]> www.ginac.de Git - ginac.git/blobdiff - ginac/power.cpp
- clarify comment about counterintuitive sorting for Laplace.
[ginac.git] / ginac / power.cpp
index 2d4360dea0cce94416d4f136872a2c5d7da9561e..33f572f973745544ba2db9df4c6c08955a90a265 100644 (file)
@@ -99,7 +99,7 @@ static void print_sym_pow(const print_context & c, const symbol &x, int exp)
 {
        // Optimal output of integer powers of symbols to aid compiler CSE.
        // C.f. ISO/IEC 14882:1998, section 1.9 [intro execution], paragraph 15
-       // to learn why such a hack is really necessary.
+       // to learn why such a parenthisation is really necessary.
        if (exp == 1) {
                x.print(c);
        } else if (exp == 2) {
@@ -240,13 +240,10 @@ ex power::map(map_function & f) const
 
 int power::degree(const ex & s) const
 {
-       if (is_exactly_of_type(*exponent.bp,numeric)) {
-               if (basis.is_equal(s)) {
-                       if (ex_to<numeric>(exponent).is_integer())
-                               return ex_to<numeric>(exponent).to_int();
-                       else
-                               return 0;
-               } else
+       if (is_ex_exactly_of_type(exponent, numeric) && ex_to<numeric>(exponent).is_integer()) {
+               if (basis.is_equal(s))
+                       return ex_to<numeric>(exponent).to_int();
+               else
                        return basis.degree(s) * ex_to<numeric>(exponent).to_int();
        }
        return 0;
@@ -254,13 +251,10 @@ int power::degree(const ex & s) const
 
 int power::ldegree(const ex & s) const 
 {
-       if (is_exactly_of_type(*exponent.bp,numeric)) {
-               if (basis.is_equal(s)) {
-                       if (ex_to<numeric>(exponent).is_integer())
-                               return ex_to<numeric>(exponent).to_int();
-                       else
-                               return 0;
-               } else
+       if (is_ex_exactly_of_type(exponent, numeric) && ex_to<numeric>(exponent).is_integer()) {
+               if (basis.is_equal(s))
+                       return ex_to<numeric>(exponent).to_int();
+               else
                        return basis.ldegree(s) * ex_to<numeric>(exponent).to_int();
        }
        return 0;
@@ -276,7 +270,7 @@ ex power::coeff(const ex & s, int n) const
                        return _ex0();
        } else {
                // basis equal to s
-               if (is_exactly_of_type(*exponent.bp, numeric) && ex_to<numeric>(exponent).is_integer()) {
+               if (is_ex_exactly_of_type(exponent, numeric) && ex_to<numeric>(exponent).is_integer()) {
                        // integer exponent
                        int int_exp = ex_to<numeric>(exponent).to_int();
                        if (n == int_exp)
@@ -293,18 +287,22 @@ ex power::coeff(const ex & s, int n) const
        }
 }
 
