]> www.ginac.de Git - ginac.git/blobdiff - ginac/normal.cpp
* Avoid bad choice of main variable in heuristic gcd [Alexei Sheplyakov].
[ginac.git] / ginac / normal.cpp
index 64c34ac290037348d835420d49ff1b2bf019000a..d8252abb02742fd4376fea26eb0988e140118acb 100644 (file)
@@ -6,7 +6,7 @@
  *  computation, square-free factorization and rational function normalization. */
 
 /*
- *  GiNaC Copyright (C) 1999-2005 Johannes Gutenberg University Mainz, Germany
+ *  GiNaC Copyright (C) 1999-2006 Johannes Gutenberg University Mainz, Germany
  *
  *  This program is free software; you can redistribute it and/or modify
  *  it under the terms of the GNU General Public License as published by
@@ -614,6 +614,72 @@ bool divide(const ex &a, const ex &b, ex &q, bool check_args)
        if (!get_first_symbol(a, x) && !get_first_symbol(b, x))
                throw(std::invalid_argument("invalid expression in divide()"));
 
+       // Try to avoid expanding partially factored expressions.
+       if (is_exactly_a<mul>(b)) {
+       // Divide sequentially by each term
+               ex rem_new, rem_old = a;
+               for (size_t i=0; i < b.nops(); i++) {
+                       if (! divide(rem_old, b.op(i), rem_new, false))
+                               return false;
+                       rem_old = rem_new;
+               }
+               q = rem_new;
+               return true;
+       } else if (is_exactly_a<power>(b)) {
+               const ex& bb(b.op(0));
+               int exp_b = ex_to<numeric>(b.op(1)).to_int();
+               ex rem_new, rem_old = a;
+               for (int i=exp_b; i>0; i--) {
+                       if (! divide(rem_old, bb, rem_new, false))
+                               return false;
+                       rem_old = rem_new;
+               }
+               q = rem_new;
+               return true;
+       } 
+       
+       if (is_exactly_a<mul>(a)) {
+               // Divide sequentially each term. If some term in a is divisible 
+               // by b we are done... and if not, we can't really say anything.
+               size_t i;
+               ex rem_i;
+               bool divisible_p = false;
+               for (i=0; i < a.nops(); ++i) {
+                       if (divide(a.op(i), b, rem_i, false)) {
+                               divisible_p = true;
+                               break;
+                       }
+               }
+               if (divisible_p) {
+                       exvector resv;
+                       resv.reserve(a.nops());
+                       for (size_t j=0; j < a.nops(); j++) {
+                               if (j==i)
+                                       resv.push_back(rem_i);
+                               else
+                                       resv.push_back(a.op(j));
+                       }
+                       q = (new mul(resv))->setflag(status_flags::dynallocated);
+                       return true;
+               }
+       } else if (is_exactly_a<power>(a)) {
+               // The base itself might be divisible by b, in that case we don't
+               // need to expand a
+               const ex& ab(a.op(0));
+               int a_exp = ex_to<numeric>(a.op(1)).to_int();
+               ex rem_i;
+               if (divide(ab, b, rem_i, false)) {
+                       q = rem_i*power(ab, a_exp - 1);
+                       return true;
+               }
+               for (int i=2; i < a_exp; i++) {
+                       if (divide(power(ab, i), b, rem_i, false)) {
+                               q = rem_i*power(ab, a_exp - i);
+                               return true;
+                       }
+               } // ... so we *really* need to expand expression.
+       }
+       
        // Polynomial long division (recursive)
        ex r = a.expand();
        if (r.is_zero()) {
@@ -714,6 +780,31 @@ static bool divide_in_z(const ex &a, const ex &b, ex &q, sym_desc_vec::const_ite
        }
 #endif
 
+       if (is_exactly_a<power>(b)) {
+               const ex& bb(b.op(0));
+               ex qbar = a;
+               int exp_b = ex_to<numeric>(b.op(1)).to_int();
+               for (int i=exp_b; i>0; i--) {
+                       if (!divide_in_z(qbar, bb, q, var))
+                               return false;
+                       qbar = q;
+               }
+               return true;
+       }
+
+       if (is_exactly_a<mul>(b)) {
+               ex qbar = a;
+               for (const_iterator itrb = b.begin(); itrb != b.end(); ++itrb) {
+                       sym_desc_vec sym_stats;
+                       get_symbol_stats(a, *itrb, sym_stats);
+                       if (!divide_in_z(qbar, *itrb, q, sym_stats.begin()))
+                               return false;
+
+                       qbar = q;
+               }
+               return true;
+       }
+
        // Main symbol
        const ex &x = var->sym;
 
