]> www.ginac.de Git - ginac.git/blobdiff - ginac/normal.cpp
Improve normalization with nested functions.
[ginac.git] / ginac / normal.cpp
index b2a4e8c8d0cfdfe2204799fefe96b2710771cb24..f22bf27b131ec1952b6f0f4192da37b842e51ba9 100644 (file)
@@ -6,7 +6,7 @@
  *  computation, square-free factorization and rational function normalization. */
 
 /*
- *  GiNaC Copyright (C) 1999-2005 Johannes Gutenberg University Mainz, Germany
+ *  GiNaC Copyright (C) 1999-2015 Johannes Gutenberg University Mainz, Germany
  *
  *  This program is free software; you can redistribute it and/or modify
  *  it under the terms of the GNU General Public License as published by
@@ -23,9 +23,6 @@
  *  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
  */
 
-#include <algorithm>
-#include <map>
-
 #include "normal.h"
 #include "basic.h"
 #include "ex.h"
 #include "pseries.h"
 #include "symbol.h"
 #include "utils.h"
+#include "polynomial/chinrem_gcd.h"
+
+#include <algorithm>
+#include <map>
 
 namespace GiNaC {
 
@@ -672,12 +673,13 @@ bool divide(const ex &a, const ex &b, ex &q, bool check_args)
                        q = rem_i*power(ab, a_exp - 1);
                        return true;
                }
-               for (int i=2; i < a_exp; i++) {
-                       if (divide(power(ab, i), b, rem_i, false)) {
-                               q = rem_i*power(ab, a_exp - i);
-                               return true;
-                       }
-               } // ... so we *really* need to expand expression.
+// code below is commented-out because it leads to a significant slowdown
+//             for (int i=2; i < a_exp; i++) {
+//                     if (divide(power(ab, i), b, rem_i, false)) {
+//                             q = rem_i*power(ab, a_exp - i);
+//                             return true;
+//                     }
+//             } // ... so we *really* need to expand expression.
        }
        
        // Polynomial long division (recursive)
@@ -1268,17 +1270,19 @@ class gcdheu_failed {};
  *  polynomials and an iterator to the first element of the sym_desc vector
  *  passed in. This function is used internally by gcd().
  *
- *  @param a  first multivariate polynomial (expanded)
- *  @param b  second multivariate polynomial (expanded)
+ *  @param a  first integer multivariate polynomial (expanded)
+ *  @param b  second integer multivariate polynomial (expanded)
  *  @param ca  cofactor of polynomial a (returned), NULL to suppress
  *             calculation of cofactor
  *  @param cb  cofactor of polynomial b (returned), NULL to suppress
  *             calculation of cofactor
  *  @param var iterator to first element of vector of sym_desc structs
- *  @return the GCD as a new expression
+ *  @param res the GCD (returned)
+ *  @return true if GCD was computed, false otherwise.
  *  @see gcd
  *  @exception gcdheu_failed() */
-static ex heur_gcd(const ex &a, const ex &b, ex *ca, ex *cb, sym_desc_vec::const_iterator var)
+static bool heur_gcd_z(ex& res, const ex &a, const ex &b, ex *ca, ex *cb,
+                      sym_desc_vec::const_iterator var)
 {
 #if STATISTICS
        heur_gcd_called++;
@@ -1286,7 +1290,7 @@ static ex heur_gcd(const ex &a, const ex &b, ex *ca, ex *cb, sym_desc_vec::const
 
        // Algorithm only works for non-vanishing input polynomials
        if (a.is_zero() || b.is_zero())
-               return (new fail())->setflag(status_flags::dynallocated);
+               return false;
 
        // GCD of two numeric values -> CLN
        if (is_exactly_a<numeric>(a) && is_exactly_a<numeric>(b)) {
@@ -1295,7 +1299,8 @@ static ex heur_gcd(const ex &a, const ex &b, ex *ca, ex *cb, sym_desc_vec::const
                        *ca = ex_to<numeric>(a) / g;
                if (cb)
                        *cb = ex_to<numeric>(b) / g;
-               return g;
+               res = g;
+               return true;
        }
 
