]> www.ginac.de Git - ginac.git/blobdiff - ginac/numeric.cpp
- (l)degree(s), coeff(s, n) and collect(s) were extended to accept expressions
[ginac.git] / ginac / numeric.cpp
index fe51c60795dd7b4e92fc082ceac82b2bace6e787..f2a834d2ff76527fd7d3ef7cfa74676711ac6d3c 100644 (file)
@@ -7,7 +7,7 @@
  *  of special functions or implement the interface to the bignum package. */
 
 /*
- *  GiNaC Copyright (C) 1999-2001 Johannes Gutenberg University Mainz, Germany
+ *  GiNaC Copyright (C) 1999-2002 Johannes Gutenberg University Mainz, Germany
  *
  *  This program is free software; you can redistribute it and/or modify
  *  it under the terms of the GNU General Public License as published by
@@ -90,10 +90,10 @@ numeric::numeric(int i) : basic(TINFO_numeric)
 {
        // Not the whole int-range is available if we don't cast to long
        // first.  This is due to the behaviour of the cl_I-ctor, which
-       // emphasizes efficiency.  However, if the integer is small enough
-       // i.e. satisfies cl_immediate_p(), we save space and dereferences by
-       // using an immediate type:
-       if (cln::cl_immediate_p(i))
+       // emphasizes efficiency.  However, if the integer is small enough
+       // we save space and dereferences by using an immediate type.
+       // (C.f. <cln/object.h>)
+       if (i < (1U<<cl_value_len-1))
                value = cln::cl_I(i);
        else
                value = cln::cl_I((long) i);
@@ -105,10 +105,10 @@ numeric::numeric(unsigned int i) : basic(TINFO_numeric)
 {
        // Not the whole uint-range is available if we don't cast to ulong
        // first.  This is due to the behaviour of the cl_I-ctor, which
-       // emphasizes efficiency.  However, if the integer is small enough
-       // i.e. satisfies cl_immediate_p(), we save space and dereferences by
-       // using an immediate type:
-       if (cln::cl_immediate_p(i))
+       // emphasizes efficiency.  However, if the integer is small enough
+       // we save space and dereferences by using an immediate type.
+       // (C.f. <cln/object.h>)
+       if (i < (1U<<cl_value_len-1))
                value = cln::cl_I(i);
        else
                value = cln::cl_I((unsigned long) i);
@@ -389,6 +389,8 @@ void numeric::print(const print_context & c, unsigned level) const
                const std::string mul_sym   = is_a<print_latex>(c) ? " " : "*";
                const cln::cl_R r = cln::realpart(cln::the<cln::cl_N>(value));
                const cln::cl_R i = cln::imagpart(cln::the<cln::cl_N>(value));
+               if (is_a<print_python_repr>(c))
+                       c.s << class_name() << "('";
                if (cln::zerop(i)) {
                        // case 1, real:  x  or  -x
                        if ((precedence() <= level) && (!this->is_nonneg_integer())) {
@@ -446,6 +448,8 @@ void numeric::print(const print_context & c, unsigned level) const
                                        c.s << par_close;
                        }
                }
+               if (is_a<print_python_repr>(c))
+                       c.s << "')";
        }
 }
 
@@ -494,6 +498,21 @@ bool numeric::info(unsigned inf) const
        return false;
 }
 