+/** Perform automatic term rewriting rules in this class.  In the following
+ *  x, x1, x2,... stand for a symbolic variables of type ex and c, c1, c2...
+ *  stand for such expressions that contain a plain number.
+ *  - ^(x,0) -> 1  (also handles ^(0,0))
+ *  - ^(x,1) -> x
+ *  - ^(0,c) -> 0 or exception  (depending on the real part of c)
+ *  - ^(1,x) -> 1
+ *  - ^(c1,c2) -> *(c1^n,c1^(c2-n))  (so that 0<(c2-n)<1, try to evaluate roots, possibly in numerator and denominator of c1)
+ *  - ^(^(x,c1),c2) -> ^(x,c1*c2)  (c2 integer or -1 < c1 <= 1, case c1=1 should not happen, see below!)
+ *  - ^(*(x,y,z),c) -> *(x^c,y^c,z^c)  (if c integer)
+ *  - ^(*(x,c1),c2) -> ^(x,c2)*c1^c2  (c1>0)
+ *  - ^(*(x,c1),c2) -> ^(-x,c2)*c1^c2  (c1<0)
+ *
+ *  @param level cut-off in recursive evaluation */
 ex power::eval(int level) const
 {
-       // simplifications: ^(x,0) -> 1 (0^0 handled here)
-       //                  ^(x,1) -> x
-       //                  ^(0,c1) -> 0 or exception (depending on real value of c1)
-       //                  ^(1,x) -> 1
-       //                  ^(c1,c2) -> *(c1^n,c1^(c2-n)) (c1, c2 numeric(), 0<(c2-n)<1 except if c1,c2 are rational, but c1^c2 is not)
-       //                  ^(^(x,c1),c2) -> ^(x,c1*c2) (c1, c2 numeric(), c2 integer or -1 < c1 <= 1, case c1=1 should not happen, see below!)
-       //                  ^(*(x,y,z),c1) -> *(x^c1,y^c1,z^c1) (c1 integer)
-       //                  ^(*(x,c1),c2) -> ^(x,c2)*c1^c2 (c1, c2 numeric(), c1>0)
-       //                  ^(*(x,c1),c2) -> ^(-x,c2)*c1^c2 (c1, c2 numeric(), c1<0)
-       
        debugmsg("power eval",LOGLEVEL_MEMBER_FUNCTION);
        
        if ((level==1) && (flags & status_flags::evaluated))
@@ -317,19 +315,19 @@ ex power::eval(int level) const
        
        bool basis_is_numerical = false;
        bool exponent_is_numerical = false;
-       numeric * num_basis;
-       numeric * num_exponent;
+       const numeric *num_basis;
+       const numeric *num_exponent;
        
-       if (is_exactly_of_type(*ebasis.bp,numeric)) {
+       if (is_ex_exactly_of_type(ebasis, numeric)) {
                basis_is_numerical = true;
-               num_basis = static_cast<numeric *>(ebasis.bp);
+               num_basis = &ex_to<numeric>(ebasis);
        }
-       if (is_exactly_of_type(*eexponent.bp,numeric)) {
+       if (is_ex_exactly_of_type(eexponent, numeric)) {
                exponent_is_numerical = true;
-               num_exponent = static_cast<numeric *>(eexponent.bp);
+               num_exponent = &ex_to<numeric>(eexponent);
        }
        
-       // ^(x,0) -> 1 (0^0 also handled here)
+       // ^(x,0) -> 1  (0^0 also handled here)
        if (eexponent.is_zero()) {
                if (ebasis.is_zero())
                        throw (std::domain_error("power::eval(): pow(0,0) is undefined"));
@@ -340,8 +338,8 @@ ex power::eval(int level) const
        // ^(x,1) -> x
        if (eexponent.is_equal(_ex1()))
                return ebasis;
-       
-       // ^(0,c1) -> 0 or exception (depending on real value of c1)
+
+       // ^(0,c1) -> 0 or exception  (depending on real value of c1)
        if (ebasis.is_zero() && exponent_is_numerical) {
                if ((num_exponent->real()).is_zero())
                        throw (std::domain_error("power::eval(): pow(0,I) is undefined"));
@@ -350,44 +348,64 @@ ex power::eval(int level) const
                else
                        return _ex0();
        }
-       
+
        // ^(1,x) -> 1
        if (ebasis.is_equal(_ex1()))
                return _ex1();
-       
+
        if (exponent_is_numerical) {
 
-               // ^(c1,c2) -> c1^c2 (c1, c2 numeric(),
+               // ^(c1,c2) -> c1^c2  (c1, c2 numeric(),
                // except if c1,c2 are rational, but c1^c2 is not)
                if (basis_is_numerical) {
-                       bool basis_is_crational = num_basis->is_crational();
-                       bool exponent_is_crational = num_exponent->is_crational();
-                       numeric res = num_basis->power(*num_exponent);
-               
-                       if ((!basis_is_crational || !exponent_is_crational)
-                               || res.is_crational()) {
+                       const bool basis_is_crational = num_basis->is_crational();
+                       const bool exponent_is_crational = num_exponent->is_crational();
+                       if (!basis_is_crational || !exponent_is_crational) {
+                               // return a plain float
+                               return (new numeric(num_basis->power(*num_exponent)))->setflag(status_flags::dynallocated |
+                                                                                              status_flags::evaluated |
+                                                                                              status_flags::expanded);
+                       }
+
+                       const numeric res = num_basis->power(*num_exponent);
+                       if (res.is_crational()) {
                                return res;
                        }
                        GINAC_ASSERT(!num_exponent->is_integer());  // has been handled by now
 
