]> www.ginac.de Git - ginac.git/blobdiff - ginac/power.cpp
Merge some cosmetic patches.
[ginac.git] / ginac / power.cpp
index c376009b5c416f5c2ec3d68e35e6c869b440602e..3baa3c6f9125f8e65a26d460d15cb46b6f7d1ac0 100644 (file)
@@ -421,7 +421,7 @@ ex power::eval() const
 
        // Turn (x^c)^d into x^(c*d) in the case that x is positive and c is real.
        if (is_exactly_a<power>(basis) && basis.op(0).info(info_flags::positive) && basis.op(1).info(info_flags::real))
-               return power(basis.op(0), basis.op(1) * exponent);
+               return dynallocate<power>(basis.op(0), basis.op(1) * exponent);
 
        if ( num_exponent ) {
 
@@ -472,8 +472,7 @@ ex power::eval() const
                                        // because otherwise we'll end up with something like
                                        //    (7/8)^(4/3)  ->  7/8*(1/2*7^(1/3))
                                        // instead of 7/16*7^(1/3).
-                                       ex prod = power(*num_basis,r.div(m));
-                                       return prod*power(*num_basis,q);
+                                       return pow(basis, r.div(m)) * pow(basis, q);
                                }
                        }
                }
@@ -490,14 +489,14 @@ ex power::eval() const
                                GINAC_ASSERT(num_sub_exponent!=numeric(1));
                                if (num_exponent->is_integer() || (abs(num_sub_exponent) - (*_num1_p)).is_negative() ||
                                    (num_sub_exponent == *_num_1_p && num_exponent->is_positive())) {
-                                       return power(sub_basis,num_sub_exponent.mul(*num_exponent));
+                                       return dynallocate<power>(sub_basis, num_sub_exponent.mul(*num_exponent));
                                }
                        }
                }
        
                // ^(*(x,y,z),c1) -> *(x^c1,y^c1,z^c1) (c1 integer)
                if (num_exponent->is_integer() && is_exactly_a<mul>(basis)) {
-                       return expand_mul(ex_to<mul>(basis), *num_exponent, 0);
+                       return expand_mul(ex_to<mul>(basis), *num_exponent, false);
                }
 
                // (2*x + 6*y)^(-4) -> 1/16*(x + 3*y)^(-4)
@@ -584,7 +583,7 @@ ex power::evalf(int level) const
                        eexponent = exponent;
        }
 
-       return power(ebasis,eexponent);
+       return dynallocate<power>(ebasis, eexponent);
 }
 
 ex power::evalm() const
@@ -642,7 +641,7 @@ ex power::subs(const exmap & m, unsigned options) const
                if (tryfactsubs(*this, it.first, nummatches, repls)) {
                        ex anum = it.second.subs(repls, subs_options::no_pattern);
                        ex aden = it.first.subs(repls, subs_options::no_pattern);
-                       ex result = (*this)*power(anum/aden, nummatches);
+                       ex result = (*this) * pow(anum/aden, nummatches);
                        return (ex_to<basic>(result)).subs_one_level(m, options);
                }
        }
@@ -691,12 +690,12 @@ ex power::real_part() const
                // Re((a+I*b)^c)  w/  c ∈ ℤ
                long N = ex_to<numeric>(c).to_long();
                // Use real terms in Binomial expansion to construct
-               // Re(expand(power(a+I*b, N))).
+               // Re(expand(pow(a+I*b, N))).
                long NN = N > 0 ? N : -N;
-               ex numer = N > 0 ? _ex1 : power(power(a,2) + power(b,2), NN);
+               ex numer = N > 0 ? _ex1 : pow(pow(a,2) + pow(b,2), NN);
                ex result = 0;
                for (long n = 0; n <= NN; n += 2) {
-                       ex term = binomial(NN, n) * power(a, NN-n) * power(b, n) / numer;
+                       ex term = binomial(NN, n) * pow(a, NN-n) * pow(b, n) / numer;
                        if (n % 4 == 0) {
                                result += term;  // sign: I^n w/ n == 4*m
                        } else {
@@ -708,11 +707,12 @@ ex power::real_part() const
 
        // Re((a+I*b)^(c+I*d))
        const ex d = exponent.imag_part();
-       return power(abs(basis),c)*exp(-d*atan2(b,a))*cos(c*atan2(b,a)+d*log(abs(basis)));
+       return pow(abs(basis),c) * exp(-d*atan2(b,a)) * cos(c*atan2(b,a)+d*log(abs(basis)));
 }
 
