]> www.ginac.de Git - ginac.git/blobdiff - ginac/numeric.cpp
- complex numbers are printed correctly (using the STL complex<> template or
[ginac.git] / ginac / numeric.cpp
index f1be0bcbe960d0df61609a9809e70b931c01efff..e1156f061eb6409b017b9d19eed761999a413b12 100644 (file)
@@ -7,7 +7,7 @@
  *  of special functions or implement the interface to the bignum package. */
 
 /*
- *  GiNaC Copyright (C) 1999-2001 Johannes Gutenberg University Mainz, Germany
+ *  GiNaC Copyright (C) 1999-2003 Johannes Gutenberg University Mainz, Germany
  *
  *  This program is free software; you can redistribute it and/or modify
  *  it under the terms of the GNU General Public License as published by
@@ -30,6 +30,7 @@
 #include <stdexcept>
 #include <string>
 #include <sstream>
+#include <limits>
 
 #include "numeric.h"
 #include "ex.h"
@@ -313,7 +314,7 @@ DEFAULT_UNARCHIVE(numeric)
  *  want to visibly distinguish from cl_LF.
  *
  *  @see numeric::print() */
-static void print_real_number(const print_context & c, const cln::cl_R &x)
+static void print_real_number(const print_context & c, const cln::cl_R & x)
 {
        cln::cl_print_flags ourflags;
        if (cln::instanceof(x, cln::cl_RA_ring)) {
@@ -322,8 +323,10 @@ static void print_real_number(const print_context & c, const cln::cl_R &x)
                    !is_a<print_latex>(c)) {
                        cln::print_real(c.s, ourflags, x);
                } else {  // rational output in LaTeX context
+                       if (x < 0)
+                               c.s << "-";
                        c.s << "\\frac{";
-                       cln::print_real(c.s, ourflags, cln::numerator(cln::the<cln::cl_RA>(x)));
+                       cln::print_real(c.s, ourflags, cln::abs(cln::numerator(cln::the<cln::cl_RA>(x))));
                        c.s << "}{";
                        cln::print_real(c.s, ourflags, cln::denominator(cln::the<cln::cl_RA>(x)));
                        c.s << '}';
@@ -337,6 +340,82 @@ static void print_real_number(const print_context & c, const cln::cl_R &x)
        }
 }
 
+/** Helper function to print integer number in C++ source format.
+ *
+ *  @see numeric::print() */
+static void print_integer_csrc(const print_context & c, const cln::cl_I & x)
+{
+       // Print small numbers in compact float format, but larger numbers in
+       // scientific format
+       const int max_cln_int = 536870911; // 2^29-1
+       if (x >= cln::cl_I(-max_cln_int) && x <= cln::cl_I(max_cln_int))
+               c.s << cln::cl_I_to_int(x) << ".0";
+       else
+               c.s << cln::double_approx(x);
+}
+
+/** Helper function to print real number in C++ source format.
+ *
+ *  @see numeric::print() */
+static void print_real_csrc(const print_context & c, const cln::cl_R & x)
+{
+       if (cln::instanceof(x, cln::cl_I_ring)) {
+
+               // Integer number
+               print_integer_csrc(c, cln::the<cln::cl_I>(x));
+
+       } else if (cln::instanceof(x, cln::cl_RA_ring)) {
+
+               // Rational number
+               const cln::cl_I numer = cln::numerator(cln::the<cln::cl_RA>(x));
+               const cln::cl_I denom = cln::denominator(cln::the<cln::cl_RA>(x));
+               if (cln::plusp(x) > 0) {
+                       c.s << "(";
+                       print_integer_csrc(c, numer);
+               } else {
+                       c.s << "-(";
+                       print_integer_csrc(c, -numer);
+               }
+               c.s << "/";
+               print_integer_csrc(c, denom);
+               c.s << ")";
+
+       } else {
+
+               // Anything else
+               c.s << cln::double_approx(x);
+       }
+}
+
+/** Helper function to print real number in C++ source format using cl_N types.
+ *
+ *  @see numeric::print() */
+static void print_real_cl_N(const print_context & c, const cln::cl_R & x)
+{
+       if (cln::instanceof(x, cln::cl_I_ring)) {
+
+               // Integer number
+               c.s << "cln::cl_I(\"";
+               print_real_number(c, x);
+               c.s << "\")";
+
+       } else if (cln::instanceof(x, cln::cl_RA_ring)) {
+
+               // Rational number
+               cln::cl_print_flags ourflags;
+               c.s << "cln::cl_RA(\"";
+               cln::print_rational(c.s, ourflags, cln::the<cln::cl_RA>(x));
+               c.s << "\")";
+
+       } else {
+
+               // Anything else
+               c.s << "cln::cl_F(\"";
+               print_real_number(c, cln::cl_float(1.0, cln::default_float_format) * x);
+               c.s << "_" << Digits << "\")";
+       }
+}
+
 /** This method adds to the output so it blends more consistently together
  *  with the other routines and produces something compatible to ginsh input.
  *  
@@ -350,45 +429,69 @@ void numeric::print(const print_context & c, unsigned level) const
                    << std::hex << ", hash=0x" << hashvalue << ", flags=0x" << flags << std::dec
                    << std::endl;
 