        // The first symbol is our main variable
@@ -1325,9 +1330,13 @@ static ex heur_gcd(const ex &a, const ex &b, ex *ca, ex *cb, sym_desc_vec::const
 
                // Apply evaluation homomorphism and calculate GCD
                ex cp, cq;
-               ex gamma = heur_gcd(p.subs(x == xi, subs_options::no_pattern), q.subs(x == xi, subs_options::no_pattern), &cp, &cq, var+1).expand();
-               if (!is_exactly_a<fail>(gamma)) {
-
+               ex gamma;
+               bool found = heur_gcd_z(gamma,
+                                       p.subs(x == xi, subs_options::no_pattern),
+                                       q.subs(x == xi, subs_options::no_pattern),
+                                       &cp, &cq, var+1);
+               if (found) {
+                       gamma = gamma.expand();
                        // Reconstruct polynomial from GCD of mapped polynomials
                        ex g = interpolate(gamma, xi, x, maxdeg);
 
@@ -1338,17 +1347,84 @@ static ex heur_gcd(const ex &a, const ex &b, ex *ca, ex *cb, sym_desc_vec::const
                        ex dummy;
                        if (divide_in_z(p, g, ca ? *ca : dummy, var) && divide_in_z(q, g, cb ? *cb : dummy, var)) {
                                g *= gc;
-                               return g;
+                               res = g;
+                               return true;
                        }
                }
 
                // Next evaluation point
                xi = iquo(xi * isqrt(isqrt(xi)) * numeric(73794), numeric(27011));
        }
-       return (new fail())->setflag(status_flags::dynallocated);
+       return false;
+}
+
+/** Compute GCD of multivariate polynomials using the heuristic GCD algorithm.
+ *  get_symbol_stats() must have been called previously with the input
+ *  polynomials and an iterator to the first element of the sym_desc vector
+ *  passed in. This function is used internally by gcd().
+ *
+ *  @param a  first rational multivariate polynomial (expanded)
+ *  @param b  second rational multivariate polynomial (expanded)
+ *  @param ca  cofactor of polynomial a (returned), NULL to suppress
+ *             calculation of cofactor
+ *  @param cb  cofactor of polynomial b (returned), NULL to suppress
+ *             calculation of cofactor
+ *  @param var iterator to first element of vector of sym_desc structs
+ *  @param res the GCD (returned)
+ *  @return true if GCD was computed, false otherwise.
+ *  @see heur_gcd_z
+ *  @see gcd
+ */
+static bool heur_gcd(ex& res, const ex& a, const ex& b, ex *ca, ex *cb,
+                    sym_desc_vec::const_iterator var)
+{
+       if (a.info(info_flags::integer_polynomial) && 
+           b.info(info_flags::integer_polynomial)) {
+               try {
+                       return heur_gcd_z(res, a, b, ca, cb, var);
+               } catch (gcdheu_failed) {
+                       return false;
+               }
+       }
+
+       // convert polynomials to Z[X]
+       const numeric a_lcm = lcm_of_coefficients_denominators(a);
+       const numeric ab_lcm = lcmcoeff(b, a_lcm);
+
+       const ex ai = a*ab_lcm;
+       const ex bi = b*ab_lcm;
+       if (!ai.info(info_flags::integer_polynomial))
+               throw std::logic_error("heur_gcd: not an integer polynomial [1]");
+
+       if (!bi.info(info_flags::integer_polynomial))
+               throw std::logic_error("heur_gcd: not an integer polynomial [2]");
+
+       bool found = false;
+       try {
+               found = heur_gcd_z(res, ai, bi, ca, cb, var);
+       } catch (gcdheu_failed) {
+               return false;
+       }
+       
+       // GCD is not unique, it's defined up to a unit (i.e. invertible
+       // element). If the coefficient ring is a field, every its element is
+       // invertible, so one can multiply the polynomial GCD with any element
+       // of the coefficient field. We use this ambiguity to make cofactors
+       // integer polynomials.
+       if (found)
+               res /= ab_lcm;
+       return found;
 }
 
