]> www.ginac.de Git - ginac.git/blobdiff - ginac/numeric.cpp
- introduced info_flag::algebraic.
[ginac.git] / ginac / numeric.cpp
index 886fac72ccba04eca9ab78582750cd085c7dd984..3652f4d47e8346c319c23c8277b4bbddf8b84376 100644 (file)
@@ -4,9 +4,10 @@
  *  Its most important design principle is to completely hide the inner
  *  working of that other package from the user of GiNaC.  It must either 
  *  provide implementation of arithmetic operators and numerical evaluation
- *  of special functions or implement the interface to the bignum package.
- *
- *  GiNaC Copyright (C) 1999 Johannes Gutenberg University Mainz, Germany
+ *  of special functions or implement the interface to the bignum package. */
+
+/*
+ *  GiNaC Copyright (C) 1999-2000 Johannes Gutenberg University Mainz, Germany
  *
  *  This program is free software; you can redistribute it and/or modify
  *  it under the terms of the GNU General Public License as published by
  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  */
 
+#include "config.h"
+
 #include <vector>
 #include <stdexcept>
+#include <string>
+
+#if defined(HAVE_SSTREAM)
+#include <sstream>
+#elif defined(HAVE_STRSTREAM)
+#include <strstream>
+#else
+#error Need either sstream or strstream
+#endif
 
 #include "numeric.h"
 #include "ex.h"
-#include "config.h"
+#include "archive.h"
+#include "debugmsg.h"
+#include "utils.h"
 
 // CLN should not pollute the global namespace, hence we include it here
-// instead of in some header file where it would propagate to other parts:
+// instead of in some header file where it would propagate to other parts.
+// Also, we only need a subset of CLN, so we don't include the complete cln.h:
 #ifdef HAVE_CLN_CLN_H
-#include <CLN/cln.h>
-#else
-#include <cln.h>
-#endif
+#include <cln/cl_output.h>
+#include <cln/cl_integer_io.h>
+#include <cln/cl_integer_ring.h>
+#include <cln/cl_rational_io.h>
+#include <cln/cl_rational_ring.h>
+#include <cln/cl_lfloat_class.h>
+#include <cln/cl_lfloat_io.h>
+#include <cln/cl_real_io.h>
+#include <cln/cl_real_ring.h>
+#include <cln/cl_complex_io.h>
+#include <cln/cl_complex_ring.h>
+#include <cln/cl_numtheory.h>
+#else  // def HAVE_CLN_CLN_H
+#include <cl_output.h>
+#include <cl_integer_io.h>
+#include <cl_integer_ring.h>
+#include <cl_rational_io.h>
+#include <cl_rational_ring.h>
+#include <cl_lfloat_class.h>
+#include <cl_lfloat_io.h>
+#include <cl_real_io.h>
+#include <cl_real_ring.h>
+#include <cl_complex_io.h>
+#include <cl_complex_ring.h>
+#include <cl_numtheory.h>
+#endif  // def HAVE_CLN_CLN_H
+
+#ifndef NO_NAMESPACE_GINAC
+namespace GiNaC {
+#endif  // ndef NO_NAMESPACE_GINAC
 
 // linker has no problems finding text symbols for numerator or denominator
 //#define SANE_LINKER
 
+GINAC_IMPLEMENT_REGISTERED_CLASS(numeric, basic)
+
 //////////
 // default constructor, destructor, copy constructor assignment
 // operator and helpers
@@ -53,9 +96,10 @@ numeric::numeric() : basic(TINFO_numeric)
 {
     debugmsg("numeric default constructor", LOGLEVEL_CONSTRUCT);
     value = new cl_N;
-    *value=cl_I(0);
+    *value = cl_I(0);
     calchash();
-    setflag(status_flags::evaluated|
+    setflag(status_flags::evaluated |
+            status_flags::expanded |
             status_flags::hash_calculated);
 }
 
@@ -65,13 +109,13 @@ numeric::~numeric()
     destroy(0);
 }
 
-numeric::numeric(numeric const & other)
+numeric::numeric(const numeric & other)
 {
     debugmsg("numeric copy constructor", LOGLEVEL_CONSTRUCT);
     copy(other);
 }
 
-numeric const & numeric::operator=(numeric const & other)
+const numeric & numeric::operator=(const numeric & other)
 {
     debugmsg("numeric operator=", LOGLEVEL_ASSIGNMENT);
     if (this != &other) {
@@ -83,7 +127,7 @@ numeric const & numeric::operator=(numeric const & other)
 
 // protected
 
-void numeric::copy(numeric const & other)
+void numeric::copy(const numeric & other)
 {
     basic::copy(other);
     value = new cl_N(*other.value);
@@ -105,7 +149,7 @@ numeric::numeric(int i) : basic(TINFO_numeric)
 {
     debugmsg("numeric constructor from int",LOGLEVEL_CONSTRUCT);
     // Not the whole int-range is available if we don't cast to long
-    // first. This is due to the behaviour of the cl_I-ctor, which
+    // first.  This is due to the behaviour of the cl_I-ctor, which
     // emphasizes efficiency:
     value = new cl_I((long) i);
     calchash();
@@ -113,11 +157,12 @@ numeric::numeric(int i) : basic(TINFO_numeric)
             status_flags::hash_calculated);
 }
 
+
 numeric::numeric(unsigned int i) : basic(TINFO_numeric)
 {
     debugmsg("numeric constructor from uint",LOGLEVEL_CONSTRUCT);
     // Not the whole uint-range is available if we don't cast to ulong
-    // first. This is due to the behaviour of the cl_I-ctor, which
+    // first.  This is due to the behaviour of the cl_I-ctor, which
     // emphasizes efficiency:
     value = new cl_I((unsigned long)i);
     calchash();
@@ -125,6 +170,7 @@ numeric::numeric(unsigned int i) : basic(TINFO_numeric)
             status_flags::hash_calculated);
 }
 
+
 numeric::numeric(long i) : basic(TINFO_numeric)
 {
     debugmsg("numeric constructor from long",LOGLEVEL_CONSTRUCT);
@@ -134,6 +180,7 @@ numeric::numeric(long i) : basic(TINFO_numeric)
             status_flags::hash_calculated);
 }
 
+
 numeric::numeric(unsigned long i) : basic(TINFO_numeric)
 {
     debugmsg("numeric constructor from ulong",LOGLEVEL_CONSTRUCT);
@@ -158,6 +205,7 @@ numeric::numeric(long numer, long denom) : basic(TINFO_numeric)
             status_flags::hash_calculated);
 }
 
+
 numeric::numeric(double d) : basic(TINFO_numeric)
 {
     debugmsg("numeric constructor from double",LOGLEVEL_CONSTRUCT);
@@ -171,13 +219,14 @@ numeric::numeric(double d) : basic(TINFO_numeric)
             status_flags::hash_calculated);
 }
 
-numeric::numeric(char const *s) : basic(TINFO_numeric)
-{   // MISSING: treatment of complex and ints and rationals.
+
+numeric::numeric(const char *s) : basic(TINFO_numeric)
+{   // MISSING: treatment of complex numbers
     debugmsg("numeric constructor from string",LOGLEVEL_CONSTRUCT);
     if (strchr(s, '.'))
         value = new cl_LF(s);
     else
-        value = new cl_I(s);
+        value = new cl_R(s);
     calchash();
     setflag(status_flags::evaluated|
             status_flags::hash_calculated);
@@ -185,7 +234,7 @@ numeric::numeric(char const *s) : basic(TINFO_numeric)
 
 /** Ctor from CLN types.  This is for the initiated user or internal use
  *  only. */
-numeric::numeric(cl_N const & z) : basic(TINFO_numeric)
+numeric::numeric(const cl_N & z) : basic(TINFO_numeric)
 {
     debugmsg("numeric constructor from cl_N", LOGLEVEL_CONSTRUCT);
     value = new cl_N(z);
@@ -194,6 +243,93 @@ numeric::numeric(cl_N const & z) : basic(TINFO_numeric)
             status_flags::hash_calculated);
 }
 
+//////////
+// archiving
+//////////
+
+/** Construct object from archive_node. */
+numeric::numeric(const archive_node &n, const lst &sym_lst) : inherited(n, sym_lst)
+{
+    debugmsg("numeric constructor from archive_node", LOGLEVEL_CONSTRUCT);
+    value = new cl_N;
+
+    // Read number as string
+    string str;
+    if (n.find_string("number", str)) {
+#ifdef HAVE_SSTREAM
+        istringstream s(str);
+#else
+               istrstream s(str.c_str(), str.size() + 1);
+#endif
+        cl_idecoded_float re, im;
+        char c;
+        s.get(c);
+        switch (c) {
+            case 'R':    // Integer-decoded real number
+                s >> re.sign >> re.mantissa >> re.exponent;
+                *value = re.sign * re.mantissa * ::expt(cl_float(2.0, cl_default_float_format), re.exponent);
+                break;
+            case 'C':    // Integer-decoded complex number
+                s >> re.sign >> re.mantissa >> re.exponent;
+                s >> im.sign >> im.mantissa >> im.exponent;
+                *value = ::complex(re.sign * re.mantissa * ::expt(cl_float(2.0, cl_default_float_format), re.exponent),
+                                 im.sign * im.mantissa * ::expt(cl_float(2.0, cl_default_float_format), im.exponent));
+                break;
+            default:   // Ordinary number
+                               s.putback(c);
+                s >> *value;
+                break;
+        }
+    }
+    calchash();
+    setflag(status_flags::evaluated|
+            status_flags::hash_calculated);
+}
+
+/** Unarchive the object. */
+ex numeric::unarchive(const archive_node &n, const lst &sym_lst)
+{
+    return (new numeric(n, sym_lst))->setflag(status_flags::dynallocated);
+}
+
+/** Archive the object. */
+void numeric::archive(archive_node &n) const
+{
+    inherited::archive(n);
+
+    // Write number as string
+#ifdef HAVE_SSTREAM
+    ostringstream s;
+#else
+    char buf[1024];
+    ostrstream s(buf, 1024);
+#endif
+    if (this->is_crational())
+        s << *value;
+    else {
+        // Non-rational numbers are written in an integer-decoded format
+        // to preserve the precision
+        if (this->is_real()) {
+            cl_idecoded_float re = integer_decode_float(The(cl_F)(*value));
+            s << "R";
+            s << re.sign << " " << re.mantissa << " " << re.exponent;
+        } else {
+            cl_idecoded_float re = integer_decode_float(The(cl_F)(::realpart(*value)));
+            cl_idecoded_float im = integer_decode_float(The(cl_F)(::imagpart(*value)));
+            s << "C";
+            s << re.sign << " " << re.mantissa << " " << re.exponent << " ";
+            s << im.sign << " " << im.mantissa << " " << im.exponent;
+        }
+    }
+#ifdef HAVE_SSTREAM
+    n.add_string("number", s.str());
+#else
+       s << ends;
+       string str(buf);
+       n.add_string("number", str);
+#endif
+}
+
 //////////
 // functions overriding virtual functions from bases classes
 //////////
@@ -206,124 +342,258 @@ basic * numeric::duplicate() const
     return new numeric(*this);
 }
 
