]> www.ginac.de Git - ginac.git/blobdiff - ginac/numeric.cpp
- numeric::archive(): fixed a typo.
[ginac.git] / ginac / numeric.cpp
index e504186aadae431f3b87d13477f12b597be17c0a..49e65be47ed77b2cc8eaf285f25d3d4ae11e28b1 100644 (file)
@@ -48,6 +48,7 @@
 // instead of in some header file where it would propagate to other parts.
 // Also, we only need a subset of CLN, so we don't include the complete cln.h:
 #ifdef HAVE_CLN_CLN_H
+#include <cln/cl_output.h>
 #include <cln/cl_integer_io.h>
 #include <cln/cl_integer_ring.h>
 #include <cln/cl_rational_io.h>
@@ -60,6 +61,7 @@
 #include <cln/cl_complex_ring.h>
 #include <cln/cl_numtheory.h>
 #else  // def HAVE_CLN_CLN_H
+#include <cl_output.h>
 #include <cl_integer_io.h>
 #include <cl_integer_ring.h>
 #include <cl_rational_io.h>
@@ -94,9 +96,10 @@ numeric::numeric() : basic(TINFO_numeric)
 {
     debugmsg("numeric default constructor", LOGLEVEL_CONSTRUCT);
     value = new cl_N;
-    *value=cl_I(0);
+    *value = cl_I(0);
     calchash();
-    setflag(status_flags::evaluated|
+    setflag(status_flags::evaluated |
+            status_flags::expanded |
             status_flags::hash_calculated);
 }
 
@@ -146,7 +149,7 @@ numeric::numeric(int i) : basic(TINFO_numeric)
 {
     debugmsg("numeric constructor from int",LOGLEVEL_CONSTRUCT);
     // Not the whole int-range is available if we don't cast to long
-    // first. This is due to the behaviour of the cl_I-ctor, which
+    // first.  This is due to the behaviour of the cl_I-ctor, which
     // emphasizes efficiency:
     value = new cl_I((long) i);
     calchash();
@@ -159,7 +162,7 @@ numeric::numeric(unsigned int i) : basic(TINFO_numeric)
 {
     debugmsg("numeric constructor from uint",LOGLEVEL_CONSTRUCT);
     // Not the whole uint-range is available if we don't cast to ulong
-    // first. This is due to the behaviour of the cl_I-ctor, which
+    // first.  This is due to the behaviour of the cl_I-ctor, which
     // emphasizes efficiency:
     value = new cl_I((unsigned long)i);
     calchash();
@@ -231,7 +234,7 @@ numeric::numeric(const char *s) : basic(TINFO_numeric)
 
 /** Ctor from CLN types.  This is for the initiated user or internal use
  *  only. */
-numeric::numeric(cl_N const & z) : basic(TINFO_numeric)
+numeric::numeric(const cl_N & z) : basic(TINFO_numeric)
 {
     debugmsg("numeric constructor from cl_N", LOGLEVEL_CONSTRUCT);
     value = new cl_N(z);
@@ -249,25 +252,28 @@ numeric::numeric(const archive_node &n, const lst &sym_lst) : inherited(n, sym_l
 {
     debugmsg("numeric constructor from archive_node", LOGLEVEL_CONSTRUCT);
     value = new cl_N;
-#ifdef HAVE_SSTREAM
+
     // Read number as string
     string str;
     if (n.find_string("number", str)) {
+#ifdef HAVE_SSTREAM
         istringstream s(str);
+#else
+               istrstream s(str.c_str(), str.size() + 1);
+#endif
         cl_idecoded_float re, im;
         char c;
         s.get(c);
         switch (c) {
-            case 'N':    // Ordinary number
             case 'R':    // Integer-decoded real number
                 s >> re.sign >> re.mantissa >> re.exponent;
-                *value = re.sign * re.mantissa * expt(cl_float(2.0, cl_default_float_format), re.exponent);
+                *value = re.sign * re.mantissa * ::expt(cl_float(2.0, cl_default_float_format), re.exponent);
                 break;
             case 'C':    // Integer-decoded complex number
                 s >> re.sign >> re.mantissa >> re.exponent;
                 s >> im.sign >> im.mantissa >> im.exponent;
-                *value = complex(re.sign * re.mantissa * expt(cl_float(2.0, cl_default_float_format), re.exponent),
-                                 im.sign * im.mantissa * expt(cl_float(2.0, cl_default_float_format), im.exponent));
+                *value = ::complex(re.sign * re.mantissa * ::expt(cl_float(2.0, cl_default_float_format), re.exponent),
+                                 im.sign * im.mantissa * ::expt(cl_float(2.0, cl_default_float_format), im.exponent));
                 break;
             default:   // Ordinary number
                                s.putback(c);
@@ -275,32 +281,6 @@ numeric::numeric(const archive_node &n, const lst &sym_lst) : inherited(n, sym_l
                 break;
         }
     }
-#else
-    // Read number as string
-    string str;
-    if (n.find_string("number", str)) {
-        istrstream f(str.c_str(), str.size() + 1);
-        cl_idecoded_float re, im;
-        char c;
-        f.get(c);
-        switch (c) {
-            case 'R':    // Integer-decoded real number
-                f >> re.sign >> re.mantissa >> re.exponent;
-                *value = re.sign * re.mantissa * expt(cl_float(2.0, cl_default_float_format), re.exponent);
-                break;
-            case 'C':    // Integer-decoded complex number
-                f >> re.sign >> re.mantissa >> re.exponent;
-                f >> im.sign >> im.mantissa >> im.exponent;
-                *value = complex(re.sign * re.mantissa * expt(cl_float(2.0, cl_default_float_format), re.exponent),
-                                 im.sign * im.mantissa * expt(cl_float(2.0, cl_default_float_format), im.exponent));
-                break;
-            default:   // Ordinary number
-                               f.putback(c);
-                f >> *value;
-                               break;
-        }
-    }
-#endif
     calchash();
     setflag(status_flags::evaluated|
             status_flags::hash_calculated);
@@ -316,50 +296,37 @@ ex numeric::unarchive(const archive_node &n, const lst &sym_lst)
 void numeric::archive(archive_node &n) const
 {
     inherited::archive(n);
-#ifdef HAVE_SSTREAM
+
     // Write number as string
+#ifdef HAVE_SSTREAM
     ostringstream s;
-    if (is_crational())
+#else
+    char buf[1024];
+    ostrstream s(buf, 1024);
+#endif
+    if (this->is_crational())
         s << *value;
     else {
         // Non-rational numbers are written in an integer-decoded format
         // to preserve the precision
-        if (is_real()) {
+        if (this->is_real()) {
             cl_idecoded_float re = integer_decode_float(The(cl_F)(*value));
             s << "R";
             s << re.sign << " " << re.mantissa << " " << re.exponent;
         } else {
-            cl_idecoded_float re = integer_decode_float(The(cl_F)(realpart(*value)));
-            cl_idecoded_float im = integer_decode_float(The(cl_F)(imagpart(*value)));
+            cl_idecoded_float re = integer_decode_float(The(cl_F)(::realpart(*value)));
+            cl_idecoded_float im = integer_decode_float(The(cl_F)(::imagpart(*value)));
             s << "C";
             s << re.sign << " " << re.mantissa << " " << re.exponent << " ";
             s << im.sign << " " << im.mantissa << " " << im.exponent;
         }
     }
+#ifdef HAVE_SSTREAM
     n.add_string("number", s.str());
 #else
-    // Write number as string
-    char buf[1024];
-    ostrstream f(buf, 1024);
-    if (is_crational())
-        f << *value << ends;
-    else {
-        // Non-rational numbers are written in an integer-decoded format
-        // to preserve the precision
-        if (is_real()) {
-            cl_idecoded_float re = integer_decode_float(The(cl_F)(*value));
-            f << "R";
-            f << re.sign << " " << re.mantissa << " " << re.exponent << ends;
-        } else {
-            cl_idecoded_float re = integer_decode_float(The(cl_F)(realpart(*value)));
-            cl_idecoded_float im = integer_decode_float(The(cl_F)(imagpart(*value)));
-            f << "C";
-            f << re.sign << " " << re.mantissa << " " << re.exponent << " ";
-            f << im.sign << " " << im.mantissa << " " << im.exponent << ends;
-        }
-    }
-    string str(buf);
-    n.add_string("number", str);
+       s << ends;
+       string str(buf);
+       n.add_string("number", str);
 #endif
 }
 