 
+// gcd helper to handle partially factored polynomials (to avoid expanding
+// large expressions). At least one of the arguments should be a power.
+static ex gcd_pf_pow(const ex& a, const ex& b, ex* ca, ex* cb);
+
+// gcd helper to handle partially factored polynomials (to avoid expanding
+// large expressions). At least one of the arguments should be a product.
+static ex gcd_pf_mul(const ex& a, const ex& b, ex* ca, ex* cb);
+
 /** Compute GCD (Greatest Common Divisor) of multivariate polynomials a(X)
  *  and b(X) in Z[X]. Optionally also compute the cofactors of a and b,
  *  defined by a = ca * gcd(a, b) and b = cb * gcd(a, b).
@@ -1360,7 +1436,7 @@ static ex heur_gcd(const ex &a, const ex &b, ex *ca, ex *cb, sym_desc_vec::const
  *  @param check_args  check whether a and b are polynomials with rational
  *         coefficients (defaults to "true")
  *  @return the GCD as a new expression */
-ex gcd(const ex &a, const ex &b, ex *ca, ex *cb, bool check_args)
+ex gcd(const ex &a, const ex &b, ex *ca, ex *cb, bool check_args, unsigned options)
 {
 #if STATISTICS
        gcd_called++;
@@ -1391,150 +1467,14 @@ ex gcd(const ex &a, const ex &b, ex *ca, ex *cb, bool check_args)
        }
 
