]> www.ginac.de Git - ginac.git/blobdiff - ginac/normal.cpp
Fix a comment.
[ginac.git] / ginac / normal.cpp
index 8ba5df0de4810f14485e588b306945381f2647cd..81841e0f7f847de7d8e706d3a74deb1744ac3852 100644 (file)
@@ -6,7 +6,7 @@
  *  computation, square-free factorization and rational function normalization. */
 
 /*
- *  GiNaC Copyright (C) 1999-2004 Johannes Gutenberg University Mainz, Germany
+ *  GiNaC Copyright (C) 1999-2016 Johannes Gutenberg University Mainz, Germany
  *
  *  This program is free software; you can redistribute it and/or modify
  *  it under the terms of the GNU General Public License as published by
  *
  *  You should have received a copy of the GNU General Public License
  *  along with this program; if not, write to the Free Software
- *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
+ *  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
  */
 
-#include <algorithm>
-#include <map>
-
 #include "normal.h"
 #include "basic.h"
 #include "ex.h"
 #include "pseries.h"
 #include "symbol.h"
 #include "utils.h"
+#include "polynomial/chinrem_gcd.h"
+
+#include <algorithm>
+#include <map>
 
 namespace GiNaC {
 
@@ -84,7 +85,7 @@ static struct _stat_print {
 #endif
 
 
-/** Return pointer to first symbol found in expression.  Due to GiNaC´s
+/** Return pointer to first symbol found in expression.  Due to GiNaC's
  *  internal ordering of terms, it may not be obvious which symbol this
  *  function returns for a given expression.
  *
@@ -119,6 +120,11 @@ static bool get_first_symbol(const ex &e, ex &x)
  *
  *  @see get_symbol_stats */
 struct sym_desc {
+       /** Initialize symbol, leave other variables uninitialized */
+       sym_desc(const ex& s)
+         : sym(s), deg_a(0), deg_b(0), ldeg_a(0), ldeg_b(0), max_deg(0), max_lcnops(0)
+       { }
+
        /** Reference to symbol */
        ex sym;
 
@@ -156,15 +162,11 @@ typedef std::vector<sym_desc> sym_desc_vec;
 // Add symbol the sym_desc_vec (used internally by get_symbol_stats())
 static void add_symbol(const ex &s, sym_desc_vec &v)
 {
-       sym_desc_vec::const_iterator it = v.begin(), itend = v.end();
-       while (it != itend) {
-               if (it->sym.is_equal(s))  // If it's already in there, don't add it a second time
+       for (auto & it : v)
+               if (it.sym.is_equal(s))  // If it's already in there, don't add it a second time
                        return;
-               ++it;
-       }
-       sym_desc d;
-       d.sym = s;
-       v.push_back(d);
+
+       v.push_back(sym_desc(s));
 }
 
 // Collect all symbols of an expression (used internally by get_symbol_stats())
@@ -194,19 +196,17 @@ static void collect_symbols(const ex &e, sym_desc_vec &v)
  *  @param v  vector of sym_desc structs (filled in) */
 static void get_symbol_stats(const ex &a, const ex &b, sym_desc_vec &v)
 {
-       collect_symbols(a.eval(), v);   // eval() to expand assigned symbols
-       collect_symbols(b.eval(), v);
-       sym_desc_vec::iterator it = v.begin(), itend = v.end();
-       while (it != itend) {
-               int deg_a = a.degree(it->sym);
-               int deg_b = b.degree(it->sym);
-               it->deg_a = deg_a;
-               it->deg_b = deg_b;
-               it->max_deg = std::max(deg_a, deg_b);
-               it->max_lcnops = std::max(a.lcoeff(it->sym).nops(), b.lcoeff(it->sym).nops());
-               it->ldeg_a = a.ldegree(it->sym);
-               it->ldeg_b = b.ldegree(it->sym);
-               ++it;
+       collect_symbols(a, v);
+       collect_symbols(b, v);
+       for (auto & it : v) {
+               int deg_a = a.degree(it.sym);
+               int deg_b = b.degree(it.sym);
+               it.deg_a = deg_a;
+               it.deg_b = deg_b;
+               it.max_deg = std::max(deg_a, deg_b);
+               it.max_lcnops = std::max(a.lcoeff(it.sym).nops(), b.lcoeff(it.sym).nops());
+               it.ldeg_a = a.ldegree(it.sym);
+               it.ldeg_b = b.ldegree(it.sym);
        }
        std::sort(v.begin(), v.end());
 
@@ -233,14 +233,14 @@ static numeric lcmcoeff(const ex &e, const numeric &l)
        if (e.info(info_flags::rational))
                return lcm(ex_to<numeric>(e).denom(), l);
        else if (is_exactly_a<add>(e)) {
-               numeric c = _num1;
+               numeric c = *_num1_p;
                for (size_t i=0; i<e.nops(); i++)
                        c = lcmcoeff(e.op(i), c);
                return lcm(c, l);
        } else if (is_exactly_a<mul>(e)) {
-               numeric c = _num1;
+               numeric c = *_num1_p;
                for (size_t i=0; i<e.nops(); i++)
-                       c *= lcmcoeff(e.op(i), _num1);
+                       c *= lcmcoeff(e.op(i), *_num1_p);
                return lcm(c, l);
        } else if (is_exactly_a<power>(e)) {
                if (is_a<symbol>(e.op(0)))
@@ -260,7 +260,7 @@ static numeric lcmcoeff(const ex &e, const numeric &l)
  *  @return LCM of denominators of coefficients */
 static numeric lcm_of_coefficients_denominators(const ex &e)
 {
-       return lcmcoeff(e, _num1);
+       return lcmcoeff(e, *_num1_p);
 }
 
