]> www.ginac.de Git - ginac.git/blobdiff - ginac/numeric.cpp
- print 0 without parens.
[ginac.git] / ginac / numeric.cpp
index be9df1cf7ffd4532d802a54cc05bac56a4b0b003..e5611eaf808f5d6b43cea22ea1a0068ddb10cc6e 100644 (file)
@@ -48,6 +48,7 @@
 // instead of in some header file where it would propagate to other parts.
 // Also, we only need a subset of CLN, so we don't include the complete cln.h:
 #ifdef HAVE_CLN_CLN_H
+#include <cln/cl_output.h>
 #include <cln/cl_integer_io.h>
 #include <cln/cl_integer_ring.h>
 #include <cln/cl_rational_io.h>
@@ -60,6 +61,7 @@
 #include <cln/cl_complex_ring.h>
 #include <cln/cl_numtheory.h>
 #else  // def HAVE_CLN_CLN_H
+#include <cl_output.h>
 #include <cl_integer_io.h>
 #include <cl_integer_ring.h>
 #include <cl_rational_io.h>
@@ -94,9 +96,10 @@ numeric::numeric() : basic(TINFO_numeric)
 {
     debugmsg("numeric default constructor", LOGLEVEL_CONSTRUCT);
     value = new cl_N;
-    *value=cl_I(0);
+    *value = cl_I(0);
     calchash();
-    setflag(status_flags::evaluated|
+    setflag(status_flags::evaluated |
+            status_flags::expanded |
             status_flags::hash_calculated);
 }
 
@@ -146,7 +149,7 @@ numeric::numeric(int i) : basic(TINFO_numeric)
 {
     debugmsg("numeric constructor from int",LOGLEVEL_CONSTRUCT);
     // Not the whole int-range is available if we don't cast to long
-    // first. This is due to the behaviour of the cl_I-ctor, which
+    // first.  This is due to the behaviour of the cl_I-ctor, which
     // emphasizes efficiency:
     value = new cl_I((long) i);
     calchash();
@@ -159,7 +162,7 @@ numeric::numeric(unsigned int i) : basic(TINFO_numeric)
 {
     debugmsg("numeric constructor from uint",LOGLEVEL_CONSTRUCT);
     // Not the whole uint-range is available if we don't cast to ulong
-    // first. This is due to the behaviour of the cl_I-ctor, which
+    // first.  This is due to the behaviour of the cl_I-ctor, which
     // emphasizes efficiency:
     value = new cl_I((unsigned long)i);
     calchash();
@@ -375,18 +378,44 @@ basic * numeric::duplicate() const
     return new numeric(*this);
 }
 