@@ -375,57 +342,91 @@ basic * numeric::duplicate() const
     return new numeric(*this);
 }
 
+
+/** Helper function to print a real number in a nicer way than is CLN's
+ *  default.  Instead of printing 42.0L0 this just prints 42.0 to ostream os
+ *  and instead of 3.99168L7 it prints 3.99168E7.  This is fine in GiNaC as
+ *  long as it only uses cl_LF and no other floating point types.
+ *
+ *  @see numeric::print() */
+void print_real_number(ostream & os, const cl_R & num)
+{
+    cl_print_flags ourflags;
+    if (::instanceof(num, ::cl_RA_ring)) {
+        // case 1: integer or rational, nothing special to do:
+        ::print_real(os, ourflags, num);
+    } else {
+        // case 2: float
+        // make CLN believe this number has default_float_format, so it prints
+        // 'E' as exponent marker instead of 'L':
+        ourflags.default_float_format = ::cl_float_format(The(cl_F)(num));
+        ::print_real(os, ourflags, num);
+    }
+    return;
+}
+
+/** This method adds to the output so it blends more consistently together
+ *  with the other routines and produces something compatible to ginsh input.
+ *  
+ *  @see print_real_number() */
 void numeric::print(ostream & os, unsigned upper_precedence) const
 {
-    // The method print adds to the output so it blends more consistently
-    // together with the other routines and produces something compatible to
-    // ginsh input.
     debugmsg("numeric print", LOGLEVEL_PRINT);
-    if (is_real()) {
+    if (this->is_real()) {
         // case 1, real:  x  or  -x
-        if ((precedence<=upper_precedence) && (!is_pos_integer())) {
-            os << "(" << *value << ")";
+        if ((precedence<=upper_precedence) && (!this->is_nonneg_integer())) {
+            os << "(";
+            print_real_number(os, The(cl_R)(*value));
+            os << ")";
         } else {
-            os << *value;
+            print_real_number(os, The(cl_R)(*value));
         }
     } else {
         // case 2, imaginary:  y*I  or  -y*I
-        if (realpart(*value) == 0) {
-            if ((precedence<=upper_precedence) && (imagpart(*value) < 0)) {
-                if (imagpart(*value) == -1) {
+        if (::realpart(*value) == 0) {
+            if ((precedence<=upper_precedence) && (::imagpart(*value) < 0)) {
+                if (::imagpart(*value) == -1) {
                     os << "(-I)";
                 } else {
-                    os << "(" << imagpart(*value) << "*I)";
+                    os << "(";
+                    print_real_number(os, The(cl_R)(::imagpart(*value)));
+                    os << "*I)";
                 }
             } else {
-                if (imagpart(*value) == 1) {
+                if (::imagpart(*value) == 1) {
                     os << "I";
                 } else {
-                    if (imagpart (*value) == -1) {
+                    if (::imagpart (*value) == -1) {
                         os << "-I";
                     } else {
-                        os << imagpart(*value) << "*I";
+                        print_real_number(os, The(cl_R)(::imagpart(*value)));
+                        os << "*I";
                     }
                 }
             }
         } else {
             // case 3, complex:  x+y*I  or  x-y*I  or  -x+y*I  or  -x-y*I
-            if (precedence <= upper_precedence) os << "(";
-            os << realpart(*value);
-            if (imagpart(*value) < 0) {
-                if (imagpart(*value) == -1) {
+            if (precedence <= upper_precedence)
+                os << "(";
+            print_real_number(os, The(cl_R)(::realpart(*value)));
+            if (::imagpart(*value) < 0) {
+                if (::imagpart(*value) == -1) {
                     os << "-I";
                 } else {
-                    os << imagpart(*value) << "*I";
+                    print_real_number(os, The(cl_R)(::imagpart(*value)));
+                    os << "*I";
                 }
             } else {
-                if (imagpart(*value) == 1) {
+                if (::imagpart(*value) == 1) {
                     os << "+I";
                 } else {
-                    os << "+" << imagpart(*value) << "*I";
+                    os << "+";
+                    print_real_number(os, The(cl_R)(::imagpart(*value)));
+                    os << "*I";
                 }
             }
-            if (precedence <= upper_precedence) os << ")";
+            if (precedence <= upper_precedence)
+                os << ")";
         }
     }
 }
@@ -438,6 +439,8 @@ void numeric::printraw(ostream & os) const
     debugmsg("numeric printraw", LOGLEVEL_PRINT);
     os << "numeric(" << *value << ")";
 }
+
+
 void numeric::printtree(ostream & os, unsigned indent) const
 {
     debugmsg("numeric printtree", LOGLEVEL_PRINT);
@@ -447,12 +450,13 @@ void numeric::printtree(ostream & os, unsigned indent) const
        << ", flags=" << flags << endl;
 }
 