-                       // ^(c1,n/m) -> *(c1^q,c1^(n/m-q)), 0<(n/m-h)<1, q integer
+                       // ^(c1,n/m) -> *(c1^q,c1^(n/m-q)), 0<(n/m-q)<1, q integer
                        if (basis_is_crational && exponent_is_crational
-                               && num_exponent->is_real()
-                               && !num_exponent->is_integer()) {
-                               numeric n = num_exponent->numer();
-                               numeric m = num_exponent->denom();
+                           && num_exponent->is_real()
+                           && !num_exponent->is_integer()) {
+                               const numeric n = num_exponent->numer();
+                               const numeric m = num_exponent->denom();
                                numeric r;
                                numeric q = iquo(n, m, r);
                                if (r.is_negative()) {
-                                       r = r.add(m);
-                                       q = q.sub(_num1());
+                                       r += m;
+                                       --q;
                                }
-                               if (q.is_zero())  // the exponent was in the allowed range 0<(n/m)<1
+                               if (q.is_zero()) {  // the exponent was in the allowed range 0<(n/m)<1
+                                       if (num_basis->is_rational() && !num_basis->is_integer()) {
+                                               // try it for numerator and denominator separately, in order to
+                                               // partially simplify things like (5/8)^(1/3) -> 1/2*5^(1/3)
+                                               const numeric bnum = num_basis->numer();
+                                               const numeric bden = num_basis->denom();
+                                               const numeric res_bnum = bnum.power(*num_exponent);
+                                               const numeric res_bden = bden.power(*num_exponent);
+                                               if (res_bnum.is_integer())
+                                                       return (new mul(power(bden,-*num_exponent),res_bnum))->setflag(status_flags::dynallocated | status_flags::evaluated);
+                                               if (res_bden.is_integer())
+                                                       return (new mul(power(bnum,*num_exponent),res_bden.inverse()))->setflag(status_flags::dynallocated | status_flags::evaluated);
+                                       }
                                        return this->hold();
-                               else {
-                                       epvector res;
-                                       res.push_back(expair(ebasis,r.div(m)));
-                                       return (new mul(res,ex(num_basis->power_dyn(q))))->setflag(status_flags::dynallocated | status_flags::evaluated);
+                               } else {
+                                       // assemble resulting product, but allowing for a re-evaluation,
+                                       // because otherwise we'll end up with something like
+                                       //    (7/8)^(4/3)  ->  7/8*(1/2*7^(1/3))
+                                       // instead of 7/16*7^(1/3).
+                                       ex prod = power(*num_basis,r.div(m));
+                                       return prod*power(*num_basis,q);
                                }
                        }
                }
@@ -412,8 +430,8 @@ ex power::eval(int level) const
                        return expand_mul(ex_to<mul>(ebasis), *num_exponent);
                }
        
