               std::vector<int> x;
-               int n;   // n>0
-               int m;   // 0<m<=n
-               mpartition2(unsigned n_, unsigned m_)
-                 : x(m_+1), n(n_), m(m_)
-               {
-                       for (int k=1; k<m; ++k)
-                               x[k] = 1;
-                       x[m] = n - m + 1;
-               }
-               bool next_partition()
-               {
-                       int u = x[m];  // last element
-                       int k = m;
-                       int s = u;
-                       while (--k) {
-                               s += x[k];
-                               if (x[k] + 2 <= u)
-                                       break;
-                       }
-                       if (k==0)
-                               return false;  // current is last
-                       int f = x[k] + 1;
-                       while (k < m) {
-                               x[k] = f;
-                               s -= f;
-                               ++k;
-                       }
-                       x[m] = s;
-                       return true;
-               }
-       } mpgen;
-       int m;  // number of parts 0<m<=n
-       mutable std::vector<int> partition;  // current partition
-public:
-       partition_generator(unsigned n_, unsigned m_)
-         : mpgen(n_, 1), m(m_), partition(m_)
-       { }
-       // returns current partition in non-decreasing order, padded with zeros
-       const std::vector<int>& current() const
-       {
-               for (int i = 0; i < m - mpgen.m; ++i)
-                       partition[i] = 0;  // pad with zeros
-
-               for (int i = m - mpgen.m; i < m; ++i)
-                       partition[i] = mpgen.x[i - m + mpgen.m + 1];
-
-               return partition;
-       }
-       bool next()
-       {
-               if (!mpgen.next_partition()) {
-                       if (mpgen.m == m || mpgen.m == mpgen.n)
-                               return false;  // current is last
-                       // increment number of parts
-                       mpgen = mpartition2(mpgen.n, mpgen.m + 1);
-               }
-               return true;
-       }
-};
-
-/** Helper class to generate all compositions of a partition of an integer n,
- *  starting with the compositions which has non-decreasing order.
- */
-class composition_generator {
-private:
-       // Generates all distinct permutations of a multiset.
-       // (Based on Aaron Williams' algorithm 1 from "Loopless Generation of
-       // Multiset Permutations using a Constant Number of Variables by Prefix
-       // Shifts." <http://webhome.csc.uvic.ca/~haron/CoolMulti.pdf>)
-       struct coolmulti {
-               // element of singly linked list
-               struct element {
-                       int value;
-                       element* next;
-                       element(int val, element* n)
-                         : value(val), next(n) {}
-                       ~element()
-                       {   // recurses down to the end of the singly linked list
-                               delete next;
-                       }
-               };
-               element *head, *i, *after_i;
-               // NB: Partition must be sorted in non-decreasing order.
-               explicit coolmulti(const std::vector<int>& partition)
-                 : head(nullptr), i(nullptr), after_i(nullptr)
-               {
-                       for (unsigned n = 0; n < partition.size(); ++n) {
-                               head = new element(partition[n], head);
-                               if (n <= 1)
-                                       i = head;
-                       }
-                       after_i = i->next;
-               }
-               ~coolmulti()
-               {   // deletes singly linked list
-                       delete head;
-               }
-               void next_permutation()
-               {
-                       element *before_k;
-                       if (after_i->next != nullptr && i->value >= after_i->next->value)
-                               before_k = after_i;
-                       else
-                               before_k = i;
-                       element *k = before_k->next;
-                       before_k->next = k->next;
-                       k->next = head;
-                       if (k->value < head->value)
-                               i = k;
-                       after_i = i->next;
-                       head = k;
-               }
-               bool finished() const
-               {
-                       return after_i->next == nullptr && after_i->value >= head->value;
-               }
-       } cmgen;
-       bool atend;  // needed for simplifying iteration over permutations
-       bool trivial;  // likewise, true if all elements are equal
-       mutable std::vector<int> composition;  // current compositions
-public:
-       explicit composition_generator(const std::vector<int>& partition)
-         : cmgen(partition), atend(false), trivial(true), composition(partition.size())
-       {
-               for (unsigned i=1; i<partition.size(); ++i)
-                       trivial = trivial && (partition[0] == partition[i]);
-       }
-       const std::vector<int>& current() const
-       {
-               coolmulti::element* it = cmgen.head;
-               size_t i = 0;
-               while (it != nullptr) {
-                       composition[i] = it->value;
-                       it = it->next;
-                       ++i;
-               }
-               return composition;
-       }
-       bool next()
-       {
-               // This ugly contortion is needed because the original coolmulti
-               // algorithm requires code duplication of the payload procedure,
-               // one before the loop and one inside it.
-               if (trivial || atend)
-                       return false;
-               cmgen.next_permutation();
-               atend = cmgen.finished();
-               return true;
-       }
-};
-
-/** Helper function to compute the multinomial coefficient n!/(p1!*p2!*...*pk!)
- *  where n = p1+p2+...+pk, i.e. p is a partition of n.
- */
-const numeric
-multinomial_coefficient(const std::vector<int> & p)
-{
-       numeric n = 0, d = 1;
-       for (auto & it : p) {
-               n += numeric(it);
-               d *= factorial(numeric(it));
-       }
-       return factorial(numeric(n)) / d;
-}
-
-}  // anonymous namespace
-
-
 /** expand a^n where a is an add and n is a positive integer.
  *  @see power::expand */
 ex power::expand_add(const add & a, long n, unsigned options)
@@ -1198,7 +990,7 @@ ex power::expand_add(const add & a, long n, unsigned options)
                        composition_generator compositions(partition);
                        do {
                                const std::vector<int>& exponent = compositions.current();
-                               exvector monomial;
+                               epvector monomial;
                                monomial.reserve(msize);
                                numeric factor = coeff;
                                for (unsigned i = 0; i < exponent.size(); ++i) {
@@ -1216,22 +1008,21 @@ ex power::expand_add(const add & a, long n, unsigned options)
                                                // optimize away
                                        } else if (exponent[i] == 1) {
                                                // optimized
-                                               monomial.push_back(r);
+                                               monomial.push_back(expair(r, _ex1));
                                                if (c != *_num1_p)
                                                        factor = factor.mul(c);
                                        } else { // general case exponent[i] > 1
-                                               monomial.push_back(dynallocate<power>(r, exponent[i]));
+                                               monomial.push_back(expair(r, exponent[i]));
                                                if (c != *_num1_p)
                                                        factor = factor.mul(c.power(exponent[i]));
                                        }
                                }
-                               result.push_back(a.combine_ex_with_coeff_to_pair(mul(monomial).expand(options), factor));
+                               result.push_back(expair(mul(std::move(monomial)).expand(options), factor));
                        } while (compositions.next());
                } while (partitions.next());
        }
 
