]> www.ginac.de Git - ginac.git/blobdiff - ginac/numeric.cpp
- prepared for 1.0.13 release
[ginac.git] / ginac / numeric.cpp
index 96543bb05e52272097a048b308b38d511b49521b..545d87428ed59ee9836db929fcd36ef5317e84c4 100644 (file)
@@ -7,7 +7,7 @@
  *  of special functions or implement the interface to the bignum package. */
 
 /*
- *  GiNaC Copyright (C) 1999-2001 Johannes Gutenberg University Mainz, Germany
+ *  GiNaC Copyright (C) 1999-2003 Johannes Gutenberg University Mainz, Germany
  *
  *  This program is free software; you can redistribute it and/or modify
  *  it under the terms of the GNU General Public License as published by
@@ -90,10 +90,10 @@ numeric::numeric(int i) : basic(TINFO_numeric)
 {
        // Not the whole int-range is available if we don't cast to long
        // first.  This is due to the behaviour of the cl_I-ctor, which
-       // emphasizes efficiency.  However, if the integer is small enough
-       // i.e. satisfies cl_immediate_p(), we save space and dereferences by
-       // using an immediate type:
-       if (cln::cl_immediate_p(i))
+       // emphasizes efficiency.  However, if the integer is small enough
+       // we save space and dereferences by using an immediate type.
+       // (C.f. <cln/object.h>)
+       if (i < (1U<<cl_value_len-1))
                value = cln::cl_I(i);
        else
                value = cln::cl_I((long) i);
@@ -105,10 +105,10 @@ numeric::numeric(unsigned int i) : basic(TINFO_numeric)
 {
        // Not the whole uint-range is available if we don't cast to ulong
        // first.  This is due to the behaviour of the cl_I-ctor, which
-       // emphasizes efficiency.  However, if the integer is small enough
-       // i.e. satisfies cl_immediate_p(), we save space and dereferences by
-       // using an immediate type:
-       if (cln::cl_immediate_p(i))
+       // emphasizes efficiency.  However, if the integer is small enough
+       // we save space and dereferences by using an immediate type.
+       // (C.f. <cln/object.h>)
+       if (i < (1U<<cl_value_len-1))
                value = cln::cl_I(i);
        else
                value = cln::cl_I((unsigned long) i);
@@ -159,35 +159,43 @@ numeric::numeric(const char *s) : basic(TINFO_numeric)
        // parse complex numbers (functional but not completely safe, unfortunately
        // std::string does not understand regexpese):
        // ss should represent a simple sum like 2+5*I
-       std::string ss(s);
-       // make it safe by adding explicit sign
+       std::string ss = s;
+       std::string::size_type delim;
+
+       // make this implementation safe by adding explicit sign
        if (ss.at(0) != '+' && ss.at(0) != '-' && ss.at(0) != '#')
                ss = '+' + ss;
-       std::string::size_type delim;
+
+       // We use 'E' as exponent marker in the output, but some people insist on
+       // writing 'e' at input, so let's substitute them right at the beginning:
+       while ((delim = ss.find("e"))!=std::string::npos)
+               ss.replace(delim,1,"E");
+
+       // main parser loop:
        do {
                // chop ss into terms from left to right
                std::string term;
                bool imaginary = false;
                delim = ss.find_first_of(std::string("+-"),1);
                // Do we have an exponent marker like "31.415E-1"?  If so, hop on!
-               if ((delim != std::string::npos) && (ss.at(delim-1) == 'E'))
+               if (delim!=std::string::npos && ss.at(delim-1)=='E')
                        delim = ss.find_first_of(std::string("+-"),delim+1);
                term = ss.substr(0,delim);
-               if (delim != std::string::npos)
+               if (delim!=std::string::npos)
                        ss = ss.substr(delim);
                // is the term imaginary?
-               if (term.find("I") != std::string::npos) {
+               if (term.find("I")!=std::string::npos) {
                        // erase 'I':
-                       term = term.replace(term.find("I"),1,"");
+                       term.erase(term.find("I"),1);
                        // erase '*':
-                       if (term.find("*") != std::string::npos)
-                               term = term.replace(term.find("*"),1,"");
+                       if (term.find("*")!=std::string::npos)
+                               term.erase(term.find("*"),1);
                        // correct for trivial +/-I without explicit factor on I:
-                       if (term.size() == 1)
-                               term += "1";
+                       if (term.size()==1)
+                               term += '1';
                        imaginary = true;
                }
-               if (term.find(".") != std::string::npos) {
+               if (term.find('.')!=std::string::npos || term.find('E')!=std::string::npos) {
                        // CLN's short type cl_SF is not very useful within the GiNaC
                        // framework where we are mainly interested in the arbitrary
                        // precision type cl_LF.  Hence we go straight to the construction
@@ -198,7 +206,7 @@ numeric::numeric(const char *s) : basic(TINFO_numeric)
                        // 31.4E-1   -->   31.4e-1_<Digits>
                        // and s on.