-// The method printraw doesn't do much, it simply uses CLN's operator<<() for
-// output, which is ugly but reliable. Examples:
-// 2+2i 
-void numeric::printraw(ostream & os) const
+
+/** Helper function to print a real number in a nicer way than is CLN's
+ *  default.  Instead of printing 42.0L0 this just prints 42.0 to ostream os
+ *  and instead of 3.99168L7 it prints 3.99168E7.  This is fine in GiNaC as
+ *  long as it only uses cl_LF and no other floating point types.
+ *
+ *  @see numeric::print() */
+void print_real_number(ostream & os, const cl_R & num)
 {
-    debugmsg("numeric printraw", LOGLEVEL_PRINT);
-    os << "numeric(" << *value << ")";
+    cl_print_flags ourflags;
+    if (::instanceof(num, ::cl_RA_ring)) {
+        // case 1: integer or rational, nothing special to do:
+        ::print_real(os, ourflags, num);
+    } else {
+        // case 2: float
+        // make CLN believe this number has default_float_format, so it prints
+        // 'E' as exponent marker instead of 'L':
+        ourflags.default_float_format = ::cl_float_format(The(cl_F)(num));
+        ::print_real(os, ourflags, num);
+    }
+    return;
 }
 
-// The method print adds to the output so it blends more consistently together
-// with the other routines and produces something compatible to Maple input.
+/** This method adds to the output so it blends more consistently together
+ *  with the other routines and produces something compatible to ginsh input.
+ *  
+ *  @see print_real_number() */
 void numeric::print(ostream & os, unsigned upper_precedence) const
 {
     debugmsg("numeric print", LOGLEVEL_PRINT);
-    if (is_real()) {  
+    if (this->is_real()) {
         // case 1, real:  x  or  -x
-        if ((precedence<=upper_precedence) && (!is_pos_integer())) {
-            os << "(" << *value << ")";
+        if ((precedence<=upper_precedence) && (!this->is_nonneg_integer())) {
+            os << "(";
+            print_real_number(os, The(cl_R)(*value));
+            os << ")";
         } else {
-            os << *value;
+            print_real_number(os, The(cl_R)(*value));
         }
     } else {
         // case 2, imaginary:  y*I  or  -y*I
-        if (realpart(*value) == 0) {
-            if ((precedence<=upper_precedence) && (imagpart(*value) < 0)) {
-                if (imagpart(*value) == -1) {
+        if (::realpart(*value) == 0) {
+            if ((precedence<=upper_precedence) && (::imagpart(*value) < 0)) {
+                if (::imagpart(*value) == -1) {
                     os << "(-I)";
                 } else {
-                    os << "(" << imagpart(*value) << "*I)";
+                    os << "(";
+                    print_real_number(os, The(cl_R)(::imagpart(*value)));
+                    os << "*I)";
                 }
             } else {
-                if (imagpart(*value) == 1) {
+                if (::imagpart(*value) == 1) {
                     os << "I";
                 } else {
-                    if (imagpart (*value) == -1) {
+                    if (::imagpart (*value) == -1) {
                         os << "-I";
                     } else {
-                        os << imagpart(*value) << "*I";
+                        print_real_number(os, The(cl_R)(::imagpart(*value)));
+                        os << "*I";
                     }
                 }
             }
         } else {
             // case 3, complex:  x+y*I  or  x-y*I  or  -x+y*I  or  -x-y*I
-            if (precedence <= upper_precedence) os << "(";
-            os << realpart(*value);
-            if (imagpart(*value) < 0) {
-                if (imagpart(*value) == -1) {
+            if (precedence <= upper_precedence)
+                os << "(";
+            print_real_number(os, The(cl_R)(::realpart(*value)));
+            if (::imagpart(*value) < 0) {
+                if (::imagpart(*value) == -1) {
                     os << "-I";
                 } else {
-                    os << imagpart(*value) << "*I";
+                    print_real_number(os, The(cl_R)(::imagpart(*value)));
+                    os << "*I";
                 }
             } else {
-                if (imagpart(*value) == 1) {
+                if (::imagpart(*value) == 1) {
                     os << "+I";
                 } else {
-                    os << "+" << imagpart(*value) << "*I";
+                    os << "+";
+                    print_real_number(os, The(cl_R)(::imagpart(*value)));
+                    os << "*I";
                 }
             }
-            if (precedence <= upper_precedence) os << ")";
+            if (precedence <= upper_precedence)
+                os << ")";
+        }
+    }
+}
+
+
+void numeric::printraw(ostream & os) const
+{
+    // The method printraw doesn't do much, it simply uses CLN's operator<<()
+    // for output, which is ugly but reliable. e.g: 2+2i
+    debugmsg("numeric printraw", LOGLEVEL_PRINT);
+    os << "numeric(" << *value << ")";
+}
+
+
+void numeric::printtree(ostream & os, unsigned indent) const
+{
+    debugmsg("numeric printtree", LOGLEVEL_PRINT);
+    os << string(indent,' ') << *value
+       << " (numeric): "
+       << "hash=" << hashvalue << " (0x" << hex << hashvalue << dec << ")"
+       << ", flags=" << flags << endl;
+}
+
+
+void numeric::printcsrc(ostream & os, unsigned type, unsigned upper_precedence) const
+{
+    debugmsg("numeric print csrc", LOGLEVEL_PRINT);
+    ios::fmtflags oldflags = os.flags();
+    os.setf(ios::scientific);
+    if (this->is_rational() && !this->is_integer()) {
+        if (compare(_num0()) > 0) {
+            os << "(";
+            if (type == csrc_types::ctype_cl_N)
+                os << "cl_F(\"" << numer().evalf() << "\")";
+            else
+                os << numer().to_double();
+        } else {
+            os << "-(";
+            if (type == csrc_types::ctype_cl_N)
+                os << "cl_F(\"" << -numer().evalf() << "\")";
+            else
+                os << -numer().to_double();
         }
+        os << "/";
+        if (type == csrc_types::ctype_cl_N)
+            os << "cl_F(\"" << denom().evalf() << "\")";
+        else
+            os << denom().to_double();
+        os << ")";
+    } else {
+        if (type == csrc_types::ctype_cl_N)
+            os << "cl_F(\"" << evalf() << "\")";
+        else
+            os << to_double();
     }
+    os.flags(oldflags);
 }
 
+
 bool numeric::info(unsigned inf) const
 {
     switch (inf) {
-    case info_flags::numeric:
-    case info_flags::polynomial:
-    case info_flags::rational_function:
+        case info_flags::numeric:
+        case info_flags::polynomial:
+        case info_flags::rational_function:
+            return true;
+        case info_flags::real:
+            return is_real();
+        case info_flags::rational:
+        case info_flags::rational_polynomial:
+            return is_rational();
+        case info_flags::crational:
+        case info_flags::crational_polynomial:
+            return is_crational();
+        case info_flags::integer:
+        case info_flags::integer_polynomial:
+            return is_integer();
+        case info_flags::cinteger:
+        case info_flags::cinteger_polynomial:
+            return is_cinteger();
+        case info_flags::positive:
+            return is_positive();
+        case info_flags::negative:
+            return is_negative();
+        case info_flags::nonnegative:
+            return !is_negative();
+        case info_flags::posint:
+            return is_pos_integer();
+        case info_flags::negint:
+            return is_integer() && is_negative();
+        case info_flags::nonnegint:
+            return is_nonneg_integer();
+        case info_flags::even:
+            return is_even();
+        case info_flags::odd:
+            return is_odd();
+        case info_flags::prime:
+            return is_prime();
+        case info_flags::algebraic:
+            return !is_real();
+    }
+    return false;
+}
+
+/** Disassemble real part and imaginary part to scan for the occurrence of a
+ *  single number.  Also handles the imaginary unit.  It ignores the sign on
+ *  both this and the argument, which may lead to what might appear as funny
+ *  results:  (2+I).has(-2) -> true.  But this is consistent, since we also
+ *  would like to have (-2+I).has(2) -> true and we want to think about the
+ *  sign as a multiplicative factor. */
+bool numeric::has(const ex & other) const
+{
+    if (!is_exactly_of_type(*other.bp, numeric))
+        return false;
+    const numeric & o = static_cast<numeric &>(const_cast<basic &>(*other.bp));
+    if (this->is_equal(o) || this->is_equal(-o))
         return true;
-    case info_flags::real:
-        return is_real();
-    case info_flags::rational:
-    case info_flags::rational_polynomial:
-        return is_rational();
-    case info_flags::integer:
-    case info_flags::integer_polynomial:
-        return is_integer();
-    case info_flags::positive:
-        return is_positive();
-    case info_flags::negative:
-        return is_negative();
-    case info_flags::nonnegative:
-        return compare(numZERO())>=0;
-    case info_flags::posint:
-        return is_pos_integer();
-    case info_flags::negint:
-        return is_integer() && (compare(numZERO())<0);
-    case info_flags::nonnegint:
-        return is_nonneg_integer();
-    case info_flags::even:
-        return is_even();
-    case info_flags::odd:
-        return is_odd();
-    case info_flags::prime:
-        return is_prime();
+    if (o.imag().is_zero())  // e.g. scan for 3 in -3*I
+        return (this->real().is_equal(o) || this->imag().is_equal(o) ||
+                this->real().is_equal(-o) || this->imag().is_equal(-o));
+    else {
+        if (o.is_equal(I))  // e.g scan for I in 42*I
+            return !this->is_real();
+        if (o.real().is_zero())  // e.g. scan for 2*I in 2*I+1
+            return (this->real().has(o*I) || this->imag().has(o*I) ||
+                    this->real().has(-o*I) || this->imag().has(-o*I));
     }
     return false;
 }
 