+int numeric::degree(const ex & s) const
+{
+       return 0;
+}
+
+int numeric::ldegree(const ex & s) const
+{
+       return 0;
+}
+
+ex numeric::coeff(const ex & s, int n) const
+{
+       return n==0 ? *this : _ex0;
+}
+
 /** Disassemble real part and imaginary part to scan for the occurrence of a
  *  single number.  Also handles the imaginary unit.  It ignores the sign on
  *  both this and the argument, which may lead to what might appear as funny
@@ -1484,7 +1503,7 @@ const numeric bernoulli(const numeric &nn)
 {
        if (!nn.is_integer() || nn.is_negative())
                throw std::range_error("numeric::bernoulli(): argument must be integer >= 0");
-       
+
        // Method:
        //
        // The Bernoulli numbers are rational numbers that may be computed using
@@ -1508,45 +1527,61 @@ const numeric bernoulli(const numeric &nn)
        // But if somebody works with the n'th Bernoulli number she is likely to
        // also need all previous Bernoulli numbers. So we need a complete remember
        // table and above divide and conquer algorithm is not suited to build one
-       // up.  The code below is adapted from Pari's function bernvec().
+       // up.  The formula below accomplishes this.  It is a modification of the
+       // defining formula above but the computation of the binomial coefficients
+       // is carried along in an inline fashion.  It also honors the fact that
+       // B_n is zero when n is odd and greater than 1.
        // 
        // (There is an interesting relation with the tangent polynomials described
-       // in `Concrete Mathematics', which leads to a program twice as fast as our
-       // implementation below, but it requires storing one such polynomial in
+       // in `Concrete Mathematics', which leads to a program a little faster as
+       // our implementation below, but it requires storing one such polynomial in
        // addition to the remember table.  This doubles the memory footprint so
        // we don't use it.)
-       
+
+       const unsigned n = nn.to_int();
+
        // the special cases not covered by the algorithm below
-       if (nn.is_equal(_num1))
-               return _num_1_2;
-       if (nn.is_odd())
-               return _num0;
-       
+       if (n & 1)
+               return (n==1) ? _num_1_2 : _num0;
+       if (!n)
+                return _num1;
+
        // store nonvanishing Bernoulli numbers here
        static std::vector< cln::cl_RA > results;
-       static int highest_result = 0;
-       // algorithm not applicable to B(0), so just store it
-       if (results.empty())
-               results.push_back(cln::cl_RA(1));
-       
-       int n = nn.to_long();
-       for (int i=highest_result; i<n/2; ++i) {
-               cln::cl_RA B = 0;
-               long n = 8;
-               long m = 5;
-               long d1 = i;
-               long d2 = 2*i-1;
-               for (int j=i; j>0; --j) {
-                       B = cln::cl_I(n*m) * (B+results[j]) / (d1*d2);
-                       n += 4;
-                       m += 2;
-                       d1 -= 1;
-                       d2 -= 2;
-               }
-               B = (1 - ((B+1)/(2*i+3))) / (cln::cl_I(1)<<(2*i+2));
-               results.push_back(B);
-               ++highest_result;
+       static unsigned next_r = 0;
+
+       // algorithm not applicable to B(2), so just store it
+       if (!next_r) {
+               results.push_back(); // results[0] is not used
+               results.push_back(cln::recip(cln::cl_RA(6)));
+               next_r = 4;
+       }
+       if (n<next_r)
+               return results[n/2];
+
+       results.reserve(n/2 + 1);
+       for (unsigned p=next_r; p<=n;  p+=2) {
+               cln::cl_I  c = 1;  // seed for binonmial coefficients
+               cln::cl_RA b = cln::cl_RA(1-p)/2;
+               const unsigned p3 = p+3;
+               const unsigned pm = p-2;
+               unsigned i, k, p_2;
+               // test if intermediate unsigned int can be represented by immediate
+               // objects by CLN (i.e. < 2^29 for 32 Bit machines, see <cln/object.h>)
+               if (p < (1UL<<cl_value_len/2)) {
+                       for (i=2, k=1, p_2=p/2; i<=pm; i+=2, ++k, --p_2) {
+                               c = cln::exquo(c * ((p3-i) * p_2), (i-1)*k);
+                               b = b + c*results[k];
+                       }
+               } else {
+                       for (i=2, k=1, p_2=p/2; i<=pm; i+=2, ++k, --p_2) {
+                               c = cln::exquo((c * (p3-i)) * p_2, cln::cl_I(i-1)*k);
+                               b = b + c*results[k];
+                       }
+               }
+               results.push_back(-b/(p+1));
        }
+       next_r = n+2;
        return results[n/2];
 }