                        // No exponent marker?  Let's add a trivial one.
-                       if (term.find("E") == std::string::npos)
+                       if (term.find("E")==std::string::npos)
                                term += "E0";
                        // E to lower case
                        term = term.replace(term.find("E"),1,"e");
@@ -210,13 +218,13 @@ numeric::numeric(const char *s) : basic(TINFO_numeric)
                        else
                                ctorval = ctorval + cln::cl_F(term.c_str());
                } else {
-                       // not a floating point number...
+                       // this is not a floating point number...
                        if (imaginary)
                                ctorval = ctorval + cln::complex(cln::cl_I(0),cln::cl_R(term.c_str()));
                        else
                                ctorval = ctorval + cln::cl_R(term.c_str());
                }
-       } while(delim != std::string::npos);
+       } while (delim != std::string::npos);
        value = ctorval;
        setflag(status_flags::evaluated | status_flags::expanded);
 }
@@ -314,8 +322,10 @@ static void print_real_number(const print_context & c, const cln::cl_R &x)
                    !is_a<print_latex>(c)) {
                        cln::print_real(c.s, ourflags, x);
                } else {  // rational output in LaTeX context
+                       if (x < 0)
+                               c.s << "-";
                        c.s << "\\frac{";
-                       cln::print_real(c.s, ourflags, cln::numerator(cln::the<cln::cl_RA>(x)));
+                       cln::print_real(c.s, ourflags, cln::abs(cln::numerator(cln::the<cln::cl_RA>(x))));
                        c.s << "}{";
                        cln::print_real(c.s, ourflags, cln::denominator(cln::the<cln::cl_RA>(x)));
                        c.s << '}';
@@ -346,7 +356,17 @@ void numeric::print(const print_context & c, unsigned level) const
 
                std::ios::fmtflags oldflags = c.s.flags();
                c.s.setf(std::ios::scientific);
-               if (this->is_rational() && !this->is_integer()) {
+               int oldprec = c.s.precision();
+               if (is_a<print_csrc_double>(c))
+                       c.s.precision(16);
+               else
+                       c.s.precision(7);
+               if (is_a<print_csrc_cl_N>(c) && this->is_integer()) {
+                       c.s << "cln::cl_I(\"";
+                       const cln::cl_R r = cln::realpart(cln::the<cln::cl_N>(value));
+                       print_real_number(c,r);
+                       c.s << "\")";
+               } else if (this->is_rational() && !this->is_integer()) {
                        if (compare(_num0) > 0) {
                                c.s << "(";
                                if (is_a<print_csrc_cl_N>(c))
@@ -368,11 +388,12 @@ void numeric::print(const print_context & c, unsigned level) const
                        c.s << ")";
                } else {
                        if (is_a<print_csrc_cl_N>(c))
-                               c.s << "cln::cl_F(\"" << evalf() << "\")";
+                               c.s << "cln::cl_F(\"" << evalf() << "_" << Digits << "\")";
                        else
                                c.s << to_double();
                }
                c.s.flags(oldflags);
+               c.s.precision(oldprec);
 
        } else {
                const std::string par_open  = is_a<print_latex>(c) ? "{(" : "(";
@@ -381,6 +402,8 @@ void numeric::print(const print_context & c, unsigned level) const
                const std::string mul_sym   = is_a<print_latex>(c) ? " " : "*";
                const cln::cl_R r = cln::realpart(cln::the<cln::cl_N>(value));
                const cln::cl_R i = cln::imagpart(cln::the<cln::cl_N>(value));
+               if (is_a<print_python_repr>(c))
+                       c.s << class_name() << "('";
                if (cln::zerop(i)) {
                        // case 1, real:  x  or  -x
                        if ((precedence() <= level) && (!this->is_nonneg_integer())) {
@@ -393,25 +416,19 @@ void numeric::print(const print_context & c, unsigned level) const
                } else {
                        if (cln::zerop(r)) {
                                // case 2, imaginary:  y*I  or  -y*I
-                               if ((precedence() <= level) && (i < 0)) {
-                                       if (i == -1) {
-                                               c.s << par_open+imag_sym+par_close;
-                                       } else {
+                               if (i==1)
+                                       c.s << imag_sym;
+                               else {
+                                       if (precedence()<=level)