+
+/** Evaluation of numbers doesn't do anything at all. */
+ex numeric::eval(int level) const
+{
+    // Warning: if this is ever gonna do something, the ex ctors from all kinds
+    // of numbers should be checking for status_flags::evaluated.
+    return this->hold();
+}
+
+
 /** Cast numeric into a floating-point object.  For example exact numeric(1) is
  *  returned as a 1.0000000000000000000000 and so on according to how Digits is
  *  currently set.
  *
  *  @param level  ignored, but needed for overriding basic::evalf.
- *  @return an ex-handle to a numeric. */
+ *  @return  an ex-handle to a numeric. */
 ex numeric::evalf(int level) const
 {
     // level can safely be discarded for numeric objects.
-    return numeric(cl_float(1.0, cl_default_float_format) * (*value));  // -> CLN
+    return numeric(::cl_float(1.0, ::cl_default_float_format) * (*value));  // -> CLN
 }
 
 // protected
 
-int numeric::compare_same_type(basic const & other) const
+/** Implementation of ex::diff() for a numeric. It always returns 0.
+ *
+ *  @see ex::diff */
+ex numeric::derivative(const symbol & s) const
+{
+    return _ex0();
+}
+
+
+int numeric::compare_same_type(const basic & other) const
 {
-    ASSERT(is_exactly_of_type(other, numeric));
-    numeric const & o = static_cast<numeric &>(const_cast<basic &>(other));
+    GINAC_ASSERT(is_exactly_of_type(other, numeric));
+    const numeric & o = static_cast<numeric &>(const_cast<basic &>(other));
 
     if (*value == *o.value) {
         return 0;
@@ -332,12 +602,23 @@ int numeric::compare_same_type(basic const & other) const
     return compare(o);    
 }
 
-bool numeric::is_equal_same_type(basic const & other) const
+
+bool numeric::is_equal_same_type(const basic & other) const
 {
-    ASSERT(is_exactly_of_type(other,numeric));
-    numeric const *o = static_cast<numeric const *>(&other);
+    GINAC_ASSERT(is_exactly_of_type(other,numeric));
+    const numeric *o = static_cast<const numeric *>(&other);
     
-    return is_equal(*o);
+    return this->is_equal(*o);
+}
+
+unsigned numeric::calchash(void) const
+{
+    return (hashvalue=cl_equal_hashcode(*value) | 0x80000000U);
+    /*
+    cout << *value << "->" << hashvalue << endl;
+    hashvalue=HASHVALUE_NUMERIC+1000U;
+    return HASHVALUE_NUMERIC+1000U;
+    */
 }
 
 /*
@@ -368,26 +649,26 @@ unsigned numeric::calchash(void) const
 
 /** Numerical addition method.  Adds argument to *this and returns result as
  *  a new numeric object. */
-numeric numeric::add(numeric const & other) const
+numeric numeric::add(const numeric & other) const
 {
     return numeric((*value)+(*other.value));
 }
 
 /** Numerical subtraction method.  Subtracts argument from *this and returns
  *  result as a new numeric object. */
-numeric numeric::sub(numeric const & other) const
+numeric numeric::sub(const numeric & other) const
 {
     return numeric((*value)-(*other.value));
 }
 
 /** Numerical multiplication method.  Multiplies *this and argument and returns
  *  result as a new numeric object. */
-numeric numeric::mul(numeric const & other) const
+numeric numeric::mul(const numeric & other) const
 {
-    static const numeric * numONEp=&numONE();
-    if (this==numONEp) {
+    static const numeric * _num1p=&_num1();
+    if (this==_num1p) {
         return other;
-    } else if (&other==numONEp) {
+    } else if (&other==_num1p) {
         return *this;
     }
     return numeric((*value)*(*other.value));
@@ -397,141 +678,164 @@ numeric numeric::mul(numeric const & other) const
  *  a new numeric object.
  *
  *  @exception overflow_error (division by zero) */
-numeric numeric::div(numeric const & other) const
+numeric numeric::div(const numeric & other) const
 {
-    if (zerop(*other.value))
+    if (::zerop(*other.value))
         throw (std::overflow_error("division by zero"));
     return numeric((*value)/(*other.value));
 }
 
-numeric numeric::power(numeric const & other) const
+numeric numeric::power(const numeric & other) const
 {
-    static const numeric * numONEp=&numONE();
-    if (&other==numONEp) {
+    static const numeric * _num1p = &_num1();
+    if (&other==_num1p)
         return *this;
+    if (::zerop(*value)) {
+        if (::zerop(*other.value))
+            throw (std::domain_error("numeric::eval(): pow(0,0) is undefined"));
+        else if (::zerop(::realpart(*other.value)))
+            throw (std::domain_error("numeric::eval(): pow(0,I) is undefined"));
+        else if (::minusp(::realpart(*other.value)))
+            throw (std::overflow_error("numeric::eval(): division by zero"));
+        else
+            return _num0();
     }
-    if (zerop(*value) && other.is_real() && minusp(realpart(*other.value)))
-        throw (std::overflow_error("division by zero"));
-    return numeric(expt(*value,*other.value));
+    return numeric(::expt(*value,*other.value));
 }
 
 /** Inverse of a number. */
 numeric numeric::inverse(void) const
 {
-    return numeric(recip(*value));  // -> CLN
+    return numeric(::recip(*value));  // -> CLN
 }
 
-numeric const & numeric::add_dyn(numeric const & other) const
+const numeric & numeric::add_dyn(const numeric & other) const
 {
-    return static_cast<numeric const &>((new numeric((*value)+(*other.value)))->
+    return static_cast<const numeric &>((new numeric((*value)+(*other.value)))->
                                         setflag(status_flags::dynallocated));
 }
 
-numeric const & numeric::sub_dyn(numeric const & other) const
+const numeric & numeric::sub_dyn(const numeric & other) const
 {
-    return static_cast<numeric const &>((new numeric((*value)-(*other.value)))->
+    return static_cast<const numeric &>((new numeric((*value)-(*other.value)))->
                                         setflag(status_flags::dynallocated));
 }
 
-numeric const & numeric::mul_dyn(numeric const & other) const
+const numeric & numeric::mul_dyn(const numeric & other) const
 {
-    static const numeric * numONEp=&numONE();
-    if (this==numONEp) {
+    static const numeric * _num1p=&_num1();
+    if (this==_num1p) {
         return other;
-    } else if (&other==numONEp) {
+    } else if (&other==_num1p) {
         return *this;
     }
-    return static_cast<numeric const &>((new numeric((*value)*(*other.value)))->
+    return static_cast<const numeric &>((new numeric((*value)*(*other.value)))->
                                         setflag(status_flags::dynallocated));
 }
 
-numeric const & numeric::div_dyn(numeric const & other) const
+const numeric & numeric::div_dyn(const numeric & other) const
 {
-    if (zerop(*other.value))
+    if (::zerop(*other.value))
         throw (std::overflow_error("division by zero"));
-    return static_cast<numeric const &>((new numeric((*value)/(*other.value)))->
+    return static_cast<const numeric &>((new numeric((*value)/(*other.value)))->
                                         setflag(status_flags::dynallocated));
 }
 
-numeric const & numeric::power_dyn(numeric const & other) const
+const numeric & numeric::power_dyn(const numeric & other) const
 {
-    static const numeric * numONEp=&numONE();
-    if (&other==numONEp) {
+    static const numeric * _num1p=&_num1();
+    if (&other==_num1p)
         return *this;
+    if (::zerop(*value)) {
+        if (::zerop(*other.value))
+            throw (std::domain_error("numeric::eval(): pow(0,0) is undefined"));
+        else if (::zerop(::realpart(*other.value)))
+            throw (std::domain_error("numeric::eval(): pow(0,I) is undefined"));
+        else if (::minusp(::realpart(*other.value)))
+            throw (std::overflow_error("numeric::eval(): division by zero"));
+        else
+            return _num0();
     }
-    // The ifs are only a workaround for a bug in CLN. It gets stuck otherwise:
-    if ( !other.is_integer() &&
-         other.is_rational() &&
-         (*this).is_nonneg_integer() ) {
-        if ( !zerop(*value) ) {
-            return static_cast<numeric const &>((new numeric(exp(*other.value * log(*value))))->
-                                                setflag(status_flags::dynallocated));
-        } else {
-            if ( !zerop(*other.value) ) {  // 0^(n/m)
-                return static_cast<numeric const &>((new numeric(0))->
-                                                    setflag(status_flags::dynallocated));
-            } else {                       // raise FPE (0^0 requested)
-                return static_cast<numeric const &>((new numeric(1/(*other.value)))->
-                                                    setflag(status_flags::dynallocated));
-            }
-        }
-    } else {                               // default -> CLN
-        return static_cast<numeric const &>((new numeric(expt(*value,*other.value)))->
-                                            setflag(status_flags::dynallocated));
-    }
+    return static_cast<const numeric &>((new numeric(::expt(*value,*other.value)))->
+                                        setflag(status_flags::dynallocated));
 }
 
-numeric const & numeric::operator=(int i)
+const numeric & numeric::operator=(int i)
 {
     return operator=(numeric(i));
 }
 
-numeric const & numeric::operator=(unsigned int i)
+const numeric & numeric::operator=(unsigned int i)
 {
     return operator=(numeric(i));
 }
 
-numeric const & numeric::operator=(long i)
+const numeric & numeric::operator=(long i)
 {
     return operator=(numeric(i));
 }
 
-numeric const & numeric::operator=(unsigned long i)
+const numeric & numeric::operator=(unsigned long i)
 {
     return operator=(numeric(i));
 }
 
-numeric const & numeric::operator=(double d)
+const numeric & numeric::operator=(double d)
 {
     return operator=(numeric(d));
 }
 
-numeric const & numeric::operator=(char const * s)
+const numeric & numeric::operator=(const char * s)
 {
     return operator=(numeric(s));
 }
 