@@ -1478,11 +1569,71 @@ factored_b:
        }
 #endif
 
+       if (is_a<symbol>(aex)) {
+               if (! bex.subs(aex==_ex0, subs_options::no_pattern).is_zero()) {
+                       if (ca)
+                               *ca = a;
+                       if (cb)
+                               *cb = b;
+                       return _ex1;
+               }
+       }
+
+       if (is_a<symbol>(bex)) {
+               if (! aex.subs(bex==_ex0, subs_options::no_pattern).is_zero()) {
+                       if (ca)
+                               *ca = a;
+                       if (cb)
+                               *cb = b;
+                       return _ex1;
+               }
+       }
+
+       if (is_exactly_a<numeric>(aex)) {
+               numeric bcont = bex.integer_content();
+               numeric g = gcd(ex_to<numeric>(aex), bcont);
+               if (ca)
+                       *ca = ex_to<numeric>(aex)/g;
+               if (cb)
+                       *cb = bex/g;
+               return g;
+       }
+
+       if (is_exactly_a<numeric>(bex)) {
+               numeric acont = aex.integer_content();
+               numeric g = gcd(ex_to<numeric>(bex), acont);
+               if (ca)
+                       *ca = aex/g;
+               if (cb)
+                       *cb = ex_to<numeric>(bex)/g;
+               return g;
+       }
+
        // Gather symbol statistics
        sym_desc_vec sym_stats;
        get_symbol_stats(a, b, sym_stats);
 
-       // The symbol with least degree is our main variable
+       // The symbol with least degree which is contained in both polynomials
+       // is our main variable
+       sym_desc_vec::iterator vari = sym_stats.begin();
+       while ((vari != sym_stats.end()) && 
+              (((vari->ldeg_b == 0) && (vari->deg_b == 0)) ||
+               ((vari->ldeg_a == 0) && (vari->deg_a == 0))))
+               vari++;
+
+       // No common symbols at all, just return 1:
+       if (vari == sym_stats.end()) {
+               // N.B: keep cofactors factored
+               if (ca)
+                       *ca = a;
+               if (cb)
+                       *cb = b;
+               return _ex1;
+       }
+       // move symbols which contained only in one of the polynomials
+       // to the end:
+       rotate(sym_stats.begin(), vari, sym_stats.end());
+
        sym_desc_vec::const_iterator var = sym_stats.begin();
        const ex &x = var->sym;
 
@@ -1496,14 +1647,14 @@ factored_b:
        }
 
        // Try to eliminate variables
-       if (var->deg_a == 0) {
+       if (var->deg_a == 0 && var->deg_b != 0 ) {
                ex bex_u, bex_c, bex_p;
                bex.unitcontprim(x, bex_u, bex_c, bex_p);
                ex g = gcd(aex, bex_c, ca, cb, false);
                if (cb)
                        *cb *= bex_u * bex_p;
                return g;
-       } else if (var->deg_b == 0) {
+       } else if (var->deg_b == 0 && var->deg_a != 0) {
                ex aex_u, aex_c, aex_p;
                aex.unitcontprim(x, aex_u, aex_c, aex_p);
                ex g = gcd(aex_c, bex, ca, cb, false);
@@ -2343,6 +2494,17 @@ ex power::to_polynomial(exmap & repl) const
 {
        if (exponent.info(info_flags::posint))
                return power(basis.to_rational(repl), exponent);
+       else if (exponent.info(info_flags::negint))
+       {
+               ex basis_pref = collect_common_factors(basis);
+               if (is_exactly_a<mul>(basis_pref) || is_exactly_a<power>(basis_pref)) {
+                       // (A*B)^n will be automagically transformed to A^n*B^n
+                       ex t = power(basis_pref, exponent);
+                       return t.to_polynomial(repl);
+               }
+               else
+                       return power(replace_with_symbol(power(basis, _ex_1), repl), -exponent);
+       } 
        else
                return replace_with_symbol(*this, repl);
 }
@@ -2400,7 +2562,7 @@ static ex find_common_factor(const ex & e, ex & factor, exmap & repl)
                for (size_t i=0; i<num; i++) {
                        ex x = e.op(i).to_polynomial(repl);
 
-                       if (is_exactly_a<add>(x) || is_exactly_a<mul>(x)) {
+                       if (is_exactly_a<add>(x) || is_exactly_a<mul>(x) || is_a<power>(x)) {
                                ex f = 1;
                                x = find_common_factor(x, f, repl);
                                x *= f;
@@ -2459,8 +2621,16 @@ term_done:       ;
                return (new mul(v))->setflag(status_flags::dynallocated);
 
        } else if (is_exactly_a<power>(e)) {
-
-               return e.to_polynomial(repl);
+               const ex e_exp(e.op(1));
+               if (e_exp.info(info_flags::integer)) {
+                       ex eb = e.op(0).to_polynomial(repl);
+                       ex factor_local(_ex1);
+                       ex pre_res = find_common_factor(eb, factor_local, repl);
+                       factor *= power(factor_local, e_exp);
+                       return power(pre_res, e_exp);
+                       
+               } else
+                       return e.to_polynomial(repl);
 
        } else
                return e;
@@ -2471,7 +2641,7 @@ term_done:        ;
  *  'a*(b*x+b*y)' to 'a*b*(x+y)'. */
 ex collect_common_factors(const ex & e)
 {
-       if (is_exactly_a<add>(e) || is_exactly_a<mul>(e)) {
+       if (is_exactly_a<add>(e) || is_exactly_a<mul>(e) || is_exactly_a<power>(e)) {
 
                exmap repl;
                ex factor = 1;