                                                c.s << par_open;
+                                       if (i == -1)
+                                               c.s << "-" << imag_sym;
+                                       else {
                                                print_real_number(c, i);
-                                               c.s << mul_sym+imag_sym+par_close;
-                                       }
-                               } else {
-                                       if (i == 1) {
-                                               c.s << imag_sym;
-                                       } else {
-                                               if (i == -1) {
-                                                       c.s << "-" << imag_sym;
-                                               } else {
-                                                       print_real_number(c, i);
-                                                       c.s << mul_sym+imag_sym;
-                                               }
+                                               c.s << mul_sym+imag_sym;
                                        }
+                                       if (precedence()<=level)
+                                               c.s << par_close;
                                }
                        } else {
                                // case 3, complex:  x+y*I  or  x-y*I  or  -x+y*I  or  -x-y*I
@@ -438,6 +455,8 @@ void numeric::print(const print_context & c, unsigned level) const
                                        c.s << par_close;
                        }
                }
+               if (is_a<print_python_repr>(c))
+                       c.s << "')";
        }
 }
 
@@ -486,6 +505,21 @@ bool numeric::info(unsigned inf) const
        return false;
 }
 
+int numeric::degree(const ex & s) const
+{
+       return 0;
+}
+
+int numeric::ldegree(const ex & s) const
+{
+       return 0;
+}
+
+ex numeric::coeff(const ex & s, int n) const
+{
+       return n==0 ? *this : _ex0;
+}
+
 /** Disassemble real part and imaginary part to scan for the occurrence of a
  *  single number.  Also handles the imaginary unit.  It ignores the sign on
  *  both this and the argument, which may lead to what might appear as funny
@@ -1476,7 +1510,7 @@ const numeric bernoulli(const numeric &nn)
 {
        if (!nn.is_integer() || nn.is_negative())
                throw std::range_error("numeric::bernoulli(): argument must be integer >= 0");
-       
+
        // Method:
        //
        // The Bernoulli numbers are rational numbers that may be computed using
@@ -1500,46 +1534,61 @@ const numeric bernoulli(const numeric &nn)
        // But if somebody works with the n'th Bernoulli number she is likely to
        // also need all previous Bernoulli numbers. So we need a complete remember
        // table and above divide and conquer algorithm is not suited to build one
-       // up.  The code below is adapted from Pari's function bernvec().
+       // up.  The formula below accomplishes this.  It is a modification of the
+       // defining formula above but the computation of the binomial coefficients
+       // is carried along in an inline fashion.  It also honors the fact that
+       // B_n is zero when n is odd and greater than 1.
        // 
        // (There is an interesting relation with the tangent polynomials described
-       // in `Concrete Mathematics', which leads to a program twice as fast as our
-       // implementation below, but it requires storing one such polynomial in
+       // in `Concrete Mathematics', which leads to a program a little faster as
+       // our implementation below, but it requires storing one such polynomial in
        // addition to the remember table.  This doubles the memory footprint so
        // we don't use it.)
-       
+
+       const unsigned n = nn.to_int();
+
        // the special cases not covered by the algorithm below
-       if (nn.is_equal(_num1))
-               return _num_1_2;
-       if (nn.is_odd())
-               return _num0;
-       
+       if (n & 1)
+               return (n==1) ? _num_1_2 : _num0;
+       if (!n)
+                return _num1;
+
        // store nonvanishing Bernoulli numbers here
        static std::vector< cln::cl_RA > results;
-       static int highest_result = 0;
-       // algorithm not applicable to B(0), so just store it
-       if (results.empty())
-               results.push_back(cln::cl_RA(1));
-       
-       int n = nn.to_long();
-       for (int i=highest_result; i<n/2; ++i) {
-               cln::cl_RA B = 0;
-               long n = 8;
-               long m = 5;
-               long d1 = i;
-               long d2 = 2*i-1;
-               for (int j=i; j>0; --j) {