+/** Return the complex half-plane (left or right) in which the number lies.
+ *  csgn(x)==0 for x==0, csgn(x)==1 for Re(x)>0 or Re(x)=0 and Im(x)>0,
+ *  csgn(x)==-1 for Re(x)<0 or Re(x)=0 and Im(x)<0.
+ *
+ *  @see numeric::compare(const numeric & other) */
+int numeric::csgn(void) const
+{
+    if (this->is_zero())
+        return 0;
+    if (!::zerop(::realpart(*value))) {
+        if (::plusp(::realpart(*value)))
+            return 1;
+        else
+            return -1;
+    } else {
+        if (::plusp(::imagpart(*value)))
+            return 1;
+        else
+            return -1;
+    }
+}
+
 /** This method establishes a canonical order on all numbers.  For complex
  *  numbers this is not possible in a mathematically consistent way but we need
  *  to establish some order and it ought to be fast.  So we simply define it
- *  similar to Maple's csgn. */
-int numeric::compare(numeric const & other) const
+ *  to be compatible with our method csgn.
+ *
+ *  @return csgn(*this-other)
+ *  @see numeric::csgn(void) */
+int numeric::compare(const numeric & other) const
 {
     // Comparing two real numbers?
-    if (is_real() && other.is_real())
+    if (this->is_real() && other.is_real())
         // Yes, just compare them
-        return cl_compare(The(cl_R)(*value), The(cl_R)(*other.value));    
+        return ::cl_compare(The(cl_R)(*value), The(cl_R)(*other.value));    
     else {
         // No, first compare real parts
-        cl_signean real_cmp = cl_compare(realpart(*value), realpart(*other.value));
+        cl_signean real_cmp = ::cl_compare(::realpart(*value), ::realpart(*other.value));
         if (real_cmp)
             return real_cmp;
 
-        return cl_compare(imagpart(*value), imagpart(*other.value));
+        return ::cl_compare(::imagpart(*value), ::imagpart(*other.value));
     }
 }
 
-bool numeric::is_equal(numeric const & other) const
+bool numeric::is_equal(const numeric & other) const
 {
     return (*value == *other.value);
 }
@@ -539,59 +843,53 @@ bool numeric::is_equal(numeric const & other) const
 /** True if object is zero. */
 bool numeric::is_zero(void) const
 {
-    return zerop(*value);  // -> CLN
+    return ::zerop(*value);  // -> CLN
 }
 
 /** True if object is not complex and greater than zero. */
 bool numeric::is_positive(void) const
 {
-    if (is_real()) {
-        return plusp(The(cl_R)(*value));  // -> CLN
-    }
+    if (this->is_real())
+        return ::plusp(The(cl_R)(*value));  // -> CLN
     return false;
 }
 
 /** True if object is not complex and less than zero. */
 bool numeric::is_negative(void) const
 {
-    if (is_real()) {
-        return minusp(The(cl_R)(*value));  // -> CLN
-    }
+    if (this->is_real())
+        return ::minusp(The(cl_R)(*value));  // -> CLN
     return false;
 }
 
 /** True if object is a non-complex integer. */
 bool numeric::is_integer(void) const
 {
-    return (bool)instanceof(*value, cl_I_ring);  // -> CLN
+    return ::instanceof(*value, ::cl_I_ring);  // -> CLN
 }
 
 /** True if object is an exact integer greater than zero. */
 bool numeric::is_pos_integer(void) const
 {
-    return (is_integer() &&
-            plusp(The(cl_I)(*value)));  // -> CLN
+    return (this->is_integer() && ::plusp(The(cl_I)(*value)));  // -> CLN
 }
 
 /** True if object is an exact integer greater or equal zero. */
 bool numeric::is_nonneg_integer(void) const
 {
-    return (is_integer() &&
-            !minusp(The(cl_I)(*value)));  // -> CLN
+    return (this->is_integer() && !::minusp(The(cl_I)(*value)));  // -> CLN
 }
 
 /** True if object is an exact even integer. */
 bool numeric::is_even(void) const
 {
-    return (is_integer() &&
-            evenp(The(cl_I)(*value)));  // -> CLN
+    return (this->is_integer() && ::evenp(The(cl_I)(*value)));  // -> CLN
 }
 
 /** True if object is an exact odd integer. */
 bool numeric::is_odd(void) const
 {
-    return (is_integer() &&
-            oddp(The(cl_I)(*value)));  // -> CLN
+    return (this->is_integer() && ::oddp(The(cl_I)(*value)));  // -> CLN
 }
 
 /** Probabilistic primality test.
@@ -599,48 +897,67 @@ bool numeric::is_odd(void) const
  *  @return  true if object is exact integer and prime. */
 bool numeric::is_prime(void) const
 {
-    return (is_integer() &&
-            isprobprime(The(cl_I)(*value)));  // -> CLN
+    return (this->is_integer() && ::isprobprime(The(cl_I)(*value)));  // -> CLN
 }
 
 /** True if object is an exact rational number, may even be complex
  *  (denominator may be unity). */
 bool numeric::is_rational(void) const
 {
-    if (instanceof(*value, cl_RA_ring)) {
-        return true;
-    } else if (!is_real()) {  // complex case, handle Q(i):
-        if ( instanceof(realpart(*value), cl_RA_ring) &&
-             instanceof(imagpart(*value), cl_RA_ring) )
-            return true;
-    }
-    return false;
+    return ::instanceof(*value, ::cl_RA_ring);  // -> CLN
 }
 
 /** True if object is a real integer, rational or float (but not complex). */
 bool numeric::is_real(void) const
 {
-    return (bool)instanceof(*value, cl_R_ring);  // -> CLN
+    return ::instanceof(*value, ::cl_R_ring);  // -> CLN
 }
 
-bool numeric::operator==(numeric const & other) const
+bool numeric::operator==(const numeric & other) const
 {
     return (*value == *other.value);  // -> CLN
 }
 
-bool numeric::operator!=(numeric const & other) const
+bool numeric::operator!=(const numeric & other) const
 {
     return (*value != *other.value);  // -> CLN
 }
 
+/** True if object is element of the domain of integers extended by I, i.e. is
+ *  of the form a+b*I, where a and b are integers. */
+bool numeric::is_cinteger(void) const
+{
+    if (::instanceof(*value, ::cl_I_ring))
+        return true;
+    else if (!this->is_real()) {  // complex case, handle n+m*I
+        if (::instanceof(::realpart(*value), ::cl_I_ring) &&
+            ::instanceof(::imagpart(*value), ::cl_I_ring))
+            return true;
+    }
+    return false;
+}
+
+/** True if object is an exact rational number, may even be complex
+ *  (denominator may be unity). */
+bool numeric::is_crational(void) const
+{
+    if (::instanceof(*value, ::cl_RA_ring))
+        return true;
+    else if (!this->is_real()) {  // complex case, handle Q(i):
+        if (::instanceof(::realpart(*value), ::cl_RA_ring) &&
+            ::instanceof(::imagpart(*value), ::cl_RA_ring))
+            return true;
+    }
+    return false;
+}
+
 /** Numerical comparison: less.
  *
  *  @exception invalid_argument (complex inequality) */ 
-bool numeric::operator<(numeric const & other) const
+bool numeric::operator<(const numeric & other) const
 {
-    if ( is_real() && other.is_real() ) {
-        return (bool)(The(cl_R)(*value) < The(cl_R)(*other.value));  // -> CLN
-    }
+    if (this->is_real() && other.is_real())
+        return (The(cl_R)(*value) < The(cl_R)(*other.value));  // -> CLN
     throw (std::invalid_argument("numeric::operator<(): complex inequality"));
     return false;  // make compiler shut up
 }
@@ -648,11 +965,10 @@ bool numeric::operator<(numeric const & other) const
 /** Numerical comparison: less or equal.
  *
  *  @exception invalid_argument (complex inequality) */ 
-bool numeric::operator<=(numeric const & other) const
+bool numeric::operator<=(const numeric & other) const
 {
-    if ( is_real() && other.is_real() ) {
-        return (bool)(The(cl_R)(*value) <= The(cl_R)(*other.value));  // -> CLN
-    }
+    if (this->is_real() && other.is_real())
+        return (The(cl_R)(*value) <= The(cl_R)(*other.value));  // -> CLN
     throw (std::invalid_argument("numeric::operator<=(): complex inequality"));
     return false;  // make compiler shut up
 }
@@ -660,11 +976,10 @@ bool numeric::operator<=(numeric const & other) const
 /** Numerical comparison: greater.
  *
  *  @exception invalid_argument (complex inequality) */ 
-bool numeric::operator>(numeric const & other) const
+bool numeric::operator>(const numeric & other) const
 {
-    if ( is_real() && other.is_real() ) {
-        return (bool)(The(cl_R)(*value) > The(cl_R)(*other.value));  // -> CLN
-    }
+    if (this->is_real() && other.is_real())
+        return (The(cl_R)(*value) > The(cl_R)(*other.value));  // -> CLN
     throw (std::invalid_argument("numeric::operator>(): complex inequality"));
     return false;  // make compiler shut up
 }
@@ -672,41 +987,50 @@ bool numeric::operator>(numeric const & other) const
 /** Numerical comparison: greater or equal.
  *
  *  @exception invalid_argument (complex inequality) */  
-bool numeric::operator>=(numeric const & other) const
+bool numeric::operator>=(const numeric & other) const
 {
-    if ( is_real() && other.is_real() ) {
-        return (bool)(The(cl_R)(*value) >= The(cl_R)(*other.value));  // -> CLN
-    }
+    if (this->is_real() && other.is_real())
+        return (The(cl_R)(*value) >= The(cl_R)(*other.value));  // -> CLN
     throw (std::invalid_argument("numeric::operator>=(): complex inequality"));
     return false;  // make compiler shut up
 }
 
-/** Converts numeric types to machine's int. You should check with is_integer()
- *  if the number is really an integer before calling this method. */
+/** Converts numeric types to machine's int.  You should check with
+ *  is_integer() if the number is really an integer before calling this method.
+ *  You may also consider checking the range first. */
 int numeric::to_int(void) const
 {
-    ASSERT(is_integer());
-    return cl_I_to_int(The(cl_I)(*value));
+    GINAC_ASSERT(this->is_integer());
+    return ::cl_I_to_int(The(cl_I)(*value));  // -> CLN
+}
+
+/** Converts numeric types to machine's long.  You should check with
+ *  is_integer() if the number is really an integer before calling this method.
+ *  You may also consider checking the range first. */
+long numeric::to_long(void) const
+{
+    GINAC_ASSERT(this->is_integer());
+    return ::cl_I_to_long(The(cl_I)(*value));  // -> CLN
 }
 