        // Partially factored cases (to avoid expanding large expressions)
-       if (is_exactly_a<mul>(a)) {
-               if (is_exactly_a<mul>(b) && b.nops() > a.nops())
-                       goto factored_b;
-factored_a:
-               size_t num = a.nops();
-               exvector g; g.reserve(num);
-               exvector acc_ca; acc_ca.reserve(num);
-               ex part_b = b;
-               for (size_t i=0; i<num; i++) {
-                       ex part_ca, part_cb;
-                       g.push_back(gcd(a.op(i), part_b, &part_ca, &part_cb, check_args));
-                       acc_ca.push_back(part_ca);
-                       part_b = part_cb;
-               }
-               if (ca)
-                       *ca = (new mul(acc_ca))->setflag(status_flags::dynallocated);
-               if (cb)
-                       *cb = part_b;
-               return (new mul(g))->setflag(status_flags::dynallocated);
-       } else if (is_exactly_a<mul>(b)) {
-               if (is_exactly_a<mul>(a) && a.nops() > b.nops())
-                       goto factored_a;
-factored_b:
-               size_t num = b.nops();
-               exvector g; g.reserve(num);
-               exvector acc_cb; acc_cb.reserve(num);
-               ex part_a = a;
-               for (size_t i=0; i<num; i++) {
-                       ex part_ca, part_cb;
-                       g.push_back(gcd(part_a, b.op(i), &part_ca, &part_cb, check_args));
-                       acc_cb.push_back(part_cb);
-                       part_a = part_ca;
-               }
-               if (ca)
-                       *ca = part_a;
-               if (cb)
-                       *cb = (new mul(acc_cb))->setflag(status_flags::dynallocated);
-               return (new mul(g))->setflag(status_flags::dynallocated);
-       }
-
+       if (!(options & gcd_options::no_part_factored)) {
+               if (is_exactly_a<mul>(a) || is_exactly_a<mul>(b))
+                       return gcd_pf_mul(a, b, ca, cb);
 #if FAST_COMPARE
-       // Input polynomials of the form poly^n are sometimes also trivial
-       if (is_exactly_a<power>(a)) {
-               ex p = a.op(0);
-               const ex& exp_a = a.op(1);
-               if (is_exactly_a<power>(b)) {
-                       ex pb = b.op(0);
-                       const ex& exp_b = b.op(1);
-                       if (p.is_equal(pb)) {
-                               // a = p^n, b = p^m, gcd = p^min(n, m)
-                               if (exp_a < exp_b) {
-                                       if (ca)
-                                               *ca = _ex1;
-                                       if (cb)
-                                               *cb = power(p, exp_b - exp_a);
-                                       return power(p, exp_a);
-                               } else {
-                                       if (ca)
-                                               *ca = power(p, exp_a - exp_b);
-                                       if (cb)
-                                               *cb = _ex1;
-                                       return power(p, exp_b);
-                               }
-                       } else {
-                               ex p_co, pb_co;
-                               ex p_gcd = gcd(p, pb, &p_co, &pb_co, check_args);
-                               if (p_gcd.is_equal(_ex1)) {
-                                       // a(x) = p(x)^n, b(x) = p_b(x)^m, gcd (p, p_b) = 1 ==>
-                                       // gcd(a,b) = 1
-                                       if (ca)
-                                               *ca = a;
-                                       if (cb)
-                                               *cb = b;
-                                       return _ex1;
-                                       // XXX: do I need to check for p_gcd = -1?
-                               } else {
-                                       // there are common factors:
-                                       // a(x) = g(x)^n A(x)^n, b(x) = g(x)^m B(x)^m ==>
-                                       // gcd(a, b) = g(x)^n gcd(A(x)^n, g(x)^(n-m) B(x)^m
-                                       if (exp_a < exp_b) {
-                                               return power(p_gcd, exp_a)*
-                                                       gcd(power(p_co, exp_a), power(p_gcd, exp_b-exp_a)*power(pb_co, exp_b), ca, cb, false);
-                                       } else {
-                                               return power(p_gcd, exp_b)*
-                                                       gcd(power(p_gcd, exp_a - exp_b)*power(p_co, exp_a), power(pb_co, exp_b), ca, cb, false);
-                                       }
-                               } // p_gcd.is_equal(_ex1)
-                       } // p.is_equal(pb)
-
-               } else {
-                       if (p.is_equal(b)) {
-                               // a = p^n, b = p, gcd = p
-                               if (ca)
-                                       *ca = power(p, a.op(1) - 1);
-                               if (cb)
-                                       *cb = _ex1;
-                               return p;
-                       } 
-
-                       ex p_co, bpart_co;
-                       ex p_gcd = gcd(p, b, &p_co, &bpart_co, false);
-
-                       if (p_gcd.is_equal(_ex1)) {
-                               // a(x) = p(x)^n, gcd(p, b) = 1 ==> gcd(a, b) = 1
-                               if (ca)
-                                       *ca = a;
-                               if (cb)
-                                       *cb = b;
-                               return _ex1;
-                       } else {
-                               // a(x) = g(x)^n A(x)^n, b(x) = g(x) B(x) ==> gcd(a, b) = g(x) gcd(g(x)^(n-1) A(x)^n, B(x))
-                               return p_gcd*gcd(power(p_gcd, exp_a-1)*power(p_co, exp_a), bpart_co, ca, cb, false);
-                       }
-               } // is_exactly_a<power>(b)
-
-       } else if (is_exactly_a<power>(b)) {
-               ex p = b.op(0);
-               if (p.is_equal(a)) {
-                       // a = p, b = p^n, gcd = p
-                       if (ca)
-                               *ca = _ex1;
-                       if (cb)
-                               *cb = power(p, b.op(1) - 1);
-                       return p;
-               }
-
-               ex p_co, apart_co;
-               const ex& exp_b(b.op(1));
-               ex p_gcd = gcd(a, p, &apart_co, &p_co, false);
-               if (p_gcd.is_equal(_ex1)) {
-                       // b=p(x)^n, gcd(a, p) = 1 ==> gcd(a, b) == 1
-                       if (ca)
-                               *ca = a;
-                       if (cb)
-                               *cb = b;
-                       return _ex1;
-               } else {
-                       // there are common factors:
-                       // a(x) = g(x) A(x), b(x) = g(x)^n B(x)^n ==> gcd = g(x) gcd(g(x)^(n-1) A(x)^n, B(x))
-
-                       return p_gcd*gcd(apart_co, power(p_gcd, exp_b-1)*power(p_co, exp_b), ca, cb, false);
-               } // p_gcd.is_equal(_ex1)
-       }
+               if (is_exactly_a<power>(a) || is_exactly_a<power>(b))
+                       return gcd_pf_pow(a, b, ca, cb);
 #endif
+       }
 