+
 void numeric::printcsrc(ostream & os, unsigned type, unsigned upper_precedence) const
 {
     debugmsg("numeric print csrc", LOGLEVEL_PRINT);
     ios::fmtflags oldflags = os.flags();
     os.setf(ios::scientific);
-    if (is_rational() && !is_integer()) {
+    if (this->is_rational() && !this->is_integer()) {
         if (compare(_num0()) > 0) {
             os << "(";
             if (type == csrc_types::ctype_cl_N)
@@ -481,6 +485,7 @@ void numeric::printcsrc(ostream & os, unsigned type, unsigned upper_precedence)
     os.flags(oldflags);
 }
 
+
 bool numeric::info(unsigned inf) const
 {
     switch (inf) {
@@ -507,11 +512,11 @@ bool numeric::info(unsigned inf) const
     case info_flags::negative:
         return is_negative();
     case info_flags::nonnegative:
-        return compare(_num0())>=0;
+        return !is_negative();
     case info_flags::posint:
         return is_pos_integer();
     case info_flags::negint:
-        return is_integer() && (compare(_num0())<0);
+        return is_integer() && is_negative();
     case info_flags::nonnegint:
         return is_nonneg_integer();
     case info_flags::even:
@@ -524,6 +529,34 @@ bool numeric::info(unsigned inf) const
     return false;
 }
 
+/** Disassemble real part and imaginary part to scan for the occurrence of a
+ *  single number.  Also handles the imaginary unit.  It ignores the sign on
+ *  both this and the argument, which may lead to what might appear as funny
+ *  results:  (2+I).has(-2) -> true.  But this is consistent, since we also
+ *  would like to have (-2+I).has(2) -> true and we want to think about the
+ *  sign as a multiplicative factor. */
+bool numeric::has(const ex & other) const
+{
+    if (!is_exactly_of_type(*other.bp, numeric))
+        return false;
+    const numeric & o = static_cast<numeric &>(const_cast<basic &>(*other.bp));
+    if (this->is_equal(o) || this->is_equal(-o))
+        return true;
+    if (o.imag().is_zero())  // e.g. scan for 3 in -3*I
+        return (this->real().is_equal(o) || this->imag().is_equal(o) ||
+                this->real().is_equal(-o) || this->imag().is_equal(-o));
+    else {
+        if (o.is_equal(I))  // e.g scan for I in 42*I
+            return !this->is_real();
+        if (o.real().is_zero())  // e.g. scan for 2*I in 2*I+1
+            return (this->real().has(o*I) || this->imag().has(o*I) ||
+                    this->real().has(-o*I) || this->imag().has(-o*I));
+    }
+    return false;
+}
+
+
+/** Evaluation of numbers doesn't do anything at all. */
 ex numeric::eval(int level) const
 {
     // Warning: if this is ever gonna do something, the ex ctors from all kinds
@@ -531,6 +564,7 @@ ex numeric::eval(int level) const
     return this->hold();
 }
 
+
 /** Cast numeric into a floating-point object.  For example exact numeric(1) is
  *  returned as a 1.0000000000000000000000 and so on according to how Digits is
  *  currently set.
@@ -540,7 +574,7 @@ ex numeric::eval(int level) const
 ex numeric::evalf(int level) const
 {
     // level can safely be discarded for numeric objects.
-    return numeric(cl_float(1.0, cl_default_float_format) * (*value));  // -> CLN
+    return numeric(::cl_float(1.0, ::cl_default_float_format) * (*value));  // -> CLN
 }
 
 // protected
@@ -553,6 +587,7 @@ ex numeric::derivative(const symbol & s) const
     return _ex0();
 }
 
+
 int numeric::compare_same_type(const basic & other) const
 {
     GINAC_ASSERT(is_exactly_of_type(other, numeric));
@@ -565,12 +600,23 @@ int numeric::compare_same_type(const basic & other) const
     return compare(o);    
 }
 
+
 bool numeric::is_equal_same_type(const basic & other) const
 {
     GINAC_ASSERT(is_exactly_of_type(other,numeric));
     const numeric *o = static_cast<const numeric *>(&other);
     
-    return is_equal(*o);
+    return this->is_equal(*o);
+}
+
+unsigned numeric::calchash(void) const
+{
+    return (hashvalue=cl_equal_hashcode(*value) | 0x80000000U);
+    /*
+    cout << *value << "->" << hashvalue << endl;
+    hashvalue=HASHVALUE_NUMERIC+1000U;
+    return HASHVALUE_NUMERIC+1000U;
+    */
 }
 