+
+/** Helper function to print a real number in a nicer way than is CLN's
+ *  default.  Instead of printing 42.0L0 this just prints 42.0 to ostream os
+ *  and instead of 3.99168L7 it prints 3.99168E7.  This is fine in GiNaC as
+ *  long as it only uses cl_LF and no other floating point types.
+ *
+ *  @see numeric::print() */
+void print_real_number(ostream & os, const cl_R & num)
+{
+    cl_print_flags ourflags;
+    if (::instanceof(num, ::cl_RA_ring)) {
+        // case 1: integer or rational, nothing special to do:
+        ::print_real(os, ourflags, num);
+    } else {
+        // case 2: float
+        // make CLN believe this number has default_float_format, so it prints
+        // 'E' as exponent marker instead of 'L':
+        ourflags.default_float_format = ::cl_float_format(The(cl_F)(num));
+        ::print_real(os, ourflags, num);
+    }
+    return;
+}
+
+/** This method adds to the output so it blends more consistently together
+ *  with the other routines and produces something compatible to ginsh input.
+ *  
+ *  @see print_real_number() */
 void numeric::print(ostream & os, unsigned upper_precedence) const
 {
-    // The method print adds to the output so it blends more consistently
-    // together with the other routines and produces something compatible to
-    // ginsh input.
     debugmsg("numeric print", LOGLEVEL_PRINT);
     if (this->is_real()) {
         // case 1, real:  x  or  -x
-        if ((precedence<=upper_precedence) && (!this->is_pos_integer())) {
-            os << "(" << *value << ")";
+        if ((precedence<=upper_precedence) && (!this->is_nonneg_integer())) {
+            os << "(";
+            print_real_number(os, The(cl_R)(*value));
+            os << ")";
         } else {
-            os << *value;
+            print_real_number(os, The(cl_R)(*value));
         }
     } else {
         // case 2, imaginary:  y*I  or  -y*I
@@ -395,7 +424,9 @@ void numeric::print(ostream & os, unsigned upper_precedence) const
                 if (::imagpart(*value) == -1) {
                     os << "(-I)";
                 } else {
-                    os << "(" << ::imagpart(*value) << "*I)";
+                    os << "(";
+                    print_real_number(os, The(cl_R)(::imagpart(*value)));
+                    os << "*I)";
                 }
             } else {
                 if (::imagpart(*value) == 1) {
@@ -404,28 +435,34 @@ void numeric::print(ostream & os, unsigned upper_precedence) const
                     if (::imagpart (*value) == -1) {
                         os << "-I";
                     } else {
-                        os << ::imagpart(*value) << "*I";
+                        print_real_number(os, The(cl_R)(::imagpart(*value)));
+                        os << "*I";
                     }
                 }
             }
         } else {
             // case 3, complex:  x+y*I  or  x-y*I  or  -x+y*I  or  -x-y*I
-            if (precedence <= upper_precedence) os << "(";
-            os << ::realpart(*value);
+            if (precedence <= upper_precedence)
+                os << "(";
+            print_real_number(os, The(cl_R)(::realpart(*value)));
             if (::imagpart(*value) < 0) {
                 if (::imagpart(*value) == -1) {
                     os << "-I";
                 } else {
-                    os << ::imagpart(*value) << "*I";
+                    print_real_number(os, The(cl_R)(::imagpart(*value)));
+                    os << "*I";
                 }
             } else {
                 if (::imagpart(*value) == 1) {
                     os << "+I";
                 } else {
-                    os << "+" << ::imagpart(*value) << "*I";
+                    os << "+";
+                    print_real_number(os, The(cl_R)(::imagpart(*value)));
+                    os << "*I";
                 }
             }
-            if (precedence <= upper_precedence) os << ")";
+            if (precedence <= upper_precedence)
+                os << ")";
         }
     }
 }
@@ -511,11 +548,11 @@ bool numeric::info(unsigned inf) const
     case info_flags::negative:
         return is_negative();
     case info_flags::nonnegative:
-        return compare(_num0())>=0;
+        return !is_negative();
     case info_flags::posint:
         return is_pos_integer();
     case info_flags::negint:
-        return is_integer() && (compare(_num0())<0);
+        return is_integer() && is_negative();
     case info_flags::nonnegint:
         return is_nonneg_integer();
     case info_flags::even:
@@ -684,13 +721,15 @@ numeric numeric::div(const numeric & other) const
 
 numeric numeric::power(const numeric & other) const
 {
-    static const numeric * _num1p=&_num1();
+    static const numeric * _num1p = &_num1();
     if (&other==_num1p)
         return *this;
     if (::zerop(*value)) {
         if (::zerop(*other.value))
             throw (std::domain_error("numeric::eval(): pow(0,0) is undefined"));
-        else if (other.is_real() && !::plusp(::realpart(*other.value)))
+        else if (::zerop(::realpart(*other.value)))
+            throw (std::domain_error("numeric::eval(): pow(0,I) is undefined"));
+        else if (::minusp(::realpart(*other.value)))
             throw (std::overflow_error("numeric::eval(): division by zero"));
         else
             return _num0();
@@ -744,7 +783,9 @@ const numeric & numeric::power_dyn(const numeric & other) const
     if (::zerop(*value)) {
         if (::zerop(*other.value))
             throw (std::domain_error("numeric::eval(): pow(0,0) is undefined"));
-        else if (other.is_real() && !::plusp(::realpart(*other.value)))
+        else if (::zerop(::realpart(*other.value)))
+            throw (std::domain_error("numeric::eval(): pow(0,I) is undefined"));
+        else if (::minusp(::realpart(*other.value)))
             throw (std::overflow_error("numeric::eval(): division by zero"));
         else
             return _num0();
@@ -858,7 +899,7 @@ bool numeric::is_negative(void) const
 /** True if object is a non-complex integer. */
 bool numeric::is_integer(void) const
 {
-    return ::instanceof(*value, cl_I_ring);  // -> CLN
+    return ::instanceof(*value, ::cl_I_ring);  // -> CLN
 }
 
 /** True if object is an exact integer greater than zero. */
@@ -897,13 +938,13 @@ bool numeric::is_prime(void) const
  *  (denominator may be unity). */
 bool numeric::is_rational(void) const
 {
-    return ::instanceof(*value, cl_RA_ring);  // -> CLN
+    return ::instanceof(*value, ::cl_RA_ring);  // -> CLN
 }
 