 /** Bring polynomial from Q[X] to Z[X] by multiplying in the previously
@@ -270,35 +270,49 @@ static numeric lcm_of_coefficients_denominators(const ex &e)
  *  @param lcm  LCM to multiply in */
 static ex multiply_lcm(const ex &e, const numeric &lcm)
 {
+       if (lcm.is_equal(*_num1_p))
+               // e * 1 -> e;
+               return e;
+
        if (is_exactly_a<mul>(e)) {
+               // (a*b*...)*lcm -> (a*lcma)*(b*lcmb)*...*(lcm/(lcma*lcmb*...))
                size_t num = e.nops();
-               exvector v; v.reserve(num + 1);
-               numeric lcm_accum = _num1;
+               exvector v;
+               v.reserve(num + 1);
+               numeric lcm_accum = *_num1_p;
                for (size_t i=0; i<num; i++) {
-                       numeric op_lcm = lcmcoeff(e.op(i), _num1);
+                       numeric op_lcm = lcmcoeff(e.op(i), *_num1_p);
                        v.push_back(multiply_lcm(e.op(i), op_lcm));
                        lcm_accum *= op_lcm;
                }
                v.push_back(lcm / lcm_accum);
-               return (new mul(v))->setflag(status_flags::dynallocated);
+               return dynallocate<mul>(v);
        } else if (is_exactly_a<add>(e)) {
+               // (a+b+...)*lcm -> a*lcm+b*lcm+...
                size_t num = e.nops();
-               exvector v; v.reserve(num);
+               exvector v;
+               v.reserve(num);
                for (size_t i=0; i<num; i++)
                        v.push_back(multiply_lcm(e.op(i), lcm));
-               return (new add(v))->setflag(status_flags::dynallocated);
+               return dynallocate<add>(v);
        } else if (is_exactly_a<power>(e)) {
-               if (is_a<symbol>(e.op(0)))
-                       return e * lcm;
-               else
-                       return pow(multiply_lcm(e.op(0), lcm.power(ex_to<numeric>(e.op(1)).inverse())), e.op(1));
-       } else
-               return e * lcm;
+               if (!is_a<symbol>(e.op(0))) {
+                       // (b^e)*lcm -> (b*lcm^(1/e))^e if lcm^(1/e) ∈ ℚ (i.e. not a float)
+                       // but not for symbolic b, as evaluation would undo this again
+                       numeric root_of_lcm = lcm.power(ex_to<numeric>(e.op(1)).inverse());
+                       if (root_of_lcm.is_rational())
+                               return pow(multiply_lcm(e.op(0), root_of_lcm), e.op(1));
+               }
+       }
+       // can't recurse down into e
+       return dynallocate<mul>(e, lcm);
 }
 
 
 /** Compute the integer content (= GCD of all numeric coefficients) of an
- *  expanded polynomial.
+ *  expanded polynomial. For a polynomial with rational coefficients, this
+ *  returns g/l where g is the GCD of the coefficients' numerators and l
+ *  is the LCM of the coefficients' denominators.
  *
  *  @return integer content */
 numeric ex::integer_content() const
@@ -308,7 +322,7 @@ numeric ex::integer_content() const
 
 numeric basic::integer_content() const
 {
-       return _num1;
+       return *_num1_p;
 }
 
 numeric numeric::integer_content() const
@@ -318,28 +332,24 @@ numeric numeric::integer_content() const
 
 numeric add::integer_content() const
 {
-       epvector::const_iterator it = seq.begin();
-       epvector::const_iterator itend = seq.end();
-       numeric c = _num0;
-       while (it != itend) {
-               GINAC_ASSERT(!is_exactly_a<numeric>(it->rest));
-               GINAC_ASSERT(is_exactly_a<numeric>(it->coeff));
-               c = gcd(ex_to<numeric>(it->coeff), c);
-               it++;
+       numeric c = *_num0_p, l = *_num1_p;
+       for (auto & it : seq) {
+               GINAC_ASSERT(!is_exactly_a<numeric>(it.rest));
+               GINAC_ASSERT(is_exactly_a<numeric>(it.coeff));
+               c = gcd(ex_to<numeric>(it.coeff).numer(), c);
+               l = lcm(ex_to<numeric>(it.coeff).denom(), l);
        }
        GINAC_ASSERT(is_exactly_a<numeric>(overall_coeff));
-       c = gcd(ex_to<numeric>(overall_coeff),c);
-       return c;
+       c = gcd(ex_to<numeric>(overall_coeff).numer(), c);
+       l = lcm(ex_to<numeric>(overall_coeff).denom(), l);
+       return c/l;
 }
 
 numeric mul::integer_content() const
 {
 #ifdef DO_GINAC_ASSERT
-       epvector::const_iterator it = seq.begin();
-       epvector::const_iterator itend = seq.end();
-       while (it != itend) {
-               GINAC_ASSERT(!is_exactly_a<numeric>(recombine_pair_to_ex(*it)));
-               ++it;
+       for (auto & it : seq) {
+               GINAC_ASSERT(!is_exactly_a<numeric>(recombine_pair_to_ex(it)));
        }
 #endif // def DO_GINAC_ASSERT
        GINAC_ASSERT(is_exactly_a<numeric>(overall_coeff));
@@ -388,16 +398,16 @@ ex quo(const ex &a, const ex &b, const ex &x, bool check_args)
                        term = rcoeff / blcoeff;
                else {
                        if (!divide(rcoeff, blcoeff, term, false))
-                               return (new fail())->setflag(status_flags::dynallocated);
+                               return dynallocate<fail>();
                }
-               term *= power(x, rdeg - bdeg);
+               term *= pow(x, rdeg - bdeg);
                v.push_back(term);
                r -= (term * b).expand();
                if (r.is_zero())
                        break;
                rdeg = r.degree(x);
        }
-       return (new add(v))->setflag(status_flags::dynallocated);
+       return dynallocate<add>(v);
 }
 
 
@@ -441,9 +451,9 @@ ex rem(const ex &a, const ex &b, const ex &x, bool check_args)
                        term = rcoeff / blcoeff;
                else {
                        if (!divide(rcoeff, blcoeff, term, false))
-                               return (new fail())->setflag(status_flags::dynallocated);
+                               return dynallocate<fail>();
                }
-               term *= power(x, rdeg - bdeg);
+               term *= pow(x, rdeg - bdeg);
                r -= (term * b).expand();
                if (r.is_zero())
                        break;
@@ -503,23 +513,23 @@ ex prem(const ex &a, const ex &b, const ex &x, bool check_args)
                if (bdeg == 0)
                        eb = _ex0;
                else
-                       eb -= blcoeff * power(x, bdeg);
+                       eb -= blcoeff * pow(x, bdeg);
        } else
                blcoeff = _ex1;
 
        int delta = rdeg - bdeg + 1, i = 0;
        while (rdeg >= bdeg && !r.is_zero()) {
                ex rlcoeff = r.coeff(x, rdeg);
-               ex term = (power(x, rdeg - bdeg) * eb * rlcoeff).expand();
+               ex term = (pow(x, rdeg - bdeg) * eb * rlcoeff).expand();
                if (rdeg == 0)
                        r = _ex0;
                else
-                       r -= rlcoeff * power(x, rdeg);
+                       r -= rlcoeff * pow(x, rdeg);
                r = (blcoeff * r).expand() - term;
                rdeg = r.degree(x);
                i++;
        }
-       return power(blcoeff, delta - i) * r;
+       return pow(blcoeff, delta - i) * r;
 }
 
 
@@ -555,17 +565,17 @@ ex sprem(const ex &a, const ex &b, const ex &x, bool check_args)
                if (bdeg == 0)
                        eb = _ex0;
                else
-                       eb -= blcoeff * power(x, bdeg);
+                       eb -= blcoeff * pow(x, bdeg);
        } else
                blcoeff = _ex1;
 
        while (rdeg >= bdeg && !r.is_zero()) {
                ex rlcoeff = r.coeff(x, rdeg);
-               ex term = (power(x, rdeg - bdeg) * eb * rlcoeff).expand();
+               ex term = (pow(x, rdeg - bdeg) * eb * rlcoeff).expand();
                if (rdeg == 0)
                        r = _ex0;
                else
-                       r -= rlcoeff * power(x, rdeg);
+                       r -= rlcoeff * pow(x, rdeg);
                r = (blcoeff * r).expand() - term;
                rdeg = r.degree(x);
        }
@@ -610,6 +620,73 @@ bool divide(const ex &a, const ex &b, ex &q, bool check_args)
        if (!get_first_symbol(a, x) && !get_first_symbol(b, x))
                throw(std::invalid_argument("invalid expression in divide()"));
 