        // Some trivial cases
        ex aex = a.expand(), bex = b.expand();
@@ -1589,11 +1529,51 @@ factored_b:
                }
        }
 
+       if (is_exactly_a<numeric>(aex)) {
+               numeric bcont = bex.integer_content();
+               numeric g = gcd(ex_to<numeric>(aex), bcont);
+               if (ca)
+                       *ca = ex_to<numeric>(aex)/g;
+               if (cb)
+                       *cb = bex/g;
+               return g;
+       }
+
+       if (is_exactly_a<numeric>(bex)) {
+               numeric acont = aex.integer_content();
+               numeric g = gcd(ex_to<numeric>(bex), acont);
+               if (ca)
+                       *ca = aex/g;
+               if (cb)
+                       *cb = ex_to<numeric>(bex)/g;
+               return g;
+       }
+
        // Gather symbol statistics
        sym_desc_vec sym_stats;
        get_symbol_stats(a, b, sym_stats);
 
-       // The symbol with least degree is our main variable
+       // The symbol with least degree which is contained in both polynomials
+       // is our main variable
+       sym_desc_vec::iterator vari = sym_stats.begin();
+       while ((vari != sym_stats.end()) && 
+              (((vari->ldeg_b == 0) && (vari->deg_b == 0)) ||
+               ((vari->ldeg_a == 0) && (vari->deg_a == 0))))
+               vari++;
+
+       // No common symbols at all, just return 1:
+       if (vari == sym_stats.end()) {
+               // N.B: keep cofactors factored
+               if (ca)
+                       *ca = a;
+               if (cb)
+                       *cb = b;
+               return _ex1;
+       }
+       // move symbols which contained only in one of the polynomials
+       // to the end:
+       rotate(sym_stats.begin(), vari, sym_stats.end());
+
        sym_desc_vec::const_iterator var = sym_stats.begin();
        const ex &x = var->sym;
 
@@ -1607,14 +1587,14 @@ factored_b:
        }
 
        // Try to eliminate variables
-       if (var->deg_a == 0) {
+       if (var->deg_a == 0 && var->deg_b != 0 ) {
                ex bex_u, bex_c, bex_p;
                bex.unitcontprim(x, bex_u, bex_c, bex_p);
                ex g = gcd(aex, bex_c, ca, cb, false);
                if (cb)
                        *cb *= bex_u * bex_p;
                return g;
-       } else if (var->deg_b == 0) {
+       } else if (var->deg_b == 0 && var->deg_a != 0) {
                ex aex_u, aex_c, aex_p;
                aex.unitcontprim(x, aex_u, aex_c, aex_p);
                ex g = gcd(aex_c, bex, ca, cb, false);
@@ -1625,41 +1605,162 @@ factored_b:
 