 /** Converts numeric types to machine's double. You should check with is_real()
  *  if the number is really not complex before calling this method. */
 double numeric::to_double(void) const
 {
-    ASSERT(is_real());
-    return cl_double_approx(realpart(*value));
+    GINAC_ASSERT(this->is_real());
+    return ::cl_double_approx(::realpart(*value));  // -> CLN
 }
 
 /** Real part of a number. */
-numeric numeric::real(void) const
+const numeric numeric::real(void) const
 {
-    return numeric(realpart(*value));  // -> CLN
+    return numeric(::realpart(*value));  // -> CLN
 }
 
 /** Imaginary part of a number. */
-numeric numeric::imag(void) const
+const numeric numeric::imag(void) const
 {
-    return numeric(imagpart(*value));  // -> CLN
+    return numeric(::imagpart(*value));  // -> CLN
 }
 
 #ifndef SANE_LINKER
@@ -724,47 +1048,48 @@ inline cl_heap_ratio* TheRatio (const cl_N& obj)
 
 /** Numerator.  Computes the numerator of rational numbers, rationalized
  *  numerator of complex if real and imaginary part are both rational numbers
- *  (i.e numer(4/3+5/6*I) == 8+5*I), the number itself in all other cases. */
-numeric numeric::numer(void) const
+ *  (i.e numer(4/3+5/6*I) == 8+5*I), the number carrying the sign in all other
+ *  cases. */
+const numeric numeric::numer(void) const
 {
-    if (is_integer()) {
+    if (this->is_integer()) {
         return numeric(*this);
     }
 #ifdef SANE_LINKER
-    else if (instanceof(*value, cl_RA_ring)) {
-        return numeric(numerator(The(cl_RA)(*value)));
+    else if (::instanceof(*value, ::cl_RA_ring)) {
+        return numeric(::numerator(The(cl_RA)(*value)));
     }
-    else if (!is_real()) {  // complex case, handle Q(i):
-        cl_R r = realpart(*value);
-        cl_R i = imagpart(*value);
-        if (instanceof(r, cl_I_ring) && instanceof(i, cl_I_ring))
+    else if (!this->is_real()) {  // complex case, handle Q(i):
+        cl_R r = ::realpart(*value);
+        cl_R i = ::imagpart(*value);
+        if (::instanceof(r, ::cl_I_ring) && ::instanceof(i, ::cl_I_ring))
             return numeric(*this);
-        if (instanceof(r, cl_I_ring) && instanceof(i, cl_RA_ring))
-            return numeric(complex(r*denominator(The(cl_RA)(i)), numerator(The(cl_RA)(i))));
-        if (instanceof(r, cl_RA_ring) && instanceof(i, cl_I_ring))
-            return numeric(complex(numerator(The(cl_RA)(r)), i*denominator(The(cl_RA)(r))));
-        if (instanceof(r, cl_RA_ring) && instanceof(i, cl_RA_ring)) {
-            cl_I s = lcm(denominator(The(cl_RA)(r)), denominator(The(cl_RA)(i)));
-            return numeric(complex(numerator(The(cl_RA)(r))*(exquo(s,denominator(The(cl_RA)(r)))),
-                                   numerator(The(cl_RA)(i))*(exquo(s,denominator(The(cl_RA)(i))))));
+        if (::instanceof(r, ::cl_I_ring) && ::instanceof(i, ::cl_RA_ring))
+            return numeric(::complex(r*::denominator(The(cl_RA)(i)), ::numerator(The(cl_RA)(i))));
+        if (::instanceof(r, ::cl_RA_ring) && ::instanceof(i, ::cl_I_ring))
+            return numeric(::complex(::numerator(The(cl_RA)(r)), i*::denominator(The(cl_RA)(r))));
+        if (::instanceof(r, ::cl_RA_ring) && ::instanceof(i, ::cl_RA_ring)) {
+            cl_I s = ::lcm(::denominator(The(cl_RA)(r)), ::denominator(The(cl_RA)(i)));
+            return numeric(::complex(::numerator(The(cl_RA)(r))*(exquo(s,::denominator(The(cl_RA)(r)))),
+                                   ::numerator(The(cl_RA)(i))*(exquo(s,::denominator(The(cl_RA)(i))))));
         }
     }
 #else
-    else if (instanceof(*value, cl_RA_ring)) {
+    else if (instanceof(*value, ::cl_RA_ring)) {
         return numeric(TheRatio(*value)->numerator);
     }
-    else if (!is_real()) {  // complex case, handle Q(i):
-        cl_R r = realpart(*value);
-        cl_R i = imagpart(*value);
-        if (instanceof(r, cl_I_ring) && instanceof(i, cl_I_ring))
+    else if (!this->is_real()) {  // complex case, handle Q(i):
+        cl_R r = ::realpart(*value);
+        cl_R i = ::imagpart(*value);
+        if (instanceof(r, ::cl_I_ring) && instanceof(i, ::cl_I_ring))
             return numeric(*this);
-        if (instanceof(r, cl_I_ring) && instanceof(i, cl_RA_ring))
-            return numeric(complex(r*TheRatio(i)->denominator, TheRatio(i)->numerator));
-        if (instanceof(r, cl_RA_ring) && instanceof(i, cl_I_ring))
-            return numeric(complex(TheRatio(r)->numerator, i*TheRatio(r)->denominator));
-        if (instanceof(r, cl_RA_ring) && instanceof(i, cl_RA_ring)) {
-            cl_I s = lcm(TheRatio(r)->denominator, TheRatio(i)->denominator);
-            return numeric(complex(TheRatio(r)->numerator*(exquo(s,TheRatio(r)->denominator)),
+        if (instanceof(r, ::cl_I_ring) && instanceof(i, ::cl_RA_ring))
+            return numeric(::complex(r*TheRatio(i)->denominator, TheRatio(i)->numerator));
+        if (instanceof(r, ::cl_RA_ring) && instanceof(i, ::cl_I_ring))
+            return numeric(::complex(TheRatio(r)->numerator, i*TheRatio(r)->denominator));
+        if (instanceof(r, ::cl_RA_ring) && instanceof(i, ::cl_RA_ring)) {
+            cl_I s = ::lcm(TheRatio(r)->denominator, TheRatio(i)->denominator);
+            return numeric(::complex(TheRatio(r)->numerator*(exquo(s,TheRatio(r)->denominator)),
                                    TheRatio(i)->numerator*(exquo(s,TheRatio(i)->denominator))));
         }
     }
@@ -776,46 +1101,46 @@ numeric numeric::numer(void) const
 /** Denominator.  Computes the denominator of rational numbers, common integer
  *  denominator of complex if real and imaginary part are both rational numbers
  *  (i.e denom(4/3+5/6*I) == 6), one in all other cases. */
-numeric numeric::denom(void) const
+const numeric numeric::denom(void) const
 {
-    if (is_integer()) {
-        return numONE();
+    if (this->is_integer()) {
+        return _num1();
     }
 #ifdef SANE_LINKER
-    if (instanceof(*value, cl_RA_ring)) {
-        return numeric(denominator(The(cl_RA)(*value)));
+    if (instanceof(*value, ::cl_RA_ring)) {
+        return numeric(::denominator(The(cl_RA)(*value)));
     }
-    if (!is_real()) {  // complex case, handle Q(i):
-        cl_R r = realpart(*value);
-        cl_R i = imagpart(*value);
-        if (instanceof(r, cl_I_ring) && instanceof(i, cl_I_ring))
-            return numONE();
-        if (instanceof(r, cl_I_ring) && instanceof(i, cl_RA_ring))
-            return numeric(denominator(The(cl_RA)(i)));
-        if (instanceof(r, cl_RA_ring) && instanceof(i, cl_I_ring))
-            return numeric(denominator(The(cl_RA)(r)));
-        if (instanceof(r, cl_RA_ring) && instanceof(i, cl_RA_ring))
-            return numeric(lcm(denominator(The(cl_RA)(r)), denominator(The(cl_RA)(i))));
+    if (!this->is_real()) {  // complex case, handle Q(i):
+        cl_R r = ::realpart(*value);
+        cl_R i = ::imagpart(*value);
+        if (::instanceof(r, ::cl_I_ring) && ::instanceof(i, ::cl_I_ring))
+            return _num1();
+        if (::instanceof(r, ::cl_I_ring) && ::instanceof(i, ::cl_RA_ring))
+            return numeric(::denominator(The(cl_RA)(i)));
+        if (::instanceof(r, ::cl_RA_ring) && ::instanceof(i, ::cl_I_ring))
+            return numeric(::denominator(The(cl_RA)(r)));
+        if (::instanceof(r, ::cl_RA_ring) && ::instanceof(i, ::cl_RA_ring))
+            return numeric(::lcm(::denominator(The(cl_RA)(r)), ::denominator(The(cl_RA)(i))));
     }
 #else
-    if (instanceof(*value, cl_RA_ring)) {
+    if (instanceof(*value, ::cl_RA_ring)) {
         return numeric(TheRatio(*value)->denominator);
     }
-    if (!is_real()) {  // complex case, handle Q(i):
-        cl_R r = realpart(*value);
-        cl_R i = imagpart(*value);
-        if (instanceof(r, cl_I_ring) && instanceof(i, cl_I_ring))
-            return numONE();
-        if (instanceof(r, cl_I_ring) && instanceof(i, cl_RA_ring))
+    if (!this->is_real()) {  // complex case, handle Q(i):
+        cl_R r = ::realpart(*value);
+        cl_R i = ::imagpart(*value);
+        if (instanceof(r, ::cl_I_ring) && instanceof(i, ::cl_I_ring))
+            return _num1();
+        if (instanceof(r, ::cl_I_ring) && instanceof(i, ::cl_RA_ring))
             return numeric(TheRatio(i)->denominator);
-        if (instanceof(r, cl_RA_ring) && instanceof(i, cl_I_ring))
+        if (instanceof(r, ::cl_RA_ring) && instanceof(i, ::cl_I_ring))
             return numeric(TheRatio(r)->denominator);
-        if (instanceof(r, cl_RA_ring) && instanceof(i, cl_RA_ring))
-            return numeric(lcm(TheRatio(r)->denominator, TheRatio(i)->denominator));
+        if (instanceof(r, ::cl_RA_ring) && instanceof(i, ::cl_RA_ring))
+            return numeric(::lcm(TheRatio(r)->denominator, TheRatio(i)->denominator));
     }
 #endif // def SANE_LINKER
     // at least one float encountered
-    return numONE();
+    return _num1();
 }
 