+       // Try to avoid expanding partially factored expressions.
+       if (is_exactly_a<mul>(b)) {
+       // Divide sequentially by each term
+               ex rem_new, rem_old = a;
+               for (size_t i=0; i < b.nops(); i++) {
+                       if (! divide(rem_old, b.op(i), rem_new, false))
+                               return false;
+                       rem_old = rem_new;
+               }
+               q = rem_new;
+               return true;
+       } else if (is_exactly_a<power>(b)) {
+               const ex& bb(b.op(0));
+               int exp_b = ex_to<numeric>(b.op(1)).to_int();
+               ex rem_new, rem_old = a;
+               for (int i=exp_b; i>0; i--) {
+                       if (! divide(rem_old, bb, rem_new, false))
+                               return false;
+                       rem_old = rem_new;
+               }
+               q = rem_new;
+               return true;
+       } 
+       
+       if (is_exactly_a<mul>(a)) {
+               // Divide sequentially each term. If some term in a is divisible 
+               // by b we are done... and if not, we can't really say anything.
+               size_t i;
+               ex rem_i;
+               bool divisible_p = false;
+               for (i=0; i < a.nops(); ++i) {
+                       if (divide(a.op(i), b, rem_i, false)) {
+                               divisible_p = true;
+                               break;
+                       }
+               }
+               if (divisible_p) {
+                       exvector resv;
+                       resv.reserve(a.nops());
+                       for (size_t j=0; j < a.nops(); j++) {
+                               if (j==i)
+                                       resv.push_back(rem_i);
+                               else
+                                       resv.push_back(a.op(j));
+                       }
+                       q = dynallocate<mul>(resv);
+                       return true;
+               }
+       } else if (is_exactly_a<power>(a)) {
+               // The base itself might be divisible by b, in that case we don't
+               // need to expand a
+               const ex& ab(a.op(0));
+               int a_exp = ex_to<numeric>(a.op(1)).to_int();
+               ex rem_i;
+               if (divide(ab, b, rem_i, false)) {
+                       q = rem_i * pow(ab, a_exp - 1);
+                       return true;
+               }
+// code below is commented-out because it leads to a significant slowdown
+//             for (int i=2; i < a_exp; i++) {
+//                     if (divide(power(ab, i), b, rem_i, false)) {
+//                             q = rem_i*power(ab, a_exp - i);
+//                             return true;
+//                     }
+//             } // ... so we *really* need to expand expression.
+       }
+       
        // Polynomial long division (recursive)
        ex r = a.expand();
        if (r.is_zero()) {
@@ -628,11 +705,11 @@ bool divide(const ex &a, const ex &b, ex &q, bool check_args)
                else
                        if (!divide(rcoeff, blcoeff, term, false))
                                return false;
-               term *= power(x, rdeg - bdeg);
+               term *= pow(x, rdeg - bdeg);
                v.push_back(term);
                r -= (term * b).expand();
                if (r.is_zero()) {
-                       q = (new add(v))->setflag(status_flags::dynallocated);
+                       q = dynallocate<add>(v);
                        return true;
                }
                rdeg = r.degree(x);
@@ -710,6 +787,31 @@ static bool divide_in_z(const ex &a, const ex &b, ex &q, sym_desc_vec::const_ite
        }
 #endif
 
+       if (is_exactly_a<power>(b)) {
+               const ex& bb(b.op(0));
+               ex qbar = a;
+               int exp_b = ex_to<numeric>(b.op(1)).to_int();
+               for (int i=exp_b; i>0; i--) {
+                       if (!divide_in_z(qbar, bb, q, var))
+                               return false;
+                       qbar = q;
+               }
+               return true;
+       }
+
+       if (is_exactly_a<mul>(b)) {
+               ex qbar = a;
+               for (const auto & it : b) {
+                       sym_desc_vec sym_stats;
+                       get_symbol_stats(a, it, sym_stats);
+                       if (!divide_in_z(qbar, it, q, sym_stats.begin()))
+                               return false;
+
+                       qbar = q;
+               }
+               return true;
+       }
+
        // Main symbol
        const ex &x = var->sym;
 
@@ -726,24 +828,24 @@ static bool divide_in_z(const ex &a, const ex &b, ex &q, sym_desc_vec::const_ite
        // Compute values at evaluation points 0..adeg
        vector<numeric> alpha; alpha.reserve(adeg + 1);
        exvector u; u.reserve(adeg + 1);
-       numeric point = _num0;
+       numeric point = *_num0_p;
        ex c;
        for (i=0; i<=adeg; i++) {
                ex bs = b.subs(x == point, subs_options::no_pattern);
                while (bs.is_zero()) {
-                       point += _num1;
+                       point += *_num1_p;
                        bs = b.subs(x == point, subs_options::no_pattern);
                }
                if (!divide_in_z(a.subs(x == point, subs_options::no_pattern), bs, c, var+1))
                        return false;
                alpha.push_back(point);
                u.push_back(c);
-               point += _num1;
+               point += *_num1_p;
        }
 
        // Compute inverses
        vector<numeric> rcp; rcp.reserve(adeg + 1);
-       rcp.push_back(_num0);
+       rcp.push_back(*_num0_p);
        for (k=1; k<=adeg; k++) {
                numeric product = alpha[k] - alpha[0];
                for (i=1; i<k; i++)
@@ -786,11 +888,11 @@ static bool divide_in_z(const ex &a, const ex &b, ex &q, sym_desc_vec::const_ite
                ex term, rcoeff = r.coeff(x, rdeg);
                if (!divide_in_z(rcoeff, blcoeff, term, var+1))
                        break;
-               term = (term * power(x, rdeg - bdeg)).expand();
+               term = (term * pow(x, rdeg - bdeg)).expand();
                v.push_back(term);
                r -= (term * eb).expand();
                if (r.is_zero()) {
-                       q = (new add(v))->setflag(status_flags::dynallocated);
+                       q = dynallocate<add>(v);
 #if USE_REMEMBER
                        dr_remember[ex2(a, b)] = exbool(q, true);
 #endif
@@ -812,17 +914,17 @@ static bool divide_in_z(const ex &a, const ex &b, ex &q, sym_desc_vec::const_ite
  */
 