 ex power::imag_part() const
 {
+       // basis == a+I*b, exponent == c+I*d
        const ex a = basis.real_part();
        const ex c = exponent.real_part();
        if (basis.is_equal(a) && exponent.is_equal(c)) {
@@ -725,13 +725,13 @@ ex power::imag_part() const
                // Im((a+I*b)^c)  w/  c ∈ ℤ
                long N = ex_to<numeric>(c).to_long();
                // Use imaginary terms in Binomial expansion to construct
-               // Im(expand(power(a+I*b, N))).
+               // Im(expand(pow(a+I*b, N))).
                long p = N > 0 ? 1 : 3;  // modulus for positive sign
                long NN = N > 0 ? N : -N;
-               ex numer = N > 0 ? _ex1 : power(power(a,2) + power(b,2), NN);
+               ex numer = N > 0 ? _ex1 : pow(pow(a,2) + pow(b,2), NN);
                ex result = 0;
                for (long n = 1; n <= NN; n += 2) {
-                       ex term = binomial(NN, n) * power(a, NN-n) * power(b, n) / numer;
+                       ex term = binomial(NN, n) * pow(a, NN-n) * pow(b, n) / numer;
                        if (n % 4 == p) {
                                result += term;  // sign: I^n w/ n == 4*m+p
                        } else {
@@ -743,7 +743,7 @@ ex power::imag_part() const
 
        // Im((a+I*b)^(c+I*d))
        const ex d = exponent.imag_part();
-       return power(abs(basis),c)*exp(-d*atan2(b,a))*sin(c*atan2(b,a)+d*log(abs(basis)));
+       return pow(abs(basis),c) * exp(-d*atan2(b,a)) * sin(c*atan2(b,a)+d*log(abs(basis)));
 }
 
 // protected
@@ -754,16 +754,11 @@ ex power::derivative(const symbol & s) const
 {
        if (is_a<numeric>(exponent)) {
                // D(b^r) = r * b^(r-1) * D(b) (faster than the formula below)
-               epvector newseq;
-               newseq.reserve(2);
-               newseq.push_back(expair(basis, exponent - _ex1));
-               newseq.push_back(expair(basis.diff(s), _ex1));
-               return mul(std::move(newseq), exponent);
+               const epvector newseq = {expair(basis, exponent - _ex1), expair(basis.diff(s), _ex1)};
+               return dynallocate<mul>(std::move(newseq), exponent);
        } else {
                // D(b^e) = b^e * (D(e)*ln(b) + e*D(b)/b)
-               return mul(*this,
-                          add(mul(exponent.diff(s), log(basis)),
-                          mul(mul(exponent, basis.diff(s)), power(basis, _ex_1))));
+               return *this * (exponent.diff(s)*log(basis) + exponent*basis.diff(s)*pow(basis, _ex_1));
        }
 }
 
@@ -822,9 +817,9 @@ ex power::expand(unsigned options) const
                // take care on the numeric coefficient
                ex coeff=(possign? _ex1 : _ex_1);
                if (m.overall_coeff.info(info_flags::positive) && m.overall_coeff != _ex1)
-                       prodseq.push_back(power(m.overall_coeff, exponent));
+                       prodseq.push_back(pow(m.overall_coeff, exponent));
                else if (m.overall_coeff.info(info_flags::negative) && m.overall_coeff != _ex_1)
-                       prodseq.push_back(power(-m.overall_coeff, exponent));
+                       prodseq.push_back(pow(-m.overall_coeff, exponent));
                else
                        coeff *= m.overall_coeff;
 
@@ -832,7 +827,7 @@ ex power::expand(unsigned options) const
                // In either case we set a flag to avoid the second run on a part
                // which does not have positive/negative terms.
                if (prodseq.size() > 0) {
-                       ex newbasis = coeff*mul(std::move(powseq));
+                       ex newbasis = dynallocate<mul>(std::move(powseq), coeff);
                        ex_to<basic>(newbasis).setflag(status_flags::purely_indefinite);
                        return dynallocate<mul>(std::move(prodseq)) * pow(newbasis, exponent);
                } else
@@ -848,7 +843,7 @@ ex power::expand(unsigned options) const
                exvector distrseq;
                distrseq.reserve(a.seq.size() + 1);
                for (auto & cit : a.seq) {
-                       distrseq.push_back(power(expanded_basis, a.recombine_pair_to_ex(cit)));
+                       distrseq.push_back(pow(expanded_basis, a.recombine_pair_to_ex(cit)));
                }
                
                // Make sure that e.g. (x+y)^(2+a) expands the (x+y)^2 factor
@@ -858,9 +853,9 @@ ex power::expand(unsigned options) const
                        if (int_exponent > 0 && is_exactly_a<add>(expanded_basis))
                                distrseq.push_back(expand_add(ex_to<add>(expanded_basis), int_exponent, options));
                        else
-                               distrseq.push_back(power(expanded_basis, a.overall_coeff));
+                               distrseq.push_back(pow(expanded_basis, a.overall_coeff));
                } else
-                       distrseq.push_back(power(expanded_basis, a.overall_coeff));
+                       distrseq.push_back(pow(expanded_basis, a.overall_coeff));
                
                // Make sure that e.g. (x+y)^(1+a) -> x*(x+y)^a + y*(x+y)^a
                ex r = dynallocate<mul>(distrseq);