 /** True if object is a real integer, rational or float (but not complex). */
 bool numeric::is_real(void) const
 {
-    return ::instanceof(*value, cl_R_ring);  // -> CLN
+    return ::instanceof(*value, ::cl_R_ring);  // -> CLN
 }
 
 bool numeric::operator==(const numeric & other) const
@@ -920,11 +961,11 @@ bool numeric::operator!=(const numeric & other) const
  *  of the form a+b*I, where a and b are integers. */
 bool numeric::is_cinteger(void) const
 {
-    if (::instanceof(*value, cl_I_ring))
+    if (::instanceof(*value, ::cl_I_ring))
         return true;
     else if (!this->is_real()) {  // complex case, handle n+m*I
-        if (::instanceof(::realpart(*value), cl_I_ring) &&
-            ::instanceof(::imagpart(*value), cl_I_ring))
+        if (::instanceof(::realpart(*value), ::cl_I_ring) &&
+            ::instanceof(::imagpart(*value), ::cl_I_ring))
             return true;
     }
     return false;
@@ -934,11 +975,11 @@ bool numeric::is_cinteger(void) const
  *  (denominator may be unity). */
 bool numeric::is_crational(void) const
 {
-    if (::instanceof(*value, cl_RA_ring))
+    if (::instanceof(*value, ::cl_RA_ring))
         return true;
     else if (!this->is_real()) {  // complex case, handle Q(i):
-        if (::instanceof(::realpart(*value), cl_RA_ring) &&
-            ::instanceof(::imagpart(*value), cl_RA_ring))
+        if (::instanceof(::realpart(*value), ::cl_RA_ring) &&
+            ::instanceof(::imagpart(*value), ::cl_RA_ring))
             return true;
     }
     return false;
@@ -1015,13 +1056,13 @@ double numeric::to_double(void) const
 }
 
 /** Real part of a number. */
-numeric numeric::real(void) const
+const numeric numeric::real(void) const
 {
     return numeric(::realpart(*value));  // -> CLN
 }
 