 /** Compute unit part (= sign of leading coefficient) of a multivariate
- *  polynomial in Z[x]. The product of unit part, content part, and primitive
+ *  polynomial in Q[x]. The product of unit part, content part, and primitive
  *  part is the polynomial itself.
  *
- *  @param x  variable in which to compute the unit part
+ *  @param x  main variable
  *  @return unit part
- *  @see ex::content, ex::primpart */
+ *  @see ex::content, ex::primpart, ex::unitcontprim */
 ex ex::unit(const ex &x) const
 {
        ex c = expand().lcoeff(x);
        if (is_exactly_a<numeric>(c))
-               return c < _ex0 ? _ex_1 : _ex1;
+               return c.info(info_flags::negative) ?_ex_1 : _ex1;
        else {
                ex y;
                if (get_first_symbol(c, y))
@@ -834,82 +936,72 @@ ex ex::unit(const ex &x) const
 
 
 /** Compute content part (= unit normal GCD of all coefficients) of a
- *  multivariate polynomial in Z[x].  The product of unit part, content part,
+ *  multivariate polynomial in Q[x]. The product of unit part, content part,
  *  and primitive part is the polynomial itself.
  *
- *  @param x  variable in which to compute the content part
+ *  @param x  main variable
  *  @return content part
- *  @see ex::unit, ex::primpart */
+ *  @see ex::unit, ex::primpart, ex::unitcontprim */
 ex ex::content(const ex &x) const
 {
-       if (is_zero())
-               return _ex0;
        if (is_exactly_a<numeric>(*this))
                return info(info_flags::negative) ? -*this : *this;
+
        ex e = expand();
        if (e.is_zero())
                return _ex0;
 
-       // First, try the integer content
+       // First, divide out the integer content (which we can calculate very efficiently).
+       // If the leading coefficient of the quotient is an integer, we are done.
        ex c = e.integer_content();
        ex r = e / c;
-       ex lcoeff = r.lcoeff(x);
+       int deg = r.degree(x);
+       ex lcoeff = r.coeff(x, deg);
        if (lcoeff.info(info_flags::integer))
                return c;
 
        // GCD of all coefficients
-       int deg = e.degree(x);
-       int ldeg = e.ldegree(x);
+       int ldeg = r.ldegree(x);
        if (deg == ldeg)
-               return e.lcoeff(x) / e.unit(x);
-       c = _ex0;
+               return lcoeff * c / lcoeff.unit(x);
+       ex cont = _ex0;
        for (int i=ldeg; i<=deg; i++)
-               c = gcd(e.coeff(x, i), c, NULL, NULL, false);
-       return c;
+               cont = gcd(r.coeff(x, i), cont, nullptr, nullptr, false);
+       return cont * c;
 }
 
 
-/** Compute primitive part of a multivariate polynomial in Z[x].
- *  The product of unit part, content part, and primitive part is the
- *  polynomial itself.
+/** Compute primitive part of a multivariate polynomial in Q[x]. The result
+ *  will be a unit-normal polynomial with a content part of 1. The product
+ *  of unit part, content part, and primitive part is the polynomial itself.
  *
- *  @param x  variable in which to compute the primitive part
+ *  @param x  main variable
  *  @return primitive part
- *  @see ex::unit, ex::content */
+ *  @see ex::unit, ex::content, ex::unitcontprim */
 ex ex::primpart(const ex &x) const
 {
-       if (is_zero())
-               return _ex0;
-       if (is_exactly_a<numeric>(*this))
-               return _ex1;
-
-       ex c = content(x);
-       if (c.is_zero())
-               return _ex0;
-       ex u = unit(x);
-       if (is_exactly_a<numeric>(c))
-               return *this / (c * u);
-       else
-               return quo(*this, c * u, x, false);
+       // We need to compute the unit and content anyway, so call unitcontprim()
+       ex u, c, p;
+       unitcontprim(x, u, c, p);
+       return p;
 }
 
 
-/** Compute primitive part of a multivariate polynomial in Z[x] when the
+/** Compute primitive part of a multivariate polynomial in Q[x] when the
  *  content part is already known. This function is faster in computing the
  *  primitive part than the previous function.
  *
- *  @param x  variable in which to compute the primitive part
+ *  @param x  main variable
  *  @param c  previously computed content part
  *  @return primitive part */
 ex ex::primpart(const ex &x, const ex &c) const
 {
-       if (is_zero())
-               return _ex0;
-       if (c.is_zero())
+       if (is_zero() || c.is_zero())
                return _ex0;
        if (is_exactly_a<numeric>(*this))
                return _ex1;
 
+       // Divide by unit and content to get primitive part
        ex u = unit(x);
        if (is_exactly_a<numeric>(c))
                return *this / (c * u);
@@ -918,6 +1010,61 @@ ex ex::primpart(const ex &x, const ex &c) const
 }
 
 
+/** Compute unit part, content part, and primitive part of a multivariate
+ *  polynomial in Q[x]. The product of the three parts is the polynomial
+ *  itself.
+ *
+ *  @param x  main variable
+ *  @param u  unit part (returned)
+ *  @param c  content part (returned)
+ *  @param p  primitive part (returned)
+ *  @see ex::unit, ex::content, ex::primpart */
+void ex::unitcontprim(const ex &x, ex &u, ex &c, ex &p) const
+{
+       // Quick check for zero (avoid expanding)
+       if (is_zero()) {
+               u = _ex1;
+               c = p = _ex0;
+               return;
+       }
+
+       // Special case: input is a number
+       if (is_exactly_a<numeric>(*this)) {
+               if (info(info_flags::negative)) {
+                       u = _ex_1;
+                       c = abs(ex_to<numeric>(*this));
+               } else {
+                       u = _ex1;
+                       c = *this;
+               }
+               p = _ex1;
+               return;
+       }
+
+       // Expand input polynomial
+       ex e = expand();
+       if (e.is_zero()) {
+               u = _ex1;
+               c = p = _ex0;
+               return;
+       }
+
+       // Compute unit and content
+       u = unit(x);
+       c = content(x);
+
+       // Divide by unit and content to get primitive part
+       if (c.is_zero()) {
+               p = _ex0;
+               return;
+       }
+       if (is_exactly_a<numeric>(c))
+               p = *this / (c * u);
+       else
+               p = quo(e, c * u, x, false);
+}
+
+
 /*
  *  GCD of multivariate polynomials
  */
@@ -959,7 +1106,7 @@ static ex sr_gcd(const ex &a, const ex &b, sym_desc_vec::const_iterator var)
        // Remove content from c and d, to be attached to GCD later
        ex cont_c = c.content(x);
        ex cont_d = d.content(x);
-       ex gamma = gcd(cont_c, cont_d, NULL, NULL, false);
+       ex gamma = gcd(cont_c, cont_d, nullptr, nullptr, false);
        if (ddeg == 0)
                return gamma;
        c = c.primpart(x, cont_c);
@@ -1013,7 +1160,7 @@ numeric ex::max_coefficient() const
  *  @see heur_gcd */
 numeric basic::max_coefficient() const
 {
-       return _num1;
+       return *_num1_p;
 }
 
 numeric numeric::max_coefficient() const
@@ -1023,17 +1170,14 @@ numeric numeric::max_coefficient() const
 