 /** Size in binary notation.  For integers, this is the smallest n >= 0 such
@@ -826,11 +1151,10 @@ numeric numeric::denom(void) const
  *  in two's complement if it is an integer, 0 otherwise. */    
 int numeric::int_length(void) const
 {
-    if (is_integer()) {
-        return integer_length(The(cl_I)(*value));  // -> CLN
-    } else {
+    if (this->is_integer())
+        return ::integer_length(The(cl_I)(*value));  // -> CLN
+    else
         return 0;
-    }
 }
 
 
@@ -847,295 +1171,382 @@ unsigned numeric::precedence = 30;
 //////////
 
 const numeric some_numeric;
-type_info const & typeid_numeric=typeid(some_numeric);
+const type_info & typeid_numeric=typeid(some_numeric);
 /** Imaginary unit.  This is not a constant but a numeric since we are
  *  natively handing complex numbers anyways. */
-const numeric I = (complex(cl_I(0),cl_I(1)));
-
-//////////
-// global functions
-//////////
-
-numeric const & numZERO(void)
-{
-    const static ex eZERO = ex((new numeric(0))->setflag(status_flags::dynallocated));
-    const static numeric * nZERO = static_cast<const numeric *>(eZERO.bp);
-    return *nZERO;
-}
+const numeric I = numeric(::complex(cl_I(0),cl_I(1)));
 
-numeric const & numONE(void)
-{
-    const static ex eONE = ex((new numeric(1))->setflag(status_flags::dynallocated));
-    const static numeric * nONE = static_cast<const numeric *>(eONE.bp);
-    return *nONE;
-}
-
-numeric const & numTWO(void)
-{
-    const static ex eTWO = ex((new numeric(2))->setflag(status_flags::dynallocated));
-    const static numeric * nTWO = static_cast<const numeric *>(eTWO.bp);
-    return *nTWO;
-}
-
-numeric const & numTHREE(void)
-{
-    const static ex eTHREE = ex((new numeric(3))->setflag(status_flags::dynallocated));
-    const static numeric * nTHREE = static_cast<const numeric *>(eTHREE.bp);
-    return *nTHREE;
-}
-
-numeric const & numMINUSONE(void)
-{
-    const static ex eMINUSONE = ex((new numeric(-1))->setflag(status_flags::dynallocated));
-    const static numeric * nMINUSONE = static_cast<const numeric *>(eMINUSONE.bp);
-    return *nMINUSONE;
-}
-
-numeric const & numHALF(void)
-{
-    const static ex eHALF = ex((new numeric(1, 2))->setflag(status_flags::dynallocated));
-    const static numeric * nHALF = static_cast<const numeric *>(eHALF.bp);
-    return *nHALF;
-}
 
 /** Exponential function.
  *
  *  @return  arbitrary precision numerical exp(x). */
-numeric exp(numeric const & x)
+const numeric exp(const numeric & x)
 {
-    return exp(*x.value);  // -> CLN
+    return ::exp(*x.value);  // -> CLN
 }
 
+
 /** Natural logarithm.
  *
  *  @param z complex number
  *  @return  arbitrary precision numerical log(x).
  *  @exception overflow_error (logarithmic singularity) */
-numeric log(numeric const & z)
+const numeric log(const numeric & z)
 {
     if (z.is_zero())
         throw (std::overflow_error("log(): logarithmic singularity"));
-    return log(*z.value);  // -> CLN
+    return ::log(*z.value);  // -> CLN
 }
 
+
 /** Numeric sine (trigonometric function).
  *
  *  @return  arbitrary precision numerical sin(x). */
-numeric sin(numeric const & x)
+const numeric sin(const numeric & x)
 {
-    return sin(*x.value);  // -> CLN
+    return ::sin(*x.value);  // -> CLN
 }
 
+
 /** Numeric cosine (trigonometric function).
  *
  *  @return  arbitrary precision numerical cos(x). */
-numeric cos(numeric const & x)
+const numeric cos(const numeric & x)
 {
-    return cos(*x.value);  // -> CLN
+    return ::cos(*x.value);  // -> CLN
 }
-    
+
+
 /** Numeric tangent (trigonometric function).
  *
  *  @return  arbitrary precision numerical tan(x). */
-numeric tan(numeric const & x)
+const numeric tan(const numeric & x)
 {
-    return tan(*x.value);  // -> CLN
+    return ::tan(*x.value);  // -> CLN
 }
     
+
 /** Numeric inverse sine (trigonometric function).
  *
  *  @return  arbitrary precision numerical asin(x). */
-numeric asin(numeric const & x)
+const numeric asin(const numeric & x)
 {
-    return asin(*x.value);  // -> CLN
+    return ::asin(*x.value);  // -> CLN
 }
-    
+
+
 /** Numeric inverse cosine (trigonometric function).
  *
  *  @return  arbitrary precision numerical acos(x). */
-numeric acos(numeric const & x)
+const numeric acos(const numeric & x)
 {
-    return acos(*x.value);  // -> CLN
+    return ::acos(*x.value);  // -> CLN
 }
     
-/** Arcustangents.
+
+/** Arcustangent.
  *
  *  @param z complex number
  *  @return atan(z)
  *  @exception overflow_error (logarithmic singularity) */
-numeric atan(numeric const & x)
+const numeric atan(const numeric & x)
 {
     if (!x.is_real() &&
         x.real().is_zero() &&
-        !abs(x.imag()).is_equal(numONE()))
+        !abs(x.imag()).is_equal(_num1()))
         throw (std::overflow_error("atan(): logarithmic singularity"));
-    return atan(*x.value);  // -> CLN
+    return ::atan(*x.value);  // -> CLN
 }
 
-/** Arcustangents.
+
+/** Arcustangent.
  *
  *  @param x real number
  *  @param y real number
  *  @return atan(y/x) */
-numeric atan(numeric const & y, numeric const & x)
+const numeric atan(const numeric & y, const numeric & x)
 {
     if (x.is_real() && y.is_real())
-        return atan(realpart(*x.value), realpart(*y.value));  // -> CLN
+        return ::atan(::realpart(*x.value), ::realpart(*y.value));  // -> CLN
     else
         throw (std::invalid_argument("numeric::atan(): complex argument"));        
 }
 
+
 /** Numeric hyperbolic sine (trigonometric function).
  *
  *  @return  arbitrary precision numerical sinh(x). */
-numeric sinh(numeric const & x)
+const numeric sinh(const numeric & x)
 {
-    return sinh(*x.value);  // -> CLN
+    return ::sinh(*x.value);  // -> CLN
 }
 
+
 /** Numeric hyperbolic cosine (trigonometric function).
  *
  *  @return  arbitrary precision numerical cosh(x). */
-numeric cosh(numeric const & x)
+const numeric cosh(const numeric & x)
 {
-    return cosh(*x.value);  // -> CLN
+    return ::cosh(*x.value);  // -> CLN
 }
-    
+
+
 /** Numeric hyperbolic tangent (trigonometric function).
  *
  *  @return  arbitrary precision numerical tanh(x). */
-numeric tanh(numeric const & x)
+const numeric tanh(const numeric & x)
 {
-    return tanh(*x.value);  // -> CLN
+    return ::tanh(*x.value);  // -> CLN
 }
     
+
 /** Numeric inverse hyperbolic sine (trigonometric function).
  *
  *  @return  arbitrary precision numerical asinh(x). */
-numeric asinh(numeric const & x)
+const numeric asinh(const numeric & x)
 {
-    return asinh(*x.value);  // -> CLN
+    return ::asinh(*x.value);  // -> CLN
 }
 
+
 /** Numeric inverse hyperbolic cosine (trigonometric function).
  *
  *  @return  arbitrary precision numerical acosh(x). */
-numeric acosh(numeric const & x)
+const numeric acosh(const numeric & x)
 {
-    return acosh(*x.value);  // -> CLN
+    return ::acosh(*x.value);  // -> CLN
 }
 
+
 /** Numeric inverse hyperbolic tangent (trigonometric function).
  *
  *  @return  arbitrary precision numerical atanh(x). */
-numeric atanh(numeric const & x)
+const numeric atanh(const numeric & x)
 {
-    return atanh(*x.value);  // -> CLN
+    return ::atanh(*x.value);  // -> CLN
 }
 
-/** The gamma function.
- *  stub stub stub stub stub stub! */
-numeric gamma(numeric const & x)
+
+/** Numeric evaluation of Riemann's Zeta function.  Currently works only for
+ *  integer arguments. */
+const numeric zeta(const numeric & x)
 {
-    clog << "gamma(): Nobody expects the Spanish inquisition" << endl;
+    // A dirty hack to allow for things like zeta(3.0), since CLN currently
+    // only knows about integer arguments and zeta(3).evalf() automatically
+    // cascades down to zeta(3.0).evalf().  The trick is to rely on 3.0-3
+    // being an exact zero for CLN, which can be tested and then we can just
+    // pass the number casted to an int:
+    if (x.is_real()) {
+        int aux = (int)(::cl_double_approx(::realpart(*x.value)));
+        if (zerop(*x.value-aux))
+            return ::cl_zeta(aux);  // -> CLN
+    }
+    clog << "zeta(" << x
+         << "): Does anybody know good way to calculate this numerically?"
+         << endl;
     return numeric(0);
 }
 