 /*
@@ -639,13 +685,15 @@ numeric numeric::div(const numeric & other) const
 
 numeric numeric::power(const numeric & other) const
 {
-    static const numeric * _num1p=&_num1();
+    static const numeric * _num1p = &_num1();
     if (&other==_num1p)
         return *this;
     if (::zerop(*value)) {
         if (::zerop(*other.value))
             throw (std::domain_error("numeric::eval(): pow(0,0) is undefined"));
-        else if (other.is_real() && !::plusp(realpart(*other.value)))
+        else if (::zerop(::realpart(*other.value)))
+            throw (std::domain_error("numeric::eval(): pow(0,I) is undefined"));
+        else if (::minusp(::realpart(*other.value)))
             throw (std::overflow_error("numeric::eval(): division by zero"));
         else
             return _num0();
@@ -699,7 +747,9 @@ const numeric & numeric::power_dyn(const numeric & other) const
     if (::zerop(*value)) {
         if (::zerop(*other.value))
             throw (std::domain_error("numeric::eval(): pow(0,0) is undefined"));
-        else if (other.is_real() && !::plusp(realpart(*other.value)))
+        else if (::zerop(::realpart(*other.value)))
+            throw (std::domain_error("numeric::eval(): pow(0,I) is undefined"));
+        else if (::minusp(::realpart(*other.value)))
             throw (std::overflow_error("numeric::eval(): division by zero"));
         else
             return _num0();
@@ -745,15 +795,15 @@ const numeric & numeric::operator=(const char * s)
  *  @see numeric::compare(const numeric & other) */
 int numeric::csgn(void) const
 {
-    if (is_zero())
+    if (this->is_zero())
         return 0;
-    if (!::zerop(realpart(*value))) {
-        if (::plusp(realpart(*value)))
+    if (!::zerop(::realpart(*value))) {
+        if (::plusp(::realpart(*value)))
             return 1;
         else
             return -1;
     } else {
-        if (::plusp(imagpart(*value)))
+        if (::plusp(::imagpart(*value)))
             return 1;
         else
             return -1;
@@ -770,16 +820,16 @@ int numeric::csgn(void) const
 int numeric::compare(const numeric & other) const
 {
     // Comparing two real numbers?
-    if (is_real() && other.is_real())
+    if (this->is_real() && other.is_real())
         // Yes, just compare them
         return ::cl_compare(The(cl_R)(*value), The(cl_R)(*other.value));    
     else {
         // No, first compare real parts
-        cl_signean real_cmp = ::cl_compare(realpart(*value), realpart(*other.value));
+        cl_signean real_cmp = ::cl_compare(::realpart(*value), ::realpart(*other.value));
         if (real_cmp)
             return real_cmp;
 
-        return ::cl_compare(imagpart(*value), imagpart(*other.value));
+        return ::cl_compare(::imagpart(*value), ::imagpart(*other.value));
     }
 }
 
@@ -797,7 +847,7 @@ bool numeric::is_zero(void) const
 /** True if object is not complex and greater than zero. */
 bool numeric::is_positive(void) const
 {
-    if (is_real())
+    if (this->is_real())
         return ::plusp(The(cl_R)(*value));  // -> CLN
     return false;
 }
@@ -805,7 +855,7 @@ bool numeric::is_positive(void) const
 /** True if object is not complex and less than zero. */
 bool numeric::is_negative(void) const
 {
-    if (is_real())
+    if (this->is_real())
         return ::minusp(The(cl_R)(*value));  // -> CLN
     return false;
 }
@@ -813,31 +863,31 @@ bool numeric::is_negative(void) const
 /** True if object is a non-complex integer. */
 bool numeric::is_integer(void) const
 {
-    return ::instanceof(*value, cl_I_ring);  // -> CLN
+    return ::instanceof(*value, ::cl_I_ring);  // -> CLN
 }
 
 /** True if object is an exact integer greater than zero. */
 bool numeric::is_pos_integer(void) const
 {
-    return (is_integer() && ::plusp(The(cl_I)(*value)));  // -> CLN
+    return (this->is_integer() && ::plusp(The(cl_I)(*value)));  // -> CLN
 }
 
 /** True if object is an exact integer greater or equal zero. */
 bool numeric::is_nonneg_integer(void) const
 {
-    return (is_integer() && !::minusp(The(cl_I)(*value)));  // -> CLN
+    return (this->is_integer() && !::minusp(The(cl_I)(*value)));  // -> CLN
 }
 
 /** True if object is an exact even integer. */
 bool numeric::is_even(void) const
 {
-    return (is_integer() && ::evenp(The(cl_I)(*value)));  // -> CLN
+    return (this->is_integer() && ::evenp(The(cl_I)(*value)));  // -> CLN
 }
 
 /** True if object is an exact odd integer. */
 bool numeric::is_odd(void) const
 {
-    return (is_integer() && ::oddp(The(cl_I)(*value)));  // -> CLN
+    return (this->is_integer() && ::oddp(The(cl_I)(*value)));  // -> CLN
 }
 
 /** Probabilistic primality test.
@@ -845,20 +895,20 @@ bool numeric::is_odd(void) const
  *  @return  true if object is exact integer and prime. */
 bool numeric::is_prime(void) const
 {
-    return (is_integer() && ::isprobprime(The(cl_I)(*value)));  // -> CLN
+    return (this->is_integer() && ::isprobprime(The(cl_I)(*value)));  // -> CLN
 }
 
 /** True if object is an exact rational number, may even be complex
  *  (denominator may be unity). */
 bool numeric::is_rational(void) const
 {
-    return ::instanceof(*value, cl_RA_ring);  // -> CLN
+    return ::instanceof(*value, ::cl_RA_ring);  // -> CLN
 }
 