-               // ^(*(...,x;c1),c2) -> ^(*(...,x;1),c2)*c1^c2 (c1, c2 numeric(), c1>0)
-               // ^(*(...,x,c1),c2) -> ^(*(...,x;-1),c2)*(-c1)^c2 (c1, c2 numeric(), c1<0)
+               // ^(*(...,x;c1),c2) -> *(^(*(...,x;1),c2),c1^c2)  (c1, c2 numeric(), c1>0)
+               // ^(*(...,x;c1),c2) -> *(^(*(...,x;-1),c2),(-c1)^c2)  (c1, c2 numeric(), c1<0)
                if (is_ex_exactly_of_type(ebasis,mul)) {
                        GINAC_ASSERT(!num_exponent->is_integer()); // should have been handled above
                        const mul & mulref = ex_to<mul>(ebasis);
@@ -421,7 +439,7 @@ ex power::eval(int level) const
                                const numeric & num_coeff = ex_to<numeric>(mulref.overall_coeff);
                                if (num_coeff.is_real()) {
                                        if (num_coeff.is_positive()) {
-                                               mul * mulp = new mul(mulref);
+                                               mul *mulp = new mul(mulref);
                                                mulp->overall_coeff = _ex1();
                                                mulp->clearflag(status_flags::evaluated);
                                                mulp->clearflag(status_flags::hash_calculated);
@@ -430,7 +448,7 @@ ex power::eval(int level) const
                                        } else {
                                                GINAC_ASSERT(num_coeff.compare(_num0())<0);
                                                if (num_coeff.compare(_num_1())!=0) {
-                                                       mul * mulp = new mul(mulref);
+                                                       mul *mulp = new mul(mulref);
                                                        mulp->overall_coeff = _ex_1();
                                                        mulp->clearflag(status_flags::evaluated);
                                                        mulp->clearflag(status_flags::hash_calculated);
@@ -451,17 +469,17 @@ ex power::eval(int level) const
        }
        
        if (are_ex_trivially_equal(ebasis,basis) &&
-               are_ex_trivially_equal(eexponent,exponent)) {
+           are_ex_trivially_equal(eexponent,exponent)) {
                return this->hold();
        }
        return (new power(ebasis, eexponent))->setflag(status_flags::dynallocated |
-                                                                                                  status_flags::evaluated);
+                                                      status_flags::evaluated);
 }
 
 ex power::evalf(int level) const
 {
        debugmsg("power evalf",LOGLEVEL_MEMBER_FUNCTION);
-
+       
        ex ebasis;
        ex eexponent;
        
@@ -472,7 +490,7 @@ ex power::evalf(int level) const
                throw(std::runtime_error("max recursion level reached"));
        } else {
                ebasis = basis.evalf(level-1);
-               if (!is_ex_exactly_of_type(eexponent,numeric))
+               if (!is_ex_exactly_of_type(exponent,numeric))
                        eexponent = exponent.evalf(level-1);
                else
                        eexponent = exponent;
@@ -502,7 +520,7 @@ ex power::subs(const lst & ls, const lst & lr, bool no_pattern) const
         && are_ex_trivially_equal(exponent, subsed_exponent))
                return basic::subs(ls, lr, no_pattern);
        else
-               return ex(power(subsed_basis, subsed_exponent)).bp->basic::subs(ls, lr, no_pattern);
+               return power(subsed_basis, subsed_exponent).basic::subs(ls, lr, no_pattern);
 }
 
 ex power::simplify_ncmul(const exvector & v) const
@@ -533,7 +551,7 @@ ex power::derivative(const symbol & s) const
 
 int power::compare_same_type(const basic & other) const
 {
-       GINAC_ASSERT(is_exactly_of_type(other, power));
+       GINAC_ASSERT(is_exactly_a<power>(other));
        const power &o = static_cast<const power &>(other);
 
        int cmpval = basis.compare(o.basis);
@@ -558,8 +576,8 @@ ex power::expand(unsigned options) const
        if (options == 0 && (flags & status_flags::expanded))
                return *this;
        
-       ex expanded_basis = basis.expand(options);
-       ex expanded_exponent = exponent.expand(options);
+       const ex expanded_basis = basis.expand(options);
+       const ex expanded_exponent = exponent.expand(options);
        