 numeric add::max_coefficient() const
 {
-       epvector::const_iterator it = seq.begin();
-       epvector::const_iterator itend = seq.end();
        GINAC_ASSERT(is_exactly_a<numeric>(overall_coeff));
        numeric cur_max = abs(ex_to<numeric>(overall_coeff));
-       while (it != itend) {
+       for (auto & it : seq) {
                numeric a;
-               GINAC_ASSERT(!is_exactly_a<numeric>(it->rest));
-               a = abs(ex_to<numeric>(it->coeff));
+               GINAC_ASSERT(!is_exactly_a<numeric>(it.rest));
+               a = abs(ex_to<numeric>(it.coeff));
                if (a > cur_max)
                        cur_max = a;
-               it++;
        }
        return cur_max;
 }
@@ -1041,11 +1185,8 @@ numeric add::max_coefficient() const
 numeric mul::max_coefficient() const
 {
 #ifdef DO_GINAC_ASSERT
-       epvector::const_iterator it = seq.begin();
-       epvector::const_iterator itend = seq.end();
-       while (it != itend) {
-               GINAC_ASSERT(!is_exactly_a<numeric>(recombine_pair_to_ex(*it)));
-               it++;
+       for (auto & it : seq) {
+               GINAC_ASSERT(!is_exactly_a<numeric>(recombine_pair_to_ex(it)));
        }
 #endif // def DO_GINAC_ASSERT
        GINAC_ASSERT(is_exactly_a<numeric>(overall_coeff));
@@ -1073,36 +1214,30 @@ ex add::smod(const numeric &xi) const
 {
        epvector newseq;
        newseq.reserve(seq.size()+1);
-       epvector::const_iterator it = seq.begin();
-       epvector::const_iterator itend = seq.end();
-       while (it != itend) {
-               GINAC_ASSERT(!is_exactly_a<numeric>(it->rest));
-               numeric coeff = GiNaC::smod(ex_to<numeric>(it->coeff), xi);
+       for (auto & it : seq) {
+               GINAC_ASSERT(!is_exactly_a<numeric>(it.rest));
+               numeric coeff = GiNaC::smod(ex_to<numeric>(it.coeff), xi);
                if (!coeff.is_zero())
-                       newseq.push_back(expair(it->rest, coeff));
-               it++;
+                       newseq.push_back(expair(it.rest, coeff));
        }
        GINAC_ASSERT(is_exactly_a<numeric>(overall_coeff));
        numeric coeff = GiNaC::smod(ex_to<numeric>(overall_coeff), xi);
-       return (new add(newseq,coeff))->setflag(status_flags::dynallocated);
+       return dynallocate<add>(std::move(newseq), coeff);
 }
 
 ex mul::smod(const numeric &xi) const
 {
 #ifdef DO_GINAC_ASSERT
-       epvector::const_iterator it = seq.begin();
-       epvector::const_iterator itend = seq.end();
-       while (it != itend) {
-               GINAC_ASSERT(!is_exactly_a<numeric>(recombine_pair_to_ex(*it)));
-               it++;
+       for (auto & it : seq) {
+               GINAC_ASSERT(!is_exactly_a<numeric>(recombine_pair_to_ex(it)));
        }
 #endif // def DO_GINAC_ASSERT
-       mul * mulcopyp = new mul(*this);
+       mul & mulcopy = dynallocate<mul>(*this);
        GINAC_ASSERT(is_exactly_a<numeric>(overall_coeff));
-       mulcopyp->overall_coeff = GiNaC::smod(ex_to<numeric>(overall_coeff),xi);
-       mulcopyp->clearflag(status_flags::evaluated);
-       mulcopyp->clearflag(status_flags::hash_calculated);
-       return mulcopyp->setflag(status_flags::dynallocated);
+       mulcopy.overall_coeff = GiNaC::smod(ex_to<numeric>(overall_coeff),xi);
+       mulcopy.clearflag(status_flags::evaluated);
+       mulcopy.clearflag(status_flags::hash_calculated);
+       return mulcopy;
 }
 
 
@@ -1114,10 +1249,10 @@ static ex interpolate(const ex &gamma, const numeric &xi, const ex &x, int degre
        numeric rxi = xi.inverse();
        for (int i=0; !e.is_zero(); i++) {
                ex gi = e.smod(xi);
-               g.push_back(gi * power(x, i));
+               g.push_back(gi * pow(x, i));
                e = (e - gi) * rxi;
        }
-       return (new add(g))->setflag(status_flags::dynallocated);
+       return dynallocate<add>(g);
 }
 
 /** Exception thrown by heur_gcd() to signal failure. */
@@ -1128,17 +1263,19 @@ class gcdheu_failed {};
  *  polynomials and an iterator to the first element of the sym_desc vector
  *  passed in. This function is used internally by gcd().
  *
- *  @param a  first multivariate polynomial (expanded)
- *  @param b  second multivariate polynomial (expanded)
- *  @param ca  cofactor of polynomial a (returned), NULL to suppress
+ *  @param a  first integer multivariate polynomial (expanded)
+ *  @param b  second integer multivariate polynomial (expanded)
+ *  @param ca  cofactor of polynomial a (returned), nullptr to suppress
  *             calculation of cofactor
- *  @param cb  cofactor of polynomial b (returned), NULL to suppress
+ *  @param cb  cofactor of polynomial b (returned), nullptr to suppress
  *             calculation of cofactor
  *  @param var iterator to first element of vector of sym_desc structs
- *  @return the GCD as a new expression
+ *  @param res the GCD (returned)
+ *  @return true if GCD was computed, false otherwise.
  *  @see gcd
  *  @exception gcdheu_failed() */
-static ex heur_gcd(const ex &a, const ex &b, ex *ca, ex *cb, sym_desc_vec::const_iterator var)
+static bool heur_gcd_z(ex& res, const ex &a, const ex &b, ex *ca, ex *cb,
+                      sym_desc_vec::const_iterator var)
 {
 #if STATISTICS
        heur_gcd_called++;
@@ -1146,7 +1283,7 @@ static ex heur_gcd(const ex &a, const ex &b, ex *ca, ex *cb, sym_desc_vec::const
 
        // Algorithm only works for non-vanishing input polynomials
        if (a.is_zero() || b.is_zero())
-               return (new fail())->setflag(status_flags::dynallocated);
+               return false;
 
        // GCD of two numeric values -> CLN
        if (is_exactly_a<numeric>(a) && is_exactly_a<numeric>(b)) {
@@ -1155,7 +1292,8 @@ static ex heur_gcd(const ex &a, const ex &b, ex *ca, ex *cb, sym_desc_vec::const
                        *ca = ex_to<numeric>(a) / g;
                if (cb)
                        *cb = ex_to<numeric>(b) / g;
-               return g;
+               res = g;
+               return true;
        }
 