        // Try heuristic algorithm first, fall back to PRS if that failed
        ex g;
-       try {
-               g = heur_gcd(aex, bex, ca, cb, var);
-       } catch (gcdheu_failed) {
-               g = fail();
-       }
-       if (is_exactly_a<fail>(g)) {
+       if (!(options & gcd_options::no_heur_gcd)) {
+               bool found = heur_gcd(g, aex, bex, ca, cb, var);
+               if (found) {
+                       // heur_gcd have already computed cofactors...
+                       if (g.is_equal(_ex1)) {
+                               // ... but we want to keep them factored if possible.
+                               if (ca)
+                                       *ca = a;
+                               if (cb)
+                                       *cb = b;
+                       }
+                       return g;
+               }
 #if STATISTICS
-               heur_gcd_failed++;
+               else {
+                       heur_gcd_failed++;
+               }
 #endif
+       }
+       if (options & gcd_options::use_sr_gcd) {
                g = sr_gcd(aex, bex, var);
-               if (g.is_equal(_ex1)) {
-                       // Keep cofactors factored if possible
+       } else {
+               exvector vars;
+               for (std::size_t n = sym_stats.size(); n-- != 0; )
+                       vars.push_back(sym_stats[n].sym);
+               g = chinrem_gcd(aex, bex, vars);
+       }
+
+       if (g.is_equal(_ex1)) {
+               // Keep cofactors factored if possible
+               if (ca)
+                       *ca = a;
+               if (cb)
+                       *cb = b;
+       } else {
+               if (ca)
+                       divide(aex, g, *ca, false);
+               if (cb)
+                       divide(bex, g, *cb, false);
+       }
+       return g;
+}
+
+// gcd helper to handle partially factored polynomials (to avoid expanding
+// large expressions). Both arguments should be powers.
+static ex gcd_pf_pow_pow(const ex& a, const ex& b, ex* ca, ex* cb)
+{
+       ex p = a.op(0);
+       const ex& exp_a = a.op(1);
+       ex pb = b.op(0);
+       const ex& exp_b = b.op(1);
+
+       // a = p^n, b = p^m, gcd = p^min(n, m)
+       if (p.is_equal(pb)) {
+               if (exp_a < exp_b) {
                        if (ca)
-                               *ca = a;
+                               *ca = _ex1;
                        if (cb)
-                               *cb = b;
+                               *cb = power(p, exp_b - exp_a);
+                       return power(p, exp_a);
                } else {
                        if (ca)
-                               divide(aex, g, *ca, false);
+                               *ca = power(p, exp_a - exp_b);
                        if (cb)
-                               divide(bex, g, *cb, false);
+                               *cb = _ex1;
+                       return power(p, exp_b);
                }
-       } else {
-               if (g.is_equal(_ex1)) {
-                       // Keep cofactors factored if possible
+       }
+
+       ex p_co, pb_co;
+       ex p_gcd = gcd(p, pb, &p_co, &pb_co, false);
+       // a(x) = p(x)^n, b(x) = p_b(x)^m, gcd (p, p_b) = 1 ==> gcd(a,b) = 1
+       if (p_gcd.is_equal(_ex1)) {
                        if (ca)
                                *ca = a;
                        if (cb)
                                *cb = b;
-               }
+                       return _ex1;
+                       // XXX: do I need to check for p_gcd = -1?
        }
 
-       return g;
+       // there are common factors:
+       // a(x) = g(x)^n A(x)^n, b(x) = g(x)^m B(x)^m ==>
+       // gcd(a, b) = g(x)^n gcd(A(x)^n, g(x)^(n-m) B(x)^m
+       if (exp_a < exp_b) {
+               ex pg =  gcd(power(p_co, exp_a), power(p_gcd, exp_b-exp_a)*power(pb_co, exp_b), ca, cb, false);
+               return power(p_gcd, exp_a)*pg;
+       } else {
+               ex pg = gcd(power(p_gcd, exp_a - exp_b)*power(p_co, exp_a), power(pb_co, exp_b), ca, cb, false);
+               return power(p_gcd, exp_b)*pg;
+       }
 }
 