 /** Imaginary part of a number. */
-numeric numeric::imag(void) const
+const numeric numeric::imag(void) const
 {
     return numeric(::imagpart(*value));  // -> CLN
 }
@@ -1043,44 +1084,44 @@ inline cl_heap_ratio* TheRatio (const cl_N& obj)
  *  numerator of complex if real and imaginary part are both rational numbers
  *  (i.e numer(4/3+5/6*I) == 8+5*I), the number carrying the sign in all other
  *  cases. */
-numeric numeric::numer(void) const
+const numeric numeric::numer(void) const
 {
     if (this->is_integer()) {
         return numeric(*this);
     }
 #ifdef SANE_LINKER
-    else if (::instanceof(*value, cl_RA_ring)) {
+    else if (::instanceof(*value, ::cl_RA_ring)) {
         return numeric(::numerator(The(cl_RA)(*value)));
     }
     else if (!this->is_real()) {  // complex case, handle Q(i):
         cl_R r = ::realpart(*value);
         cl_R i = ::imagpart(*value);
-        if (::instanceof(r, cl_I_ring) && ::instanceof(i, cl_I_ring))
+        if (::instanceof(r, ::cl_I_ring) && ::instanceof(i, ::cl_I_ring))
             return numeric(*this);
-        if (::instanceof(r, cl_I_ring) && ::instanceof(i, cl_RA_ring))
+        if (::instanceof(r, ::cl_I_ring) && ::instanceof(i, ::cl_RA_ring))
             return numeric(::complex(r*::denominator(The(cl_RA)(i)), ::numerator(The(cl_RA)(i))));
-        if (::instanceof(r, cl_RA_ring) && ::instanceof(i, cl_I_ring))
+        if (::instanceof(r, ::cl_RA_ring) && ::instanceof(i, ::cl_I_ring))
             return numeric(::complex(::numerator(The(cl_RA)(r)), i*::denominator(The(cl_RA)(r))));
-        if (::instanceof(r, cl_RA_ring) && ::instanceof(i, cl_RA_ring)) {
+        if (::instanceof(r, ::cl_RA_ring) && ::instanceof(i, ::cl_RA_ring)) {
             cl_I s = ::lcm(::denominator(The(cl_RA)(r)), ::denominator(The(cl_RA)(i)));
             return numeric(::complex(::numerator(The(cl_RA)(r))*(exquo(s,::denominator(The(cl_RA)(r)))),
                                    ::numerator(The(cl_RA)(i))*(exquo(s,::denominator(The(cl_RA)(i))))));
         }
     }
 #else
-    else if (instanceof(*value, cl_RA_ring)) {
+    else if (instanceof(*value, ::cl_RA_ring)) {
         return numeric(TheRatio(*value)->numerator);
     }
     else if (!this->is_real()) {  // complex case, handle Q(i):
         cl_R r = ::realpart(*value);
         cl_R i = ::imagpart(*value);
-        if (instanceof(r, cl_I_ring) && instanceof(i, cl_I_ring))
+        if (instanceof(r, ::cl_I_ring) && instanceof(i, ::cl_I_ring))
             return numeric(*this);
-        if (instanceof(r, cl_I_ring) && instanceof(i, cl_RA_ring))
+        if (instanceof(r, ::cl_I_ring) && instanceof(i, ::cl_RA_ring))
             return numeric(::complex(r*TheRatio(i)->denominator, TheRatio(i)->numerator));
-        if (instanceof(r, cl_RA_ring) && instanceof(i, cl_I_ring))
+        if (instanceof(r, ::cl_RA_ring) && instanceof(i, ::cl_I_ring))
             return numeric(::complex(TheRatio(r)->numerator, i*TheRatio(r)->denominator));
-        if (instanceof(r, cl_RA_ring) && instanceof(i, cl_RA_ring)) {
+        if (instanceof(r, ::cl_RA_ring) && instanceof(i, ::cl_RA_ring)) {
             cl_I s = ::lcm(TheRatio(r)->denominator, TheRatio(i)->denominator);
             return numeric(::complex(TheRatio(r)->numerator*(exquo(s,TheRatio(r)->denominator)),
                                    TheRatio(i)->numerator*(exquo(s,TheRatio(i)->denominator))));
@@ -1094,41 +1135,41 @@ numeric numeric::numer(void) const
 /** Denominator.  Computes the denominator of rational numbers, common integer
  *  denominator of complex if real and imaginary part are both rational numbers
  *  (i.e denom(4/3+5/6*I) == 6), one in all other cases. */
-numeric numeric::denom(void) const
+const numeric numeric::denom(void) const
 {
     if (this->is_integer()) {
         return _num1();
     }
 #ifdef SANE_LINKER
-    if (instanceof(*value, cl_RA_ring)) {
+    if (instanceof(*value, ::cl_RA_ring)) {
         return numeric(::denominator(The(cl_RA)(*value)));
     }
     if (!this->is_real()) {  // complex case, handle Q(i):
         cl_R r = ::realpart(*value);
         cl_R i = ::imagpart(*value);
-        if (::instanceof(r, cl_I_ring) && ::instanceof(i, cl_I_ring))
+        if (::instanceof(r, ::cl_I_ring) && ::instanceof(i, ::cl_I_ring))
             return _num1();
-        if (::instanceof(r, cl_I_ring) && ::instanceof(i, cl_RA_ring))
+        if (::instanceof(r, ::cl_I_ring) && ::instanceof(i, ::cl_RA_ring))
             return numeric(::denominator(The(cl_RA)(i)));
-        if (::instanceof(r, cl_RA_ring) && ::instanceof(i, cl_I_ring))
+        if (::instanceof(r, ::cl_RA_ring) && ::instanceof(i, ::cl_I_ring))