+
+/** The Gamma function.
+ *  This is only a stub! */
+const numeric lgamma(const numeric & x)
+{
+    clog << "lgamma(" << x
+         << "): Does anybody know good way to calculate this numerically?"
+         << endl;
+    return numeric(0);
+}
+const numeric tgamma(const numeric & x)
+{
+    clog << "tgamma(" << x
+         << "): Does anybody know good way to calculate this numerically?"
+         << endl;
+    return numeric(0);
+}
+
+
+/** The psi function (aka polygamma function).
+ *  This is only a stub! */
+const numeric psi(const numeric & x)
+{
+    clog << "psi(" << x
+         << "): Does anybody know good way to calculate this numerically?"
+         << endl;
+    return numeric(0);
+}
+
+
+/** The psi functions (aka polygamma functions).
+ *  This is only a stub! */
+const numeric psi(const numeric & n, const numeric & x)
+{
+    clog << "psi(" << n << "," << x
+         << "): Does anybody know good way to calculate this numerically?"
+         << endl;
+    return numeric(0);
+}
+
+
 /** Factorial combinatorial function.
  *
+ *  @param n  integer argument >= 0
  *  @exception range_error (argument must be integer >= 0) */
-numeric factorial(numeric const & nn)
+const numeric factorial(const numeric & n)
 {
-    if ( !nn.is_nonneg_integer() ) {
+    if (!n.is_nonneg_integer())
         throw (std::range_error("numeric::factorial(): argument must be integer >= 0"));
-    }
-    
-    return numeric(factorial(nn.to_int()));  // -> CLN
+    return numeric(::factorial(n.to_int()));  // -> CLN
 }
 
+
 /** The double factorial combinatorial function.  (Scarcely used, but still
- *  useful in cases, like for exact results of Gamma(n+1/2) for instance.)
+ *  useful in cases, like for exact results of tgamma(n+1/2) for instance.)
  *
  *  @param n  integer argument >= -1
- *  @return n!! == n * (n-2) * (n-4) * ... * ({1|2}) with 0!! == 1 == (-1)!!
+ *  @return n!! == n * (n-2) * (n-4) * ... * ({1|2}) with 0!! == (-1)!! == 1
  *  @exception range_error (argument must be integer >= -1) */
-numeric doublefactorial(numeric const & nn)
-{
-    // We store the results separately for even and odd arguments.  This has
-    // the advantage that we don't have to compute any even result at all if
-    // the function is always called with odd arguments and vice versa.  There
-    // is no tradeoff involved in this, it is guaranteed to save time as well
-    // as memory.  (If this is not enough justification consider the Gamma
-    // function of half integer arguments: it only needs odd doublefactorials.)
-    static vector<numeric> evenresults;
-    static int highest_evenresult = -1;
-    static vector<numeric> oddresults;
-    static int highest_oddresult = -1;
-    
-    if ( nn == numeric(-1) ) {
-        return numONE();
+const numeric doublefactorial(const numeric & n)
+{
+    if (n == numeric(-1)) {
+        return _num1();
     }
-    if ( !nn.is_nonneg_integer() ) {
+    if (!n.is_nonneg_integer()) {
         throw (std::range_error("numeric::doublefactorial(): argument must be integer >= -1"));
     }
-    if ( nn.is_even() ) {
-        int n = nn.div(numTWO()).to_int();
-        if ( n <= highest_evenresult ) {
-            return evenresults[n];
-        }
-        if ( evenresults.capacity() < (unsigned)(n+1) ) {
-            evenresults.reserve(n+1);
-        }
-        if ( highest_evenresult < 0 ) {
-            evenresults.push_back(numONE());
-            highest_evenresult=0;
-        }
-        for (int i=highest_evenresult+1; i<=n; i++) {
-            evenresults.push_back(numeric(evenresults[i-1].mul(numeric(i*2))));
-        }
-        highest_evenresult=n;
-        return evenresults[n];
-    } else {
-        int n = nn.sub(numONE()).div(numTWO()).to_int();
-        if ( n <= highest_oddresult ) {
-            return oddresults[n];
-        }
-        if ( oddresults.capacity() < (unsigned)n ) {
-            oddresults.reserve(n+1);
-        }
-        if ( highest_oddresult < 0 ) {
-            oddresults.push_back(numONE());
-            highest_oddresult=0;
-        }
-        for (int i=highest_oddresult+1; i<=n; i++) {
-            oddresults.push_back(numeric(oddresults[i-1].mul(numeric(i*2+1))));
+    return numeric(::doublefactorial(n.to_int()));  // -> CLN
+}
+
+
+/** The Binomial coefficients.  It computes the binomial coefficients.  For
+ *  integer n and k and positive n this is the number of ways of choosing k
+ *  objects from n distinct objects.  If n is negative, the formula
+ *  binomial(n,k) == (-1)^k*binomial(k-n-1,k) is used to compute the result. */
+const numeric binomial(const numeric & n, const numeric & k)
+{
+    if (n.is_integer() && k.is_integer()) {
+        if (n.is_nonneg_integer()) {
+            if (k.compare(n)!=1 && k.compare(_num0())!=-1)
+                return numeric(::binomial(n.to_int(),k.to_int()));  // -> CLN
+            else
+                return _num0();
+        } else {
+            return _num_1().power(k)*binomial(k-n-_num1(),k);
         }
-        highest_oddresult=n;
-        return oddresults[n];
     }
+    
+    // should really be gamma(n+1)/(gamma(r+1)/gamma(n-r+1) or a suitable limit
+    throw (std::range_error("numeric::binomial(): donĀ“t know how to evaluate that."));
 }
 
-/** The Binomial function. It computes the binomial coefficients. If the
- *  arguments are both nonnegative integers and 0 <= k <= n, then
- *  binomial(n, k) = n!/k!/(n-k)! which is the number of ways of choosing k
- *  objects from n distinct objects. If k > n, then binomial(n,k) returns 0. */
-numeric binomial(numeric const & n, numeric const & k)
-{
-    if (n.is_nonneg_integer() && k.is_nonneg_integer()) {
-        return numeric(binomial(n.to_int(),k.to_int()));  // -> CLN
-    } else {
-        // should really be gamma(n+1)/(gamma(r+1)/gamma(n-r+1)
-        return numeric(0);
+
+/** Bernoulli number.  The nth Bernoulli number is the coefficient of x^n/n!
+ *  in the expansion of the function x/(e^x-1).
+ *
+ *  @return the nth Bernoulli number (a rational number).
+ *  @exception range_error (argument must be integer >= 0) */
+const numeric bernoulli(const numeric & nn)
+{
+    if (!nn.is_integer() || nn.is_negative())
+        throw (std::range_error("numeric::bernoulli(): argument must be integer >= 0"));
+    if (nn.is_zero())
+        return _num1();
+    if (!nn.compare(_num1()))
+        return numeric(-1,2);
+    if (nn.is_odd())
+        return _num0();
+    // Until somebody has the blues and comes up with a much better idea and
+    // codes it (preferably in CLN) we make this a remembering function which
+    // computes its results using the defining formula
+    // B(nn) == - 1/(nn+1) * sum_{k=0}^{nn-1}(binomial(nn+1,k)*B(k))
+    // whith B(0) == 1.
+    // Be warned, though: the Bernoulli numbers are computationally very
+    // expensive anyhow and you shouldn't expect miracles to happen.
+    static vector<numeric> results;
+    static int highest_result = -1;
+    int n = nn.sub(_num2()).div(_num2()).to_int();
+    if (n <= highest_result)
+        return results[n];
+    if (results.capacity() < (unsigned)(n+1))
+        results.reserve(n+1);
+    
+    numeric tmp;  // used to store the sum
+    for (int i=highest_result+1; i<=n; ++i) {
+        // the first two elements:
+        tmp = numeric(-2*i-1,2);
+        // accumulate the remaining elements:
+        for (int j=0; j<i; ++j)
+            tmp += binomial(numeric(2*i+3),numeric(j*2+2))*results[j];
+        // divide by -(nn+1) and store result:
+        results.push_back(-tmp/numeric(2*i+3));
     }
-    // return factorial(n).div(factorial(k).mul(factorial(n.sub(k))));
+    highest_result=n;
+    return results[n];
 }
 
+
+/** Fibonacci number.  The nth Fibonacci number F(n) is defined by the
+ *  recurrence formula F(n)==F(n-1)+F(n-2) with F(0)==0 and F(1)==1.
+ *
+ *  @param n an integer
+ *  @return the nth Fibonacci number F(n) (an integer number)
+ *  @exception range_error (argument must be an integer) */
+const numeric fibonacci(const numeric & n)
+{
+    if (!n.is_integer())
+        throw (std::range_error("numeric::fibonacci(): argument must be integer"));
+    // The following addition formula holds:
+    //      F(n+m)   = F(m-1)*F(n) + F(m)*F(n+1)  for m >= 1, n >= 0.
+    // (Proof: For fixed m, the LHS and the RHS satisfy the same recurrence
+    // w.r.t. n, and the initial values (n=0, n=1) agree. Hence all values
+    // agree.)
+    // Replace m by m+1:
+    //      F(n+m+1) = F(m)*F(n) + F(m+1)*F(n+1)      for m >= 0, n >= 0
+    // Now put in m = n, to get
+    //      F(2n) = (F(n+1)-F(n))*F(n) + F(n)*F(n+1) = F(n)*(2*F(n+1) - F(n))
+    //      F(2n+1) = F(n)^2 + F(n+1)^2
+    // hence
+    //      F(2n+2) = F(n+1)*(2*F(n) + F(n+1))
+    if (n.is_zero())
+        return _num0();
+    if (n.is_negative())
+        if (n.is_even())
+            return -fibonacci(-n);
+        else
+            return fibonacci(-n);
+    
+    cl_I u(0);
+    cl_I v(1);
+    cl_I m = The(cl_I)(*n.value) >> 1L;  // floor(n/2);
+    for (uintL bit=::integer_length(m); bit>0; --bit) {
+        // Since a squaring is cheaper than a multiplication, better use
+        // three squarings instead of one multiplication and two squarings.
+        cl_I u2 = ::square(u);
+        cl_I v2 = ::square(v);
+        if (::logbitp(bit-1, m)) {
+            v = ::square(u + v) - u2;
+            u = u2 + v2;
+        } else {
+            u = v2 - ::square(v - u);
+            v = u2 + v2;
+        }
+    }
+    if (n.is_even())
+        // Here we don't use the squaring formula because one multiplication
+        // is cheaper than two squarings.
+        return u * ((v << 1) - u);
+    else
+        return ::square(u) + ::square(v);    
+}
+
+
 /** Absolute value. */
-numeric abs(numeric const & x)
+numeric abs(const numeric & x)
 {
-    return abs(*x.value);  // -> CLN
+    return ::abs(*x.value);  // -> CLN
 }
 