+static ex gcd_pf_pow(const ex& a, const ex& b, ex* ca, ex* cb)
+{
+       if (is_exactly_a<power>(a) && is_exactly_a<power>(b))
+               return gcd_pf_pow_pow(a, b, ca, cb);
+
+       if (is_exactly_a<power>(b) && (! is_exactly_a<power>(a)))
+               return gcd_pf_pow(b, a, cb, ca);
+
+       GINAC_ASSERT(is_exactly_a<power>(a));
+
+       ex p = a.op(0);
+       const ex& exp_a = a.op(1);
+       if (p.is_equal(b)) {
+               // a = p^n, b = p, gcd = p
+               if (ca)
+                       *ca = power(p, a.op(1) - 1);
+               if (cb)
+                       *cb = _ex1;
+               return p;
+       } 
+
+       ex p_co, bpart_co;
+       ex p_gcd = gcd(p, b, &p_co, &bpart_co, false);
+
+       // a(x) = p(x)^n, gcd(p, b) = 1 ==> gcd(a, b) = 1
+       if (p_gcd.is_equal(_ex1)) {
+               if (ca)
+                       *ca = a;
+               if (cb)
+                       *cb = b;
+               return _ex1;
+       }
+       // a(x) = g(x)^n A(x)^n, b(x) = g(x) B(x) ==> gcd(a, b) = g(x) gcd(g(x)^(n-1) A(x)^n, B(x))
+       ex rg = gcd(power(p_gcd, exp_a-1)*power(p_co, exp_a), bpart_co, ca, cb, false);
+       return p_gcd*rg;
+}
+
+static ex gcd_pf_mul(const ex& a, const ex& b, ex* ca, ex* cb)
+{
+       if (is_exactly_a<mul>(a) && is_exactly_a<mul>(b)
+                                && (b.nops() >  a.nops()))
+               return gcd_pf_mul(b, a, cb, ca);
+
+       if (is_exactly_a<mul>(b) && (!is_exactly_a<mul>(a)))
+               return gcd_pf_mul(b, a, cb, ca);
+
+       GINAC_ASSERT(is_exactly_a<mul>(a));
+       size_t num = a.nops();
+       exvector g; g.reserve(num);
+       exvector acc_ca; acc_ca.reserve(num);
+       ex part_b = b;
+       for (size_t i=0; i<num; i++) {
+               ex part_ca, part_cb;
+               g.push_back(gcd(a.op(i), part_b, &part_ca, &part_cb, false));
+               acc_ca.push_back(part_ca);
+               part_b = part_cb;
+       }
+       if (ca)
+               *ca = (new mul(acc_ca))->setflag(status_flags::dynallocated);
+       if (cb)
+               *cb = part_b;
+       return (new mul(g))->setflag(status_flags::dynallocated);
+}
 
 /** Compute LCM (Least Common Multiple) of multivariate polynomials in Z[X].
  *
@@ -1905,16 +2006,18 @@ ex sqrfree_parfrac(const ex & a, const symbol & x)
  *  @see ex::normal */
 static ex replace_with_symbol(const ex & e, exmap & repl, exmap & rev_lookup)
 {
+       // Since the repl contains replaced expressions we should search for them
+       ex e_replaced = e.subs(repl, subs_options::no_pattern);
+
        // Expression already replaced? Then return the assigned symbol
-       exmap::const_iterator it = rev_lookup.find(e);
+       exmap::const_iterator it = rev_lookup.find(e_replaced);
        if (it != rev_lookup.end())
                return it->second;
-       
+
        // Otherwise create new symbol and add to list, taking care that the
        // replacement expression doesn't itself contain symbols from repl,
        // because subs() is not recursive
        ex es = (new symbol)->setflag(status_flags::dynallocated);
-       ex e_replaced = e.subs(repl, subs_options::no_pattern);
        repl.insert(std::make_pair(es, e_replaced));
        rev_lookup.insert(std::make_pair(e_replaced, es));
        return es;
@@ -1927,16 +2030,18 @@ static ex replace_with_symbol(const ex & e, exmap & repl, exmap & rev_lookup)
  *  @see basic::to_polynomial */
 static ex replace_with_symbol(const ex & e, exmap & repl)
 {
+       // Since the repl contains replaced expressions we should search for them
+       ex e_replaced = e.subs(repl, subs_options::no_pattern);
+
        // Expression already replaced? Then return the assigned symbol
        for (exmap::const_iterator it = repl.begin(); it != repl.end(); ++it)
-               if (it->second.is_equal(e))
+               if (it->second.is_equal(e_replaced))
                        return it->first;
-       
+
        // Otherwise create new symbol and add to list, taking care that the
        // replacement expression doesn't itself contain symbols from repl,
        // because subs() is not recursive
        ex es = (new symbol)->setflag(status_flags::dynallocated);
-       ex e_replaced = e.subs(repl, subs_options::no_pattern);
        repl.insert(std::make_pair(es, e_replaced));
        return es;
 }