        GINAC_ASSERT(result.size() == result_size);
-
        if (a.overall_coeff.is_zero()) {
                return dynallocate<add>(std::move(result)).setflag(status_flags::expanded);
        } else {
@@ -1252,11 +1043,11 @@ ex power::expand_add_2(const add & a, unsigned options)
        }
        result.reserve(result_size);
 
-       epvector::const_iterator last = a.seq.end();
+       auto last = a.seq.end();
 
        // power(+(x,...,z;c),2)=power(+(x,...,z;0),2)+2*c*+(x,...,z;0)+c*c
        // first part: ignore overall_coeff and expand other terms
-       for (epvector::const_iterator cit0=a.seq.begin(); cit0!=last; ++cit0) {
+       for (auto cit0=a.seq.begin(); cit0!=last; ++cit0) {
                const ex & r = cit0->rest;
                const ex & c = cit0->coeff;
                
@@ -1270,27 +1061,27 @@ ex power::expand_add_2(const add & a, unsigned options)
                
                if (c.is_equal(_ex1)) {
                        if (is_exactly_a<mul>(r)) {
-                               result.push_back(a.combine_ex_with_coeff_to_pair(expand_mul(ex_to<mul>(r), *_num2_p, options, true),
-                                                                                _ex1));
+                               result.push_back(expair(expand_mul(ex_to<mul>(r), *_num2_p, options, true),
+                                                       _ex1));
                        } else {
-                               result.push_back(a.combine_ex_with_coeff_to_pair(dynallocate<power>(r, _ex2),
-                                                                                _ex1));
+                               result.push_back(expair(dynallocate<power>(r, _ex2),
+                                                       _ex1));
                        }
                } else {
                        if (is_exactly_a<mul>(r)) {
-                               result.push_back(a.combine_ex_with_coeff_to_pair(expand_mul(ex_to<mul>(r), *_num2_p, options, true),
-                                                                                ex_to<numeric>(c).power_dyn(*_num2_p)));
+                               result.push_back(expair(expand_mul(ex_to<mul>(r), *_num2_p, options, true),
+                                                       ex_to<numeric>(c).power_dyn(*_num2_p)));
                        } else {
-                               result.push_back(a.combine_ex_with_coeff_to_pair(dynallocate<power>(r, _ex2),
-                                                                                ex_to<numeric>(c).power_dyn(*_num2_p)));
+                               result.push_back(expair(dynallocate<power>(r, _ex2),
+                                                       ex_to<numeric>(c).power_dyn(*_num2_p)));
                        }
                }
 
-               for (epvector::const_iterator cit1=cit0+1; cit1!=last; ++cit1) {
+               for (auto cit1=cit0+1; cit1!=last; ++cit1) {
                        const ex & r1 = cit1->rest;
                        const ex & c1 = cit1->coeff;
-                       result.push_back(a.combine_ex_with_coeff_to_pair(mul(r,r1).expand(options),
-                                                                        _num2_p->mul(ex_to<numeric>(c)).mul_dyn(ex_to<numeric>(c1))));
+                       result.push_back(expair(mul(r,r1).expand(options),
+                                               _num2_p->mul(ex_to<numeric>(c)).mul_dyn(ex_to<numeric>(c1))));
                }
        }