+       } else if (is_a<print_csrc_cl_N>(c)) {
+
+               // CLN output
+               if (this->is_real()) {
+
+                       // Real number
+                       print_real_cl_N(c, cln::the<cln::cl_R>(value));
+
+               } else {
+
+                       // Complex number
+                       c.s << "cln::complex(";
+                       print_real_cl_N(c, cln::realpart(cln::the<cln::cl_N>(value)));
+                       c.s << ",";
+                       print_real_cl_N(c, cln::imagpart(cln::the<cln::cl_N>(value)));
+                       c.s << ")";
+               }
+
        } else if (is_a<print_csrc>(c)) {
 
+               // C++ source output
                std::ios::fmtflags oldflags = c.s.flags();
                c.s.setf(std::ios::scientific);
-               if (this->is_rational() && !this->is_integer()) {
-                       if (compare(_num0) > 0) {
-                               c.s << "(";
-                               if (is_a<print_csrc_cl_N>(c))
-                                       c.s << "cln::cl_F(\"" << numer().evalf() << "\")";
-                               else
-                                       c.s << numer().to_double();
-                       } else {
-                               c.s << "-(";
-                               if (is_a<print_csrc_cl_N>(c))
-                                       c.s << "cln::cl_F(\"" << -numer().evalf() << "\")";
-                               else
-                                       c.s << -numer().to_double();
-                       }
-                       c.s << "/";
-                       if (is_a<print_csrc_cl_N>(c))
-                               c.s << "cln::cl_F(\"" << denom().evalf() << "\")";
-                       else
-                               c.s << denom().to_double();
-                       c.s << ")";
+               int oldprec = c.s.precision();
+
+               // Set precision
+               if (is_a<print_csrc_double>(c))
+                       c.s.precision(std::numeric_limits<double>::digits10 + 1);
+               else
+                       c.s.precision(std::numeric_limits<float>::digits10 + 1);
+
+               if (this->is_real()) {
+
+                       // Real number
+                       print_real_csrc(c, cln::the<cln::cl_R>(value));
+
                } else {
-                       if (is_a<print_csrc_cl_N>(c))
-                               c.s << "cln::cl_F(\"" << evalf() << "\")";
+
+                       // Complex number
+                       c.s << "std::complex<";
+                       if (is_a<print_csrc_double>(c))
+                               c.s << "double>(";
                        else
-                               c.s << to_double();
+                               c.s << "float>(";
+
+                       print_real_csrc(c, cln::realpart(cln::the<cln::cl_N>(value)));
+                       c.s << ",";
+                       print_real_csrc(c, cln::imagpart(cln::the<cln::cl_N>(value)));
+                       c.s << ")";
                }
+
                c.s.flags(oldflags);
+               c.s.precision(oldprec);
 
        } else {
+
                const std::string par_open  = is_a<print_latex>(c) ? "{(" : "(";
                const std::string par_close = is_a<print_latex>(c) ? ")}" : ")";
                const std::string imag_sym  = is_a<print_latex>(c) ? "i" : "I";
                const std::string mul_sym   = is_a<print_latex>(c) ? " " : "*";
                const cln::cl_R r = cln::realpart(cln::the<cln::cl_N>(value));
                const cln::cl_R i = cln::imagpart(cln::the<cln::cl_N>(value));
+
                if (is_a<print_python_repr>(c))
                        c.s << class_name() << "('";
                if (cln::zerop(i)) {
@@ -403,25 +506,19 @@ void numeric::print(const print_context & c, unsigned level) const
                } else {
                        if (cln::zerop(r)) {
                                // case 2, imaginary:  y*I  or  -y*I
-                               if ((precedence() <= level) && (i < 0)) {
-                                       if (i == -1) {
-                                               c.s << par_open+imag_sym+par_close;
-                                       } else {
+                               if (i==1)
+                                       c.s << imag_sym;
+                               else {
+                                       if (precedence()<=level)
                                                c.s << par_open;
+                                       if (i == -1)
+                                               c.s << "-" << imag_sym;
+                                       else {
                                                print_real_number(c, i);
-                                               c.s << mul_sym+imag_sym+par_close;
-                                       }
-                               } else {
-                                       if (i == 1) {
-                                               c.s << imag_sym;
-                                       } else {
-                                               if (i == -1) {
-                                                       c.s << "-" << imag_sym;
-                                               } else {
-                                                       print_real_number(c, i);
-                                                       c.s << mul_sym+imag_sym;
-                                               }
+                                               c.s << mul_sym+imag_sym;
                                        }
+                                       if (precedence()<=level)
+                                               c.s << par_close;
                                }
                        } else {
                                // case 3, complex:  x+y*I  or  x-y*I  or  -x+y*I  or  -x-y*I
@@ -498,6 +595,21 @@ bool numeric::info(unsigned inf) const
        return false;
 }
 