 /** True if object is a real integer, rational or float (but not complex). */
 bool numeric::is_real(void) const
 {
-    return ::instanceof(*value, cl_R_ring);  // -> CLN
+    return ::instanceof(*value, ::cl_R_ring);  // -> CLN
 }
 
 bool numeric::operator==(const numeric & other) const
@@ -875,11 +925,11 @@ bool numeric::operator!=(const numeric & other) const
  *  of the form a+b*I, where a and b are integers. */
 bool numeric::is_cinteger(void) const
 {
-    if (::instanceof(*value, cl_I_ring))
+    if (::instanceof(*value, ::cl_I_ring))
         return true;
-    else if (!is_real()) {  // complex case, handle n+m*I
-        if (::instanceof(realpart(*value), cl_I_ring) &&
-            ::instanceof(imagpart(*value), cl_I_ring))
+    else if (!this->is_real()) {  // complex case, handle n+m*I
+        if (::instanceof(::realpart(*value), ::cl_I_ring) &&
+            ::instanceof(::imagpart(*value), ::cl_I_ring))
             return true;
     }
     return false;
@@ -889,11 +939,11 @@ bool numeric::is_cinteger(void) const
  *  (denominator may be unity). */
 bool numeric::is_crational(void) const
 {
-    if (::instanceof(*value, cl_RA_ring))
+    if (::instanceof(*value, ::cl_RA_ring))
         return true;
-    else if (!is_real()) {  // complex case, handle Q(i):
-        if (::instanceof(realpart(*value), cl_RA_ring) &&
-            ::instanceof(imagpart(*value), cl_RA_ring))
+    else if (!this->is_real()) {  // complex case, handle Q(i):
+        if (::instanceof(::realpart(*value), ::cl_RA_ring) &&
+            ::instanceof(::imagpart(*value), ::cl_RA_ring))
             return true;
     }
     return false;
@@ -904,8 +954,8 @@ bool numeric::is_crational(void) const
  *  @exception invalid_argument (complex inequality) */ 
 bool numeric::operator<(const numeric & other) const
 {
-    if (is_real() && other.is_real())
-        return (bool)(The(cl_R)(*value) < The(cl_R)(*other.value));  // -> CLN
+    if (this->is_real() && other.is_real())
+        return (The(cl_R)(*value) < The(cl_R)(*other.value));  // -> CLN
     throw (std::invalid_argument("numeric::operator<(): complex inequality"));
     return false;  // make compiler shut up
 }
@@ -915,8 +965,8 @@ bool numeric::operator<(const numeric & other) const
  *  @exception invalid_argument (complex inequality) */ 
 bool numeric::operator<=(const numeric & other) const
 {
-    if (is_real() && other.is_real())
-        return (bool)(The(cl_R)(*value) <= The(cl_R)(*other.value));  // -> CLN
+    if (this->is_real() && other.is_real())
+        return (The(cl_R)(*value) <= The(cl_R)(*other.value));  // -> CLN
     throw (std::invalid_argument("numeric::operator<=(): complex inequality"));
     return false;  // make compiler shut up
 }
@@ -926,8 +976,8 @@ bool numeric::operator<=(const numeric & other) const
  *  @exception invalid_argument (complex inequality) */ 
 bool numeric::operator>(const numeric & other) const
 {
-    if (is_real() && other.is_real())
-        return (bool)(The(cl_R)(*value) > The(cl_R)(*other.value));  // -> CLN
+    if (this->is_real() && other.is_real())
+        return (The(cl_R)(*value) > The(cl_R)(*other.value));  // -> CLN
     throw (std::invalid_argument("numeric::operator>(): complex inequality"));
     return false;  // make compiler shut up
 }
@@ -937,8 +987,8 @@ bool numeric::operator>(const numeric & other) const
  *  @exception invalid_argument (complex inequality) */  
 bool numeric::operator>=(const numeric & other) const
 {
-    if (is_real() && other.is_real())
-        return (bool)(The(cl_R)(*value) >= The(cl_R)(*other.value));  // -> CLN
+    if (this->is_real() && other.is_real())
+        return (The(cl_R)(*value) >= The(cl_R)(*other.value));  // -> CLN
     throw (std::invalid_argument("numeric::operator>=(): complex inequality"));
     return false;  // make compiler shut up
 }
@@ -948,7 +998,7 @@ bool numeric::operator>=(const numeric & other) const
  *  You may also consider checking the range first. */
 int numeric::to_int(void) const
 {
-    GINAC_ASSERT(is_integer());
+    GINAC_ASSERT(this->is_integer());
     return ::cl_I_to_int(The(cl_I)(*value));  // -> CLN
 }
 
@@ -957,7 +1007,7 @@ int numeric::to_int(void) const
  *  You may also consider checking the range first. */
 long numeric::to_long(void) const
 {
-    GINAC_ASSERT(is_integer());
+    GINAC_ASSERT(this->is_integer());
     return ::cl_I_to_long(The(cl_I)(*value));  // -> CLN
 }
 
@@ -965,18 +1015,18 @@ long numeric::to_long(void) const
  *  if the number is really not complex before calling this method. */
 double numeric::to_double(void) const
 {
-    GINAC_ASSERT(is_real());
-    return ::cl_double_approx(realpart(*value));  // -> CLN
+    GINAC_ASSERT(this->is_real());
+    return ::cl_double_approx(::realpart(*value));  // -> CLN
 }
 
 /** Real part of a number. */
-numeric numeric::real(void) const
+const numeric numeric::real(void) const
 {
     return numeric(::realpart(*value));  // -> CLN
 }
 