        // x^(a+b) -> x^a * x^b
        if (is_ex_exactly_of_type(expanded_exponent, add)) {
@@ -653,13 +671,13 @@ ex power::expand_add(const add & a, int n) const
                term.reserve(m+1);
                for (l=0; l<m-1; l++) {
                        const ex & b = a.op(l);
-                       GINAC_ASSERT(!is_ex_exactly_of_type(b,add));
-                       GINAC_ASSERT(!is_ex_exactly_of_type(b,power) ||
-                                    !is_ex_exactly_of_type(ex_to<power>(b).exponent,numeric) ||
+                       GINAC_ASSERT(!is_exactly_a<add>(b));
+                       GINAC_ASSERT(!is_exactly_a<power>(b) ||
+                                    !is_exactly_a<numeric>(ex_to<power>(b).exponent) ||
                                     !ex_to<numeric>(ex_to<power>(b).exponent).is_pos_integer() ||
-                                    !is_ex_exactly_of_type(ex_to<power>(b).basis,add) ||
-                                    !is_ex_exactly_of_type(ex_to<power>(b).basis,mul) ||
-                                    !is_ex_exactly_of_type(ex_to<power>(b).basis,power));
+                                    !is_exactly_a<add>(ex_to<power>(b).basis) ||
+                                    !is_exactly_a<mul>(ex_to<power>(b).basis) ||
+                                    !is_exactly_a<power>(ex_to<power>(b).basis));
                        if (is_ex_exactly_of_type(b,mul))
                                term.push_back(expand_mul(ex_to<mul>(b),numeric(k[l])));
                        else
@@ -667,13 +685,13 @@ ex power::expand_add(const add & a, int n) const
                }
                
                const ex & b = a.op(l);
-               GINAC_ASSERT(!is_ex_exactly_of_type(b,add));
-               GINAC_ASSERT(!is_ex_exactly_of_type(b,power) ||
-                            !is_ex_exactly_of_type(ex_to<power>(b).exponent,numeric) ||
+               GINAC_ASSERT(!is_exactly_a<add>(b));
+               GINAC_ASSERT(!is_exactly_a<power>(b) ||
+                            !is_exactly_a<numeric>(ex_to<power>(b).exponent) ||
                             !ex_to<numeric>(ex_to<power>(b).exponent).is_pos_integer() ||
-                            !is_ex_exactly_of_type(ex_to<power>(b).basis,add) ||
-                            !is_ex_exactly_of_type(ex_to<power>(b).basis,mul) ||
-                            !is_ex_exactly_of_type(ex_to<power>(b).basis,power));
+                            !is_exactly_a<add>(ex_to<power>(b).basis) ||
+                            !is_exactly_a<mul>(ex_to<power>(b).basis) ||
+                            !is_exactly_a<power>(ex_to<power>(b).basis));
                if (is_ex_exactly_of_type(b,mul))
                        term.push_back(expand_mul(ex_to<mul>(b),numeric(n-k_cum[m-2])));
                else
@@ -728,13 +746,13 @@ ex power::expand_add_2(const add & a) const
                const ex & r = cit0->rest;
                const ex & c = cit0->coeff;
                
-               GINAC_ASSERT(!is_ex_exactly_of_type(r,add));
-               GINAC_ASSERT(!is_ex_exactly_of_type(r,power) ||
-                            !is_ex_exactly_of_type(ex_to<power>(r).exponent,numeric) ||
+               GINAC_ASSERT(!is_exactly_a<add>(r));
+               GINAC_ASSERT(!is_exactly_a<power>(r) ||
+                            !is_exactly_a<numeric>(ex_to<power>(r).exponent) ||
                             !ex_to<numeric>(ex_to<power>(r).exponent).is_pos_integer() ||
-                            !is_ex_exactly_of_type(ex_to<power>(r).basis,add) ||
-                            !is_ex_exactly_of_type(ex_to<power>(r).basis,mul) ||
-                            !is_ex_exactly_of_type(ex_to<power>(r).basis,power));
+                            !is_exactly_a<add>(ex_to<power>(r).basis) ||
+                            !is_exactly_a<mul>(ex_to<power>(r).basis) ||
+                            !is_exactly_a<power>(ex_to<power>(r).basis));
                
                if (are_ex_trivially_equal(c,_ex1())) {
                        if (is_ex_exactly_of_type(r,mul)) {