+int numeric::degree(const ex & s) const
+{
+       return 0;
+}
+
+int numeric::ldegree(const ex & s) const
+{
+       return 0;
+}
+
+ex numeric::coeff(const ex & s, int n) const
+{
+       return n==0 ? *this : _ex0;
+}
+
 /** Disassemble real part and imaginary part to scan for the occurrence of a
  *  single number.  Also handles the imaginary unit.  It ignores the sign on
  *  both this and the argument, which may lead to what might appear as funny
@@ -1537,14 +1649,13 @@ const numeric bernoulli(const numeric &nn)
 
        // algorithm not applicable to B(2), so just store it
        if (!next_r) {
-               results.push_back(); // results[0] is not used
                results.push_back(cln::recip(cln::cl_RA(6)));
                next_r = 4;
        }
        if (n<next_r)
-               return results[n/2];
+               return results[n/2-1];
 
-       results.reserve(n/2 + 1);
+       results.reserve(n/2);
        for (unsigned p=next_r; p<=n;  p+=2) {
                cln::cl_I  c = 1;  // seed for binonmial coefficients
                cln::cl_RA b = cln::cl_RA(1-p)/2;
@@ -1556,18 +1667,18 @@ const numeric bernoulli(const numeric &nn)
                if (p < (1UL<<cl_value_len/2)) {
                        for (i=2, k=1, p_2=p/2; i<=pm; i+=2, ++k, --p_2) {
                                c = cln::exquo(c * ((p3-i) * p_2), (i-1)*k);
-                               b = b + c*results[k];
+                               b = b + c*results[k-1];
                        }
                } else {
                        for (i=2, k=1, p_2=p/2; i<=pm; i+=2, ++k, --p_2) {
                                c = cln::exquo((c * (p3-i)) * p_2, cln::cl_I(i-1)*k);
-                               b = b + c*results[k];
+                               b = b + c*results[k-1];
                        }
                }
                results.push_back(-b/(p+1));
        }
        next_r = n+2;
-       return results[n/2];
+       return results[n/2-1];
 }
 
 
@@ -1674,9 +1785,12 @@ const numeric smod(const numeric &a, const numeric &b)
  *  In general, mod(a,b) has the sign of b or is zero, and irem(a,b) has the
  *  sign of a or is zero.
  *
- *  @return remainder of a/b if both are integer, 0 otherwise. */
+ *  @return remainder of a/b if both are integer, 0 otherwise.
+ *  @exception overflow_error (division by zero) if b is zero. */
 const numeric irem(const numeric &a, const numeric &b)
 {
+       if (b.is_zero())
+               throw std::overflow_error("numeric::irem(): division by zero");
        if (a.is_integer() && b.is_integer())
                return cln::rem(cln::the<cln::cl_I>(a.to_cl_N()),
                                cln::the<cln::cl_I>(b.to_cl_N()));
@@ -1691,9 +1805,12 @@ const numeric irem(const numeric &a, const numeric &b)
  *  and irem(a,b) has the sign of a or is zero.  
  *
  *  @return remainder of a/b and quotient stored in q if both are integer,
- *  0 otherwise. */
+ *  0 otherwise.
+ *  @exception overflow_error (division by zero) if b is zero. */
 const numeric irem(const numeric &a, const numeric &b, numeric &q)
 {
+       if (b.is_zero())
+               throw std::overflow_error("numeric::irem(): division by zero");
        if (a.is_integer() && b.is_integer()) {
                const cln::cl_I_div_t rem_quo = cln::truncate2(cln::the<cln::cl_I>(a.to_cl_N()),
                                                               cln::the<cln::cl_I>(b.to_cl_N()));
@@ -1709,9 +1826,12 @@ const numeric irem(const numeric &a, const numeric &b, numeric &q)
 /** Numeric integer quotient.
  *  Equivalent to Maple's iquo as far as sign conventions are concerned.
  *  
- *  @return truncated quotient of a/b if both are integer, 0 otherwise. */
+ *  @return truncated quotient of a/b if both are integer, 0 otherwise.
+ *  @exception overflow_error (division by zero) if b is zero. */
 const numeric iquo(const numeric &a, const numeric &b)
 {
+       if (b.is_zero())
+               throw std::overflow_error("numeric::iquo(): division by zero");
        if (a.is_integer() && b.is_integer())
                return cln::truncate1(cln::the<cln::cl_I>(a.to_cl_N()),
                                  cln::the<cln::cl_I>(b.to_cl_N()));
@@ -1725,9 +1845,12 @@ const numeric iquo(const numeric &a, const numeric &b)
  *  r == a - iquo(a,b,r)*b.
  *
  *  @return truncated quotient of a/b and remainder stored in r if both are
- *  integer, 0 otherwise. */
+ *  integer, 0 otherwise.
+ *  @exception overflow_error (division by zero) if b is zero. */
 const numeric iquo(const numeric &a, const numeric &b, numeric &r)
 {
+       if (b.is_zero())
+               throw std::overflow_error("numeric::iquo(): division by zero");
        if (a.is_integer() && b.is_integer()) {
                const cln::cl_I_div_t rem_quo = cln::truncate2(cln::the<cln::cl_I>(a.to_cl_N()),
                                                               cln::the<cln::cl_I>(b.to_cl_N()));