 /** Imaginary part of a number. */
-numeric numeric::imag(void) const
+const numeric numeric::imag(void) const
 {
     return numeric(::imagpart(*value));  // -> CLN
 }
@@ -998,46 +1048,46 @@ inline cl_heap_ratio* TheRatio (const cl_N& obj)
  *  numerator of complex if real and imaginary part are both rational numbers
  *  (i.e numer(4/3+5/6*I) == 8+5*I), the number carrying the sign in all other
  *  cases. */
-numeric numeric::numer(void) const
+const numeric numeric::numer(void) const
 {
-    if (is_integer()) {
+    if (this->is_integer()) {
         return numeric(*this);
     }
 #ifdef SANE_LINKER
-    else if (::instanceof(*value, cl_RA_ring)) {
+    else if (::instanceof(*value, ::cl_RA_ring)) {
         return numeric(::numerator(The(cl_RA)(*value)));
     }
-    else if (!is_real()) {  // complex case, handle Q(i):
+    else if (!this->is_real()) {  // complex case, handle Q(i):
         cl_R r = ::realpart(*value);
         cl_R i = ::imagpart(*value);
-        if (::instanceof(r, cl_I_ring) && ::instanceof(i, cl_I_ring))
+        if (::instanceof(r, ::cl_I_ring) && ::instanceof(i, ::cl_I_ring))
             return numeric(*this);
-        if (::instanceof(r, cl_I_ring) && ::instanceof(i, cl_RA_ring))
-            return numeric(complex(r*::denominator(The(cl_RA)(i)), ::numerator(The(cl_RA)(i))));
-        if (::instanceof(r, cl_RA_ring) && ::instanceof(i, cl_I_ring))
-            return numeric(complex(::numerator(The(cl_RA)(r)), i*::denominator(The(cl_RA)(r))));
-        if (::instanceof(r, cl_RA_ring) && ::instanceof(i, cl_RA_ring)) {
-            cl_I s = lcm(::denominator(The(cl_RA)(r)), ::denominator(The(cl_RA)(i)));
-            return numeric(complex(::numerator(The(cl_RA)(r))*(exquo(s,::denominator(The(cl_RA)(r)))),
+        if (::instanceof(r, ::cl_I_ring) && ::instanceof(i, ::cl_RA_ring))
+            return numeric(::complex(r*::denominator(The(cl_RA)(i)), ::numerator(The(cl_RA)(i))));
+        if (::instanceof(r, ::cl_RA_ring) && ::instanceof(i, ::cl_I_ring))
+            return numeric(::complex(::numerator(The(cl_RA)(r)), i*::denominator(The(cl_RA)(r))));
+        if (::instanceof(r, ::cl_RA_ring) && ::instanceof(i, ::cl_RA_ring)) {
+            cl_I s = ::lcm(::denominator(The(cl_RA)(r)), ::denominator(The(cl_RA)(i)));
+            return numeric(::complex(::numerator(The(cl_RA)(r))*(exquo(s,::denominator(The(cl_RA)(r)))),
                                    ::numerator(The(cl_RA)(i))*(exquo(s,::denominator(The(cl_RA)(i))))));
         }
     }
 #else
-    else if (instanceof(*value, cl_RA_ring)) {
+    else if (instanceof(*value, ::cl_RA_ring)) {
         return numeric(TheRatio(*value)->numerator);
     }
-    else if (!is_real()) {  // complex case, handle Q(i):
-        cl_R r = realpart(*value);
-        cl_R i = imagpart(*value);
-        if (instanceof(r, cl_I_ring) && instanceof(i, cl_I_ring))
+    else if (!this->is_real()) {  // complex case, handle Q(i):
+        cl_R r = ::realpart(*value);
+        cl_R i = ::imagpart(*value);
+        if (instanceof(r, ::cl_I_ring) && instanceof(i, ::cl_I_ring))
             return numeric(*this);
-        if (instanceof(r, cl_I_ring) && instanceof(i, cl_RA_ring))
-            return numeric(complex(r*TheRatio(i)->denominator, TheRatio(i)->numerator));
-        if (instanceof(r, cl_RA_ring) && instanceof(i, cl_I_ring))
-            return numeric(complex(TheRatio(r)->numerator, i*TheRatio(r)->denominator));
-        if (instanceof(r, cl_RA_ring) && instanceof(i, cl_RA_ring)) {
-            cl_I s = lcm(TheRatio(r)->denominator, TheRatio(i)->denominator);
-            return numeric(complex(TheRatio(r)->numerator*(exquo(s,TheRatio(r)->denominator)),
+        if (instanceof(r, ::cl_I_ring) && instanceof(i, ::cl_RA_ring))
+            return numeric(::complex(r*TheRatio(i)->denominator, TheRatio(i)->numerator));
+        if (instanceof(r, ::cl_RA_ring) && instanceof(i, ::cl_I_ring))
+            return numeric(::complex(TheRatio(r)->numerator, i*TheRatio(r)->denominator));
+        if (instanceof(r, ::cl_RA_ring) && instanceof(i, ::cl_RA_ring)) {
+            cl_I s = ::lcm(TheRatio(r)->denominator, TheRatio(i)->denominator);
+            return numeric(::complex(TheRatio(r)->numerator*(exquo(s,TheRatio(r)->denominator)),
                                    TheRatio(i)->numerator*(exquo(s,TheRatio(i)->denominator))));
         }
     }
@@ -1049,42 +1099,42 @@ numeric numeric::numer(void) const
 /** Denominator.  Computes the denominator of rational numbers, common integer
  *  denominator of complex if real and imaginary part are both rational numbers
  *  (i.e denom(4/3+5/6*I) == 6), one in all other cases. */
-numeric numeric::denom(void) const
+const numeric numeric::denom(void) const
 {
-    if (is_integer()) {
+    if (this->is_integer()) {
         return _num1();
     }
 #ifdef SANE_LINKER
-    if (instanceof(*value, cl_RA_ring)) {
+    if (instanceof(*value, ::cl_RA_ring)) {
         return numeric(::denominator(The(cl_RA)(*value)));
     }
-    if (!is_real()) {  // complex case, handle Q(i):
-        cl_R r = realpart(*value);
-        cl_R i = imagpart(*value);
-        if (::instanceof(r, cl_I_ring) && ::instanceof(i, cl_I_ring))
+    if (!this->is_real()) {  // complex case, handle Q(i):
+        cl_R r = ::realpart(*value);
+        cl_R i = ::imagpart(*value);
+        if (::instanceof(r, ::cl_I_ring) && ::instanceof(i, ::cl_I_ring))
             return _num1();
-        if (::instanceof(r, cl_I_ring) && ::instanceof(i, cl_RA_ring))
+        if (::instanceof(r, ::cl_I_ring) && ::instanceof(i, ::cl_RA_ring))
             return numeric(::denominator(The(cl_RA)(i)));
-        if (::instanceof(r, cl_RA_ring) && ::instanceof(i, cl_I_ring))
+        if (::instanceof(r, ::cl_RA_ring) && ::instanceof(i, ::cl_I_ring))
             return numeric(::denominator(The(cl_RA)(r)));
-        if (::instanceof(r, cl_RA_ring) && ::instanceof(i, cl_RA_ring))
-            return numeric(lcm(::denominator(The(cl_RA)(r)), ::denominator(The(cl_RA)(i))));
+        if (::instanceof(r, ::cl_RA_ring) && ::instanceof(i, ::cl_RA_ring))
+            return numeric(::lcm(::denominator(The(cl_RA)(r)), ::denominator(The(cl_RA)(i))));
     }
 #else
-    if (instanceof(*value, cl_RA_ring)) {
+    if (instanceof(*value, ::cl_RA_ring)) {
         return numeric(TheRatio(*value)->denominator);
     }
-    if (!is_real()) {  // complex case, handle Q(i):
-        cl_R r = realpart(*value);
-        cl_R i = imagpart(*value);
-        if (instanceof(r, cl_I_ring) && instanceof(i, cl_I_ring))
+    if (!this->is_real()) {  // complex case, handle Q(i):
+        cl_R r = ::realpart(*value);
+        cl_R i = ::imagpart(*value);
+        if (instanceof(r, ::cl_I_ring) && instanceof(i, ::cl_I_ring))
             return _num1();
-        if (instanceof(r, cl_I_ring) && instanceof(i, cl_RA_ring))
+        if (instanceof(r, ::cl_I_ring) && instanceof(i, ::cl_RA_ring))
             return numeric(TheRatio(i)->denominator);
-        if (instanceof(r, cl_RA_ring) && instanceof(i, cl_I_ring))
+        if (instanceof(r, ::cl_RA_ring) && instanceof(i, ::cl_I_ring))
             return numeric(TheRatio(r)->denominator);
-        if (instanceof(r, cl_RA_ring) && instanceof(i, cl_RA_ring))
-            return numeric(lcm(TheRatio(r)->denominator, TheRatio(i)->denominator));
+        if (instanceof(r, ::cl_RA_ring) && instanceof(i, ::cl_RA_ring))
+            return numeric(::lcm(TheRatio(r)->denominator, TheRatio(i)->denominator));
     }
 #endif // def SANE_LINKER
     // at least one float encountered
@@ -1099,7 +1149,7 @@ numeric numeric::denom(void) const
  *  in two's complement if it is an integer, 0 otherwise. */    
 int numeric::int_length(void) const
 {
-    if (is_integer())
+    if (this->is_integer())
         return ::integer_length(The(cl_I)(*value));  // -> CLN
     else
         return 0;
@@ -1122,7 +1172,7 @@ const numeric some_numeric;
 const type_info & typeid_numeric=typeid(some_numeric);
 /** Imaginary unit.  This is not a constant but a numeric since we are
  *  natively handing complex numbers anyways. */
-const numeric I = numeric(complex(cl_I(0),cl_I(1)));
+const numeric I = numeric(::complex(cl_I(0),cl_I(1)));
 