        // The first symbol is our main variable
@@ -1173,9 +1311,9 @@ static ex heur_gcd(const ex &a, const ex &b, ex *ca, ex *cb, sym_desc_vec::const
        numeric mq = q.max_coefficient();
        numeric xi;
        if (mp > mq)
-               xi = mq * _num2 + _num2;
+               xi = mq * (*_num2_p) + (*_num2_p);
        else
-               xi = mp * _num2 + _num2;
+               xi = mp * (*_num2_p) + (*_num2_p);
 
        // 6 tries maximum
        for (int t=0; t<6; t++) {
@@ -1185,9 +1323,13 @@ static ex heur_gcd(const ex &a, const ex &b, ex *ca, ex *cb, sym_desc_vec::const
 
                // Apply evaluation homomorphism and calculate GCD
                ex cp, cq;
-               ex gamma = heur_gcd(p.subs(x == xi, subs_options::no_pattern), q.subs(x == xi, subs_options::no_pattern), &cp, &cq, var+1).expand();
-               if (!is_exactly_a<fail>(gamma)) {
-
+               ex gamma;
+               bool found = heur_gcd_z(gamma,
+                                       p.subs(x == xi, subs_options::no_pattern),
+                                       q.subs(x == xi, subs_options::no_pattern),
+                                       &cp, &cq, var+1);
+               if (found) {
+                       gamma = gamma.expand();
                        // Reconstruct polynomial from GCD of mapped polynomials
                        ex g = interpolate(gamma, xi, x, maxdeg);
 
@@ -1198,32 +1340,96 @@ static ex heur_gcd(const ex &a, const ex &b, ex *ca, ex *cb, sym_desc_vec::const
                        ex dummy;
                        if (divide_in_z(p, g, ca ? *ca : dummy, var) && divide_in_z(q, g, cb ? *cb : dummy, var)) {
                                g *= gc;
-                               ex lc = g.lcoeff(x);
-                               if (is_exactly_a<numeric>(lc) && ex_to<numeric>(lc).is_negative())
-                                       return -g;
-                               else
-                                       return g;
+                               res = g;
+                               return true;
                        }
                }
 
                // Next evaluation point
                xi = iquo(xi * isqrt(isqrt(xi)) * numeric(73794), numeric(27011));
        }
-       return (new fail())->setflag(status_flags::dynallocated);
+       return false;
 }
 
+/** Compute GCD of multivariate polynomials using the heuristic GCD algorithm.
+ *  get_symbol_stats() must have been called previously with the input
+ *  polynomials and an iterator to the first element of the sym_desc vector
+ *  passed in. This function is used internally by gcd().
+ *
+ *  @param a  first rational multivariate polynomial (expanded)
+ *  @param b  second rational multivariate polynomial (expanded)
+ *  @param ca  cofactor of polynomial a (returned), nullptr to suppress
+ *             calculation of cofactor
+ *  @param cb  cofactor of polynomial b (returned), nullptr to suppress
+ *             calculation of cofactor
+ *  @param var iterator to first element of vector of sym_desc structs
+ *  @param res the GCD (returned)
+ *  @return true if GCD was computed, false otherwise.
+ *  @see heur_gcd_z
+ *  @see gcd
+ */
+static bool heur_gcd(ex& res, const ex& a, const ex& b, ex *ca, ex *cb,
+                    sym_desc_vec::const_iterator var)
+{
+       if (a.info(info_flags::integer_polynomial) && 
+           b.info(info_flags::integer_polynomial)) {
+               try {
+                       return heur_gcd_z(res, a, b, ca, cb, var);
+               } catch (gcdheu_failed) {
+                       return false;
+               }
+       }
+
+       // convert polynomials to Z[X]
+       const numeric a_lcm = lcm_of_coefficients_denominators(a);
+       const numeric ab_lcm = lcmcoeff(b, a_lcm);
+
+       const ex ai = a*ab_lcm;
+       const ex bi = b*ab_lcm;
+       if (!ai.info(info_flags::integer_polynomial))
+               throw std::logic_error("heur_gcd: not an integer polynomial [1]");
+
+       if (!bi.info(info_flags::integer_polynomial))
+               throw std::logic_error("heur_gcd: not an integer polynomial [2]");
+
+       bool found = false;
+       try {
+               found = heur_gcd_z(res, ai, bi, ca, cb, var);
+       } catch (gcdheu_failed) {
+               return false;
+       }
+       
+       // GCD is not unique, it's defined up to a unit (i.e. invertible
+       // element). If the coefficient ring is a field, every its element is
+       // invertible, so one can multiply the polynomial GCD with any element
+       // of the coefficient field. We use this ambiguity to make cofactors
+       // integer polynomials.
+       if (found)
+               res /= ab_lcm;
+       return found;
+}
+
+
+// gcd helper to handle partially factored polynomials (to avoid expanding
+// large expressions). At least one of the arguments should be a power.
+static ex gcd_pf_pow(const ex& a, const ex& b, ex* ca, ex* cb);
+
+// gcd helper to handle partially factored polynomials (to avoid expanding
+// large expressions). At least one of the arguments should be a product.
+static ex gcd_pf_mul(const ex& a, const ex& b, ex* ca, ex* cb);
 
 /** Compute GCD (Greatest Common Divisor) of multivariate polynomials a(X)
- *  and b(X) in Z[X].
+ *  and b(X) in Z[X]. Optionally also compute the cofactors of a and b,
+ *  defined by a = ca * gcd(a, b) and b = cb * gcd(a, b).
  *
  *  @param a  first multivariate polynomial
  *  @param b  second multivariate polynomial
- *  @param ca pointer to expression that will receive the cofactor of a, or NULL
- *  @param cb pointer to expression that will receive the cofactor of b, or NULL
+ *  @param ca pointer to expression that will receive the cofactor of a, or nullptr
+ *  @param cb pointer to expression that will receive the cofactor of b, or nullptr
  *  @param check_args  check whether a and b are polynomials with rational
  *         coefficients (defaults to "true")
  *  @return the GCD as a new expression */
-ex gcd(const ex &a, const ex &b, ex *ca, ex *cb, bool check_args)
+ex gcd(const ex &a, const ex &b, ex *ca, ex *cb, bool check_args, unsigned options)
 {
 #if STATISTICS
        gcd_called++;
@@ -1254,90 +1460,14 @@ ex gcd(const ex &a, const ex &b, ex *ca, ex *cb, bool check_args)
        }
 