+
 /** Modulus (in positive representation).
  *  In general, mod(a,b) has the sign of b or is zero, and rem(a,b) has the
  *  sign of a or is zero. This is different from Maple's modp, where the sign
@@ -1143,46 +1554,44 @@ numeric abs(numeric const & x)
  *
  *  @return a mod b in the range [0,abs(b)-1] with sign of b if both are
  *  integer, 0 otherwise. */
-numeric mod(numeric const & a, numeric const & b)
+numeric mod(const numeric & a, const numeric & b)
 {
-    if (a.is_integer() && b.is_integer()) {
-        return mod(The(cl_I)(*a.value), The(cl_I)(*b.value));  // -> CLN
-    }
-    else {
-        return numZERO();  // Throw?
-    }
+    if (a.is_integer() && b.is_integer())
+        return ::mod(The(cl_I)(*a.value), The(cl_I)(*b.value));  // -> CLN
+    else
+        return _num0();  // Throw?
 }
 
+
 /** Modulus (in symmetric representation).
  *  Equivalent to Maple's mods.
  *
  *  @return a mod b in the range [-iquo(abs(m)-1,2), iquo(abs(m),2)]. */
-numeric smod(numeric const & a, numeric const & b)
+numeric smod(const numeric & a, const numeric & b)
 {
     if (a.is_integer() && b.is_integer()) {
         cl_I b2 = The(cl_I)(ceiling1(The(cl_I)(*b.value) / 2)) - 1;
-        return mod(The(cl_I)(*a.value) + b2, The(cl_I)(*b.value)) - b2;
-    } else {
-        return numZERO();  // Throw?
-    }
+        return ::mod(The(cl_I)(*a.value) + b2, The(cl_I)(*b.value)) - b2;
+    } else
+        return _num0();  // Throw?
 }
 
+
 /** Numeric integer remainder.
  *  Equivalent to Maple's irem(a,b) as far as sign conventions are concerned.
  *  In general, mod(a,b) has the sign of b or is zero, and irem(a,b) has the
  *  sign of a or is zero.
  *
  *  @return remainder of a/b if both are integer, 0 otherwise. */
-numeric irem(numeric const & a, numeric const & b)
+numeric irem(const numeric & a, const numeric & b)
 {
-    if (a.is_integer() && b.is_integer()) {
-        return rem(The(cl_I)(*a.value), The(cl_I)(*b.value));  // -> CLN
-    }
-    else {
-        return numZERO();  // Throw?
-    }
+    if (a.is_integer() && b.is_integer())
+        return ::rem(The(cl_I)(*a.value), The(cl_I)(*b.value));  // -> CLN
+    else
+        return _num0();  // Throw?
 }
 
+
 /** Numeric integer remainder.
  *  Equivalent to Maple's irem(a,b,'q') it obeyes the relation
  *  irem(a,b,q) == a - q*b.  In general, mod(a,b) has the sign of b or is zero,
@@ -1190,7 +1599,7 @@ numeric irem(numeric const & a, numeric const & b)
  *
  *  @return remainder of a/b and quotient stored in q if both are integer,
  *  0 otherwise. */
-numeric irem(numeric const & a, numeric const & b, numeric & q)
+numeric irem(const numeric & a, const numeric & b, numeric & q)
 {
     if (a.is_integer() && b.is_integer()) {  // -> CLN
         cl_I_div_t rem_quo = truncate2(The(cl_I)(*a.value), The(cl_I)(*b.value));
@@ -1198,42 +1607,44 @@ numeric irem(numeric const & a, numeric const & b, numeric & q)
         return rem_quo.remainder;
     }
     else {
-        q = numZERO();
-        return numZERO();  // Throw?
+        q = _num0();
+        return _num0();  // Throw?
     }
 }
 
+
 /** Numeric integer quotient.
  *  Equivalent to Maple's iquo as far as sign conventions are concerned.
  *  
  *  @return truncated quotient of a/b if both are integer, 0 otherwise. */
-numeric iquo(numeric const & a, numeric const & b)
+numeric iquo(const numeric & a, const numeric & b)
 {
-    if (a.is_integer() && b.is_integer()) {
+    if (a.is_integer() && b.is_integer())
         return truncate1(The(cl_I)(*a.value), The(cl_I)(*b.value));  // -> CLN
-    } else {
-        return numZERO();  // Throw?
-    }
+    else
+        return _num0();  // Throw?
 }
 
+
 /** Numeric integer quotient.
  *  Equivalent to Maple's iquo(a,b,'r') it obeyes the relation
  *  r == a - iquo(a,b,r)*b.
  *
  *  @return truncated quotient of a/b and remainder stored in r if both are
  *  integer, 0 otherwise. */
-numeric iquo(numeric const & a, numeric const & b, numeric & r)
+numeric iquo(const numeric & a, const numeric & b, numeric & r)
 {
     if (a.is_integer() && b.is_integer()) {  // -> CLN
         cl_I_div_t rem_quo = truncate2(The(cl_I)(*a.value), The(cl_I)(*b.value));
         r = rem_quo.remainder;
         return rem_quo.quotient;
     } else {
-        r = numZERO();
-        return numZERO();  // Throw?
+        r = _num0();
+        return _num0();  // Throw?
     }
 }
 
+
 /** Numeric square root.
  *  If possible, sqrt(z) should respect squares of exact numbers, i.e. sqrt(4)
  *  should return integer 2.
@@ -1242,61 +1653,71 @@ numeric iquo(numeric const & a, numeric const & b, numeric & r)
  *  @return square root of z. Branch cut along negative real axis, the negative
  *  real axis itself where imag(z)==0 and real(z)<0 belongs to the upper part
  *  where imag(z)>0. */
-numeric sqrt(numeric const & z)
+numeric sqrt(const numeric & z)
 {
-    return sqrt(*z.value);  // -> CLN
+    return ::sqrt(*z.value);  // -> CLN
 }
 
+
 /** Integer numeric square root. */
-numeric isqrt(numeric const & x)
+numeric isqrt(const numeric & x)
 {
-       if (x.is_integer()) {
-               cl_I root;
-               isqrt(The(cl_I)(*x.value), &root);      // -> CLN
-               return root;
-       } else
-               return numZERO();  // Throw?
+    if (x.is_integer()) {
+        cl_I root;
+        ::isqrt(The(cl_I)(*x.value), &root);  // -> CLN
+        return root;
+    } else
+        return _num0();  // Throw?
 }
 
+
 /** Greatest Common Divisor.
  *   
  *  @return  The GCD of two numbers if both are integer, a numerical 1
  *  if they are not. */
-numeric gcd(numeric const & a, numeric const & b)
+numeric gcd(const numeric & a, const numeric & b)
 {
     if (a.is_integer() && b.is_integer())
-        return gcd(The(cl_I)(*a.value), The(cl_I)(*b.value));  // -> CLN
+        return ::gcd(The(cl_I)(*a.value), The(cl_I)(*b.value));  // -> CLN
     else
-        return numONE();
+        return _num1();
 }
 
+
 /** Least Common Multiple.
  *   
  *  @return  The LCM of two numbers if both are integer, the product of those
  *  two numbers if they are not. */
-numeric lcm(numeric const & a, numeric const & b)
+numeric lcm(const numeric & a, const numeric & b)
 {
     if (a.is_integer() && b.is_integer())
-        return lcm(The(cl_I)(*a.value), The(cl_I)(*b.value));  // -> CLN
+        return ::lcm(The(cl_I)(*a.value), The(cl_I)(*b.value));  // -> CLN
     else
         return *a.value * *b.value;
 }
 
+
+/** Floating point evaluation of Archimedes' constant Pi. */
 ex PiEvalf(void)
 { 
-    return numeric(cl_pi(cl_default_float_format));  // -> CLN
+    return numeric(::cl_pi(cl_default_float_format));  // -> CLN
 }
 
-ex EulerGammaEvalf(void)
+
+/** Floating point evaluation of Euler's constant gamma. */
+ex EulerEvalf(void)
 { 
-    return numeric(cl_eulerconst(cl_default_float_format));  // -> CLN
+    return numeric(::cl_eulerconst(cl_default_float_format));  // -> CLN
 }
 
+
+/** Floating point evaluation of Catalan's constant. */
 ex CatalanEvalf(void)
 {
-    return numeric(cl_catalanconst(cl_default_float_format));  // -> CLN
+    return numeric(::cl_catalanconst(cl_default_float_format));  // -> CLN
 }
 
+
 // It initializes to 17 digits, because in CLN cl_float_format(17) turns out to
 // be 61 (<64) while cl_float_format(18)=65.  We want to have a cl_LF instead 
 // of cl_SF, cl_FF or cl_DF but everything else is basically arbitrary.
@@ -1305,28 +1726,32 @@ _numeric_digits::_numeric_digits()
 {
     assert(!too_late);
     too_late = true;
-    cl_default_float_format = cl_float_format(17); 
+    cl_default_float_format = ::cl_float_format(17);
 }
 
+
 _numeric_digits& _numeric_digits::operator=(long prec)
 {
     digits=prec;
-    cl_default_float_format = cl_float_format(prec); 
+    cl_default_float_format = ::cl_float_format(prec); 
     return *this;
 }
 
+
 _numeric_digits::operator long()
 {
     return (long)digits;
 }
 
+
 void _numeric_digits::print(ostream & os) const
 {
     debugmsg("_numeric_digits print", LOGLEVEL_PRINT);
     os << digits;
 }
 
-ostream& operator<<(ostream& os, _numeric_digits const & e)
+
+ostream& operator<<(ostream& os, const _numeric_digits & e)
 {
     e.print(os);
     return os;
@@ -1340,6 +1765,11 @@ ostream& operator<<(ostream& os, _numeric_digits const & e)
 
 bool _numeric_digits::too_late = false;
 
+
 /** Accuracy in decimal digits.  Only object of this type!  Can be set using
  *  assignment from C++ unsigned ints and evaluated like any built-in type. */
 _numeric_digits Digits;
+
+#ifndef NO_NAMESPACE_GINAC
+} // namespace GiNaC
+#endif // ndef NO_NAMESPACE_GINAC