 
 /** Exponential function.
@@ -1215,7 +1265,7 @@ const numeric atan(const numeric & x)
 const numeric atan(const numeric & y, const numeric & x)
 {
     if (x.is_real() && y.is_real())
-        return ::atan(realpart(*x.value), realpart(*y.value));  // -> CLN
+        return ::atan(::realpart(*x.value), ::realpart(*y.value));  // -> CLN
     else
         throw (std::invalid_argument("numeric::atan(): complex argument"));        
 }
@@ -1285,7 +1335,7 @@ const numeric zeta(const numeric & x)
     // being an exact zero for CLN, which can be tested and then we can just
     // pass the number casted to an int:
     if (x.is_real()) {
-        int aux = (int)(::cl_double_approx(realpart(*x.value)));
+        int aux = (int)(::cl_double_approx(::realpart(*x.value)));
         if (zerop(*x.value-aux))
             return ::cl_zeta(aux);  // -> CLN
     }
@@ -1296,11 +1346,18 @@ const numeric zeta(const numeric & x)
 }
 
 
-/** The gamma function.
+/** The Gamma function.
  *  This is only a stub! */
-const numeric gamma(const numeric & x)
+const numeric lgamma(const numeric & x)
 {
-    clog << "gamma(" << x
+    clog << "lgamma(" << x
+         << "): Does anybody know good way to calculate this numerically?"
+         << endl;
+    return numeric(0);
+}
+const numeric tgamma(const numeric & x)
+{
+    clog << "tgamma(" << x
          << "): Does anybody know good way to calculate this numerically?"
          << endl;
     return numeric(0);
@@ -1342,7 +1399,7 @@ const numeric factorial(const numeric & n)
 