-                       B = cln::cl_I(n*m) * (B+results[j]) / (d1*d2);
-                       n += 4;
-                       m += 2;
-                       d1 -= 1;
-                       d2 -= 2;
-               }
-               B = (1 - ((B+1)/(2*i+3))) / (cln::cl_I(1)<<(2*i+2));
-               results.push_back(B);
-               ++highest_result;
+       static unsigned next_r = 0;
+
+       // algorithm not applicable to B(2), so just store it
+       if (!next_r) {
+               results.push_back(cln::recip(cln::cl_RA(6)));
+               next_r = 4;
        }
-       return results[n/2];
+       if (n<next_r)
+               return results[n/2-1];
+
+       results.reserve(n/2);
+       for (unsigned p=next_r; p<=n;  p+=2) {
+               cln::cl_I  c = 1;  // seed for binonmial coefficients
+               cln::cl_RA b = cln::cl_RA(1-p)/2;
+               const unsigned p3 = p+3;
+               const unsigned pm = p-2;
+               unsigned i, k, p_2;
+               // test if intermediate unsigned int can be represented by immediate
+               // objects by CLN (i.e. < 2^29 for 32 Bit machines, see <cln/object.h>)
+               if (p < (1UL<<cl_value_len/2)) {
+                       for (i=2, k=1, p_2=p/2; i<=pm; i+=2, ++k, --p_2) {
+                               c = cln::exquo(c * ((p3-i) * p_2), (i-1)*k);
+                               b = b + c*results[k-1];
+                       }
+               } else {
+                       for (i=2, k=1, p_2=p/2; i<=pm; i+=2, ++k, --p_2) {
+                               c = cln::exquo((c * (p3-i)) * p_2, cln::cl_I(i-1)*k);
+                               b = b + c*results[k-1];
+                       }
+               }
+               results.push_back(-b/(p+1));
+       }
+       next_r = n+2;
+       return results[n/2-1];
 }
 
 
@@ -1646,9 +1695,12 @@ const numeric smod(const numeric &a, const numeric &b)
  *  In general, mod(a,b) has the sign of b or is zero, and irem(a,b) has the
  *  sign of a or is zero.
  *
- *  @return remainder of a/b if both are integer, 0 otherwise. */
+ *  @return remainder of a/b if both are integer, 0 otherwise.
+ *  @exception overflow_error (division by zero) if b is zero. */
 const numeric irem(const numeric &a, const numeric &b)
 {
+       if (b.is_zero())
+               throw std::overflow_error("numeric::irem(): division by zero");
        if (a.is_integer() && b.is_integer())
                return cln::rem(cln::the<cln::cl_I>(a.to_cl_N()),
                                cln::the<cln::cl_I>(b.to_cl_N()));
@@ -1663,9 +1715,12 @@ const numeric irem(const numeric &a, const numeric &b)
  *  and irem(a,b) has the sign of a or is zero.  
  *
  *  @return remainder of a/b and quotient stored in q if both are integer,
- *  0 otherwise. */
+ *  0 otherwise.
+ *  @exception overflow_error (division by zero) if b is zero. */
 const numeric irem(const numeric &a, const numeric &b, numeric &q)
 {
+       if (b.is_zero())
+               throw std::overflow_error("numeric::irem(): division by zero");
        if (a.is_integer() && b.is_integer()) {
                const cln::cl_I_div_t rem_quo = cln::truncate2(cln::the<cln::cl_I>(a.to_cl_N()),
                                                               cln::the<cln::cl_I>(b.to_cl_N()));
@@ -1681,9 +1736,12 @@ const numeric irem(const numeric &a, const numeric &b, numeric &q)
 /** Numeric integer quotient.
  *  Equivalent to Maple's iquo as far as sign conventions are concerned.
  *  
- *  @return truncated quotient of a/b if both are integer, 0 otherwise. */
+ *  @return truncated quotient of a/b if both are integer, 0 otherwise.
+ *  @exception overflow_error (division by zero) if b is zero. */
 const numeric iquo(const numeric &a, const numeric &b)
 {
+       if (b.is_zero())
+               throw std::overflow_error("numeric::iquo(): division by zero");
        if (a.is_integer() && b.is_integer())
                return cln::truncate1(cln::the<cln::cl_I>(a.to_cl_N()),
                                  cln::the<cln::cl_I>(b.to_cl_N()));
@@ -1697,9 +1755,12 @@ const numeric iquo(const numeric &a, const numeric &b)
  *  r == a - iquo(a,b,r)*b.
  *
  *  @return truncated quotient of a/b and remainder stored in r if both are
- *  integer, 0 otherwise. */
+ *  integer, 0 otherwise.
+ *  @exception overflow_error (division by zero) if b is zero. */
 const numeric iquo(const numeric &a, const numeric &b, numeric &r)
 {
+       if (b.is_zero())
+               throw std::overflow_error("numeric::iquo(): division by zero");
        if (a.is_integer() && b.is_integer()) {
                const cln::cl_I_div_t rem_quo = cln::truncate2(cln::the<cln::cl_I>(a.to_cl_N()),
                                                               cln::the<cln::cl_I>(b.to_cl_N()));