             return numeric(::denominator(The(cl_RA)(r)));
-        if (::instanceof(r, cl_RA_ring) && ::instanceof(i, cl_RA_ring))
+        if (::instanceof(r, ::cl_RA_ring) && ::instanceof(i, ::cl_RA_ring))
             return numeric(::lcm(::denominator(The(cl_RA)(r)), ::denominator(The(cl_RA)(i))));
     }
 #else
-    if (instanceof(*value, cl_RA_ring)) {
+    if (instanceof(*value, ::cl_RA_ring)) {
         return numeric(TheRatio(*value)->denominator);
     }
     if (!this->is_real()) {  // complex case, handle Q(i):
         cl_R r = ::realpart(*value);
         cl_R i = ::imagpart(*value);
-        if (instanceof(r, cl_I_ring) && instanceof(i, cl_I_ring))
+        if (instanceof(r, ::cl_I_ring) && instanceof(i, ::cl_I_ring))
             return _num1();
-        if (instanceof(r, cl_I_ring) && instanceof(i, cl_RA_ring))
+        if (instanceof(r, ::cl_I_ring) && instanceof(i, ::cl_RA_ring))
             return numeric(TheRatio(i)->denominator);
-        if (instanceof(r, cl_RA_ring) && instanceof(i, cl_I_ring))
+        if (instanceof(r, ::cl_RA_ring) && instanceof(i, ::cl_I_ring))
             return numeric(TheRatio(r)->denominator);
-        if (instanceof(r, cl_RA_ring) && instanceof(i, cl_RA_ring))
+        if (instanceof(r, ::cl_RA_ring) && instanceof(i, ::cl_RA_ring))
             return numeric(::lcm(TheRatio(r)->denominator, TheRatio(i)->denominator));
     }
 #endif // def SANE_LINKER
@@ -1443,9 +1484,11 @@ const numeric bernoulli(const numeric & nn)
         return _num0();
     // Until somebody has the Blues and comes up with a much better idea and
     // codes it (preferably in CLN) we make this a remembering function which
-    // computes its results using the formula
+    // computes its results using the defining formula
     // B(nn) == - 1/(nn+1) * sum_{k=0}^{nn-1}(binomial(nn+1,k)*B(k))
     // whith B(0) == 1.
+    // Be warned, though: the Bernoulli numbers are probably computationally 
+    // very expensive anyhow and you shouldn't expect miracles to happen.
     static vector<numeric> results;
     static int highest_result = -1;
     int n = nn.sub(_num2()).div(_num2()).to_int();
@@ -1477,23 +1520,50 @@ const numeric bernoulli(const numeric & nn)
  *  @exception range_error (argument must be an integer) */
 const numeric fibonacci(const numeric & n)
 {
-    if (!n.is_integer()) {
+    if (!n.is_integer())
         throw (std::range_error("numeric::fibonacci(): argument must be integer"));
-    }
-    // For positive arguments compute the nearest integer to
-    // ((1+sqrt(5))/2)^n/sqrt(5).  For negative arguments, apply an additional
-    // sign.  Note that we are falling back to longs, but this should suffice
-    // for all times.
-    int sig = 1;
-    const long nn = ::abs(n.to_double());
-    if (n.is_negative() && n.is_even())
-        sig =-1;
+    // The following addition formula holds:
+    //      F(n+m)   = F(m-1)*F(n) + F(m)*F(n+1)  for m >= 1, n >= 0.
+    // (Proof: For fixed m, the LHS and the RHS satisfy the same recurrence
+    // w.r.t. n, and the initial values (n=0, n=1) agree. Hence all values
+    // agree.)
+    // Replace m by m+1:
+    //      F(n+m+1) = F(m)*F(n) + F(m+1)*F(n+1)      for m >= 0, n >= 0
+    // Now put in m = n, to get
+    //      F(2n) = (F(n+1)-F(n))*F(n) + F(n)*F(n+1) = F(n)*(2*F(n+1) - F(n))
+    //      F(2n+1) = F(n)^2 + F(n+1)^2
+    // hence
+    //      F(2n+2) = F(n+1)*(2*F(n) + F(n+1))
+    if (n.is_zero())
+        return _num0();
+    if (n.is_negative())
+        if (n.is_even())
+            return -fibonacci(-n);
+        else
+            return fibonacci(-n);
     
-    // Need a precision of ((1+sqrt(5))/2)^-n.
-    cl_float_format_t prec = ::cl_float_format((int)(0.208987641*nn+5));
-    cl_R sqrt5 = ::sqrt(::cl_float(5,prec));
-    cl_R phi = (1+sqrt5)/2;
-    return numeric(::round1(::expt(phi,nn)/sqrt5)*sig);
+    cl_I u(0);
+    cl_I v(1);
+    cl_I m = The(cl_I)(*n.value) >> 1L;  // floor(n/2);
+    for (uintL bit=::integer_length(m); bit>0; --bit) {
+        // Since a squaring is cheaper than a multiplication, better use
+        // three squarings instead of one multiplication and two squarings.
+        cl_I u2 = ::square(u);
+        cl_I v2 = ::square(v);
+        if (::logbitp(bit-1, m)) {
+            v = ::square(u + v) - u2;
+            u = u2 + v2;
+        } else {
+            u = v2 - ::square(v - u);
+            v = u2 + v2;
+        }
+    }
+    if (n.is_even())
+        // Here we don't use the squaring formula because one multiplication
+        // is cheaper than two squarings.
+        return u * ((v << 1) - u);
+    else
+        return ::square(u) + ::square(v);    
 }