 
 /** The double factorial combinatorial function.  (Scarcely used, but still
- *  useful in cases, like for exact results of Gamma(n+1/2) for instance.)
+ *  useful in cases, like for exact results of tgamma(n+1/2) for instance.)
  *
  *  @param n  integer argument >= -1
  *  @return n!! == n * (n-2) * (n-4) * ... * ({1|2}) with 0!! == (-1)!! == 1
@@ -1396,11 +1453,13 @@ const numeric bernoulli(const numeric & nn)
         return numeric(-1,2);
     if (nn.is_odd())
         return _num0();
-    // Until somebody has the Blues and comes up with a much better idea and
+    // Until somebody has the blues and comes up with a much better idea and
     // codes it (preferably in CLN) we make this a remembering function which
-    // computes its results using the formula
+    // computes its results using the defining formula
     // B(nn) == - 1/(nn+1) * sum_{k=0}^{nn-1}(binomial(nn+1,k)*B(k))
     // whith B(0) == 1.
+    // Be warned, though: the Bernoulli numbers are computationally very
+    // expensive anyhow and you shouldn't expect miracles to happen.
     static vector<numeric> results;
     static int highest_result = -1;
     int n = nn.sub(_num2()).div(_num2()).to_int();
@@ -1432,23 +1491,50 @@ const numeric bernoulli(const numeric & nn)
  *  @exception range_error (argument must be an integer) */
 const numeric fibonacci(const numeric & n)
 {
-    if (!n.is_integer()) {
+    if (!n.is_integer())
         throw (std::range_error("numeric::fibonacci(): argument must be integer"));
-    }
-    // For positive arguments compute the nearest integer to
-    // ((1+sqrt(5))/2)^n/sqrt(5).  For negative arguments, apply an additional
-    // sign.  Note that we are falling back to longs, but this should suffice
-    // for all times.
-    int sig = 1;
-    const long nn = ::abs(n.to_double());
-    if (n.is_negative() && n.is_even())
-        sig =-1;
+    // The following addition formula holds:
+    //      F(n+m)   = F(m-1)*F(n) + F(m)*F(n+1)  for m >= 1, n >= 0.
+    // (Proof: For fixed m, the LHS and the RHS satisfy the same recurrence
+    // w.r.t. n, and the initial values (n=0, n=1) agree. Hence all values
+    // agree.)
+    // Replace m by m+1:
+    //      F(n+m+1) = F(m)*F(n) + F(m+1)*F(n+1)      for m >= 0, n >= 0
+    // Now put in m = n, to get
+    //      F(2n) = (F(n+1)-F(n))*F(n) + F(n)*F(n+1) = F(n)*(2*F(n+1) - F(n))
+    //      F(2n+1) = F(n)^2 + F(n+1)^2
+    // hence
+    //      F(2n+2) = F(n+1)*(2*F(n) + F(n+1))
+    if (n.is_zero())
+        return _num0();
+    if (n.is_negative())
+        if (n.is_even())
+            return -fibonacci(-n);
+        else
+            return fibonacci(-n);
     
-    // Need a precision of ((1+sqrt(5))/2)^-n.
-    cl_float_format_t prec = ::cl_float_format((int)(0.208987641*nn+5));
-    cl_R sqrt5 = ::sqrt(::cl_float(5,prec));
-    cl_R phi = (1+sqrt5)/2;
-    return numeric(::round1(::expt(phi,nn)/sqrt5)*sig);
+    cl_I u(0);
+    cl_I v(1);
+    cl_I m = The(cl_I)(*n.value) >> 1L;  // floor(n/2);
+    for (uintL bit=::integer_length(m); bit>0; --bit) {
+        // Since a squaring is cheaper than a multiplication, better use
+        // three squarings instead of one multiplication and two squarings.
+        cl_I u2 = ::square(u);
+        cl_I v2 = ::square(v);
+        if (::logbitp(bit-1, m)) {
+            v = ::square(u + v) - u2;
+            u = u2 + v2;
+        } else {
+            u = v2 - ::square(v - u);
+            v = u2 + v2;
+        }
+    }
+    if (n.is_even())
+        // Here we don't use the squaring formula because one multiplication
+        // is cheaper than two squarings.
+        return u * ((v << 1) - u);
+    else
+        return ::square(u) + ::square(v);    
 }
 
 
@@ -1481,7 +1567,6 @@ numeric mod(const numeric & a, const numeric & b)
  *  @return a mod b in the range [-iquo(abs(m)-1,2), iquo(abs(m),2)]. */
 numeric smod(const numeric & a, const numeric & b)
 {
-    //  FIXME: Should this become a member function?
     if (a.is_integer() && b.is_integer()) {
         cl_I b2 = The(cl_I)(ceiling1(The(cl_I)(*b.value) / 2)) - 1;
         return ::mod(The(cl_I)(*a.value) + b2, The(cl_I)(*b.value)) - b2;
@@ -1613,21 +1698,21 @@ numeric lcm(const numeric & a, const numeric & b)
 /** Floating point evaluation of Archimedes' constant Pi. */
 ex PiEvalf(void)
 { 
-    return numeric(cl_pi(cl_default_float_format));  // -> CLN
+    return numeric(::cl_pi(cl_default_float_format));  // -> CLN
 }
 
 
-/** Floating point evaluation of Euler's constant Gamma. */
-ex EulerGammaEvalf(void)
+/** Floating point evaluation of Euler's constant gamma. */
+ex EulerEvalf(void)
 { 
-    return numeric(cl_eulerconst(cl_default_float_format));  // -> CLN
+    return numeric(::cl_eulerconst(cl_default_float_format));  // -> CLN
 }
 
 
 /** Floating point evaluation of Catalan's constant. */
 ex CatalanEvalf(void)
 {
-    return numeric(cl_catalanconst(cl_default_float_format));  // -> CLN
+    return numeric(::cl_catalanconst(cl_default_float_format));  // -> CLN
 }
 
 
@@ -1639,14 +1724,14 @@ _numeric_digits::_numeric_digits()
 {
     assert(!too_late);
     too_late = true;
-    cl_default_float_format = cl_float_format(17);
+    cl_default_float_format = ::cl_float_format(17);
 }
 
 
 _numeric_digits& _numeric_digits::operator=(long prec)
 {
     digits=prec;
-    cl_default_float_format = cl_float_format(prec); 
+    cl_default_float_format = ::cl_float_format(prec); 
     return *this;
 }