        // Partially factored cases (to avoid expanding large expressions)
-       if (is_exactly_a<mul>(a)) {
-               if (is_exactly_a<mul>(b) && b.nops() > a.nops())
-                       goto factored_b;
-factored_a:
-               size_t num = a.nops();
-               exvector g; g.reserve(num);
-               exvector acc_ca; acc_ca.reserve(num);
-               ex part_b = b;
-               for (size_t i=0; i<num; i++) {
-                       ex part_ca, part_cb;
-                       g.push_back(gcd(a.op(i), part_b, &part_ca, &part_cb, check_args));
-                       acc_ca.push_back(part_ca);
-                       part_b = part_cb;
-               }
-               if (ca)
-                       *ca = (new mul(acc_ca))->setflag(status_flags::dynallocated);
-               if (cb)
-                       *cb = part_b;
-               return (new mul(g))->setflag(status_flags::dynallocated);
-       } else if (is_exactly_a<mul>(b)) {
-               if (is_exactly_a<mul>(a) && a.nops() > b.nops())
-                       goto factored_a;
-factored_b:
-               size_t num = b.nops();
-               exvector g; g.reserve(num);
-               exvector acc_cb; acc_cb.reserve(num);
-               ex part_a = a;
-               for (size_t i=0; i<num; i++) {
-                       ex part_ca, part_cb;
-                       g.push_back(gcd(part_a, b.op(i), &part_ca, &part_cb, check_args));
-                       acc_cb.push_back(part_cb);
-                       part_a = part_ca;
-               }
-               if (ca)
-                       *ca = part_a;
-               if (cb)
-                       *cb = (new mul(acc_cb))->setflag(status_flags::dynallocated);
-               return (new mul(g))->setflag(status_flags::dynallocated);
-       }
-
+       if (!(options & gcd_options::no_part_factored)) {
+               if (is_exactly_a<mul>(a) || is_exactly_a<mul>(b))
+                       return gcd_pf_mul(a, b, ca, cb);
 #if FAST_COMPARE
-       // Input polynomials of the form poly^n are sometimes also trivial
-       if (is_exactly_a<power>(a)) {
-               ex p = a.op(0);
-               if (is_exactly_a<power>(b)) {
-                       if (p.is_equal(b.op(0))) {
-                               // a = p^n, b = p^m, gcd = p^min(n, m)
-                               ex exp_a = a.op(1), exp_b = b.op(1);
-                               if (exp_a < exp_b) {
-                                       if (ca)
-                                               *ca = _ex1;
-                                       if (cb)
-                                               *cb = power(p, exp_b - exp_a);
-                                       return power(p, exp_a);
-                               } else {
-                                       if (ca)
-                                               *ca = power(p, exp_a - exp_b);
-                                       if (cb)
-                                               *cb = _ex1;
-                                       return power(p, exp_b);
-                               }
-                       }
-               } else {
-                       if (p.is_equal(b)) {
-                               // a = p^n, b = p, gcd = p
-                               if (ca)
-                                       *ca = power(p, a.op(1) - 1);
-                               if (cb)
-                                       *cb = _ex1;
-                               return p;
-                       }
-               }
-       } else if (is_exactly_a<power>(b)) {
-               ex p = b.op(0);
-               if (p.is_equal(a)) {
-                       // a = p, b = p^n, gcd = p
-                       if (ca)
-                               *ca = _ex1;
-                       if (cb)
-                               *cb = power(p, b.op(1) - 1);
-                       return p;
-               }
-       }
+               if (is_exactly_a<power>(a) || is_exactly_a<power>(b))
+                       return gcd_pf_pow(a, b, ca, cb);
 #endif
+       }
 
        // Some trivial cases
        ex aex = a.expand(), bex = b.expand();
@@ -1372,11 +1502,71 @@ factored_b:
        }
 #endif
 
+       if (is_a<symbol>(aex)) {
+               if (! bex.subs(aex==_ex0, subs_options::no_pattern).is_zero()) {
+                       if (ca)
+                               *ca = a;
+                       if (cb)
+                               *cb = b;
+                       return _ex1;
+               }
+       }
+
+       if (is_a<symbol>(bex)) {
+               if (! aex.subs(bex==_ex0, subs_options::no_pattern).is_zero()) {
+                       if (ca)
+                               *ca = a;
+                       if (cb)
+                               *cb = b;
+                       return _ex1;
+               }
+       }
+
+       if (is_exactly_a<numeric>(aex)) {
+               numeric bcont = bex.integer_content();
+               numeric g = gcd(ex_to<numeric>(aex), bcont);
+               if (ca)
+                       *ca = ex_to<numeric>(aex)/g;
+               if (cb)
+                       *cb = bex/g;
+               return g;
+       }
+
+       if (is_exactly_a<numeric>(bex)) {
+               numeric acont = aex.integer_content();
+               numeric g = gcd(ex_to<numeric>(bex), acont);
+               if (ca)
+                       *ca = aex/g;
+               if (cb)
+                       *cb = ex_to<numeric>(bex)/g;
+               return g;
+       }
+
        // Gather symbol statistics
        sym_desc_vec sym_stats;
        get_symbol_stats(a, b, sym_stats);
 
-       // The symbol with least degree is our main variable
+       // The symbol with least degree which is contained in both polynomials
+       // is our main variable
+       sym_desc_vec::iterator vari = sym_stats.begin();
+       while ((vari != sym_stats.end()) && 
+              (((vari->ldeg_b == 0) && (vari->deg_b == 0)) ||
+               ((vari->ldeg_a == 0) && (vari->deg_a == 0))))
+               vari++;
+
+       // No common symbols at all, just return 1:
+       if (vari == sym_stats.end()) {
+               // N.B: keep cofactors factored
+               if (ca)
+                       *ca = a;
+               if (cb)
+                       *cb = b;
+               return _ex1;
+       }
+       // move symbols which contained only in one of the polynomials
+       // to the end:
+       rotate(sym_stats.begin(), vari, sym_stats.end());
+
        sym_desc_vec::const_iterator var = sym_stats.begin();
        const ex &x = var->sym;
 
@@ -1385,62 +1575,185 @@ factored_b:
        int ldeg_b = var->ldeg_b;
        int min_ldeg = std::min(ldeg_a,ldeg_b);
        if (min_ldeg > 0) {
-               ex common = power(x, min_ldeg);
+               ex common = pow(x, min_ldeg);
                return gcd((aex / common).expand(), (bex / common).expand(), ca, cb, false) * common;
        }
 
        // Try to eliminate variables
-       if (var->deg_a == 0) {
-               ex c = bex.content(x);
-               ex g = gcd(aex, c, ca, cb, false);
+       if (var->deg_a == 0 && var->deg_b != 0 ) {
+               ex bex_u, bex_c, bex_p;
+               bex.unitcontprim(x, bex_u, bex_c, bex_p);
+               ex g = gcd(aex, bex_c, ca, cb, false);
                if (cb)
-                       *cb *= bex.unit(x) * bex.primpart(x, c);
+                       *cb *= bex_u * bex_p;
                return g;
-       } else if (var->deg_b == 0) {
-               ex c = aex.content(x);
-               ex g = gcd(c, bex, ca, cb, false);
+       } else if (var->deg_b == 0 && var->deg_a != 0) {
+               ex aex_u, aex_c, aex_p;
+               aex.unitcontprim(x, aex_u, aex_c, aex_p);
+               ex g = gcd(aex_c, bex, ca, cb, false);
                if (ca)
-                       *ca *= aex.unit(x) * aex.primpart(x, c);
+                       *ca *= aex_u * aex_p;
                return g;
        }
 
        // Try heuristic algorithm first, fall back to PRS if that failed
        ex g;
-       try {
-               g = heur_gcd(aex, bex, ca, cb, var);
-       } catch (gcdheu_failed) {
-               g = fail();
-       }
-       if (is_exactly_a<fail>(g)) {
+       if (!(options & gcd_options::no_heur_gcd)) {
+               bool found = heur_gcd(g, aex, bex, ca, cb, var);
+               if (found) {
+                       // heur_gcd have already computed cofactors...
+                       if (g.is_equal(_ex1)) {
+                               // ... but we want to keep them factored if possible.
+                               if (ca)
+                                       *ca = a;
+                               if (cb)
+                                       *cb = b;
+                       }
+                       return g;
+               }
 #if STATISTICS
-               heur_gcd_failed++;
+               else {
+                       heur_gcd_failed++;
+               }
 #endif
+       }
+       if (options & gcd_options::use_sr_gcd) {
                g = sr_gcd(aex, bex, var);
-               if (g.is_equal(_ex1)) {
-                       // Keep cofactors factored if possible
+       } else {
+               exvector vars;
+               for (std::size_t n = sym_stats.size(); n-- != 0; )
+                       vars.push_back(sym_stats[n].sym);
+               g = chinrem_gcd(aex, bex, vars);
+       }
+
+       if (g.is_equal(_ex1)) {
+               // Keep cofactors factored if possible
+               if (ca)
+                       *ca = a;
+               if (cb)
+                       *cb = b;
+       } else {
+               if (ca)
+                       divide(aex, g, *ca, false);
+               if (cb)
+                       divide(bex, g, *cb, false);
+       }
+       return g;
+}
+
+// gcd helper to handle partially factored polynomials (to avoid expanding
+// large expressions). Both arguments should be powers.
+static ex gcd_pf_pow_pow(const ex& a, const ex& b, ex* ca, ex* cb)
+{
+       ex p = a.op(0);
+       const ex& exp_a = a.op(1);
+       ex pb = b.op(0);
+       const ex& exp_b = b.op(1);
+
+       // a = p^n, b = p^m, gcd = p^min(n, m)
+       if (p.is_equal(pb)) {
+               if (exp_a < exp_b) {
                        if (ca)
-                               *ca = a;
+                               *ca = _ex1;
                        if (cb)
-                               *cb = b;
+                               *cb = pow(p, exp_b - exp_a);
+                       return pow(p, exp_a);
                } else {
                        if (ca)
-                               divide(aex, g, *ca, false);
+                               *ca = pow(p, exp_a - exp_b);
                        if (cb)
-                               divide(bex, g, *cb, false);
+                               *cb = _ex1;
+                       return pow(p, exp_b);
                }
-       } else {
-               if (g.is_equal(_ex1)) {
-                       // Keep cofactors factored if possible
+       }
+
+       ex p_co, pb_co;
+       ex p_gcd = gcd(p, pb, &p_co, &pb_co, false);
+       // a(x) = p(x)^n, b(x) = p_b(x)^m, gcd (p, p_b) = 1 ==> gcd(a,b) = 1
+       if (p_gcd.is_equal(_ex1)) {
                        if (ca)
                                *ca = a;
                        if (cb)
                                *cb = b;
-               }
+                       return _ex1;
+                       // XXX: do I need to check for p_gcd = -1?
        }
 
-       return g;
+       // there are common factors:
+       // a(x) = g(x)^n A(x)^n, b(x) = g(x)^m B(x)^m ==>
+       // gcd(a, b) = g(x)^n gcd(A(x)^n, g(x)^(n-m) B(x)^m
+       if (exp_a < exp_b) {
+               ex pg =  gcd(pow(p_co, exp_a), pow(p_gcd, exp_b-exp_a)*pow(pb_co, exp_b), ca, cb, false);
+               return pow(p_gcd, exp_a)*pg;
+       } else {
+               ex pg = gcd(pow(p_gcd, exp_a - exp_b)*pow(p_co, exp_a), pow(pb_co, exp_b), ca, cb, false);
+               return pow(p_gcd, exp_b)*pg;
+       }
+}
+
+static ex gcd_pf_pow(const ex& a, const ex& b, ex* ca, ex* cb)
+{
+       if (is_exactly_a<power>(a) && is_exactly_a<power>(b))
+               return gcd_pf_pow_pow(a, b, ca, cb);
+
+       if (is_exactly_a<power>(b) && (! is_exactly_a<power>(a)))
+               return gcd_pf_pow(b, a, cb, ca);
+
+       GINAC_ASSERT(is_exactly_a<power>(a));
+
+       ex p = a.op(0);
+       const ex& exp_a = a.op(1);
+       if (p.is_equal(b)) {
+               // a = p^n, b = p, gcd = p
+               if (ca)
+                       *ca = pow(p, a.op(1) - 1);
+               if (cb)
+                       *cb = _ex1;
+               return p;
+       } 
+
+       ex p_co, bpart_co;
+       ex p_gcd = gcd(p, b, &p_co, &bpart_co, false);
+
+       // a(x) = p(x)^n, gcd(p, b) = 1 ==> gcd(a, b) = 1
+       if (p_gcd.is_equal(_ex1)) {
+               if (ca)
+                       *ca = a;
+               if (cb)
+                       *cb = b;
+               return _ex1;
+       }
+       // a(x) = g(x)^n A(x)^n, b(x) = g(x) B(x) ==> gcd(a, b) = g(x) gcd(g(x)^(n-1) A(x)^n, B(x))
+       ex rg = gcd(pow(p_gcd, exp_a-1)*pow(p_co, exp_a), bpart_co, ca, cb, false);
+       return p_gcd*rg;
 }
 
+static ex gcd_pf_mul(const ex& a, const ex& b, ex* ca, ex* cb)
+{
+       if (is_exactly_a<mul>(a) && is_exactly_a<mul>(b)
+                                && (b.nops() >  a.nops()))
+               return gcd_pf_mul(b, a, cb, ca);
+
+       if (is_exactly_a<mul>(b) && (!is_exactly_a<mul>(a)))
+               return gcd_pf_mul(b, a, cb, ca);
+
+       GINAC_ASSERT(is_exactly_a<mul>(a));
+       size_t num = a.nops();
+       exvector g; g.reserve(num);
+       exvector acc_ca; acc_ca.reserve(num);
+       ex part_b = b;
+       for (size_t i=0; i<num; i++) {
+               ex part_ca, part_cb;
+               g.push_back(gcd(a.op(i), part_b, &part_ca, &part_cb, false));
+               acc_ca.push_back(part_ca);
+               part_b = part_cb;
+       }
+       if (ca)
+               *ca = dynallocate<mul>(acc_ca);
+       if (cb)
+               *cb = part_b;
+       return dynallocate<mul>(g);
+}
 
 /** Compute LCM (Least Common Multiple) of multivariate polynomials in Z[X].
  *
@@ -1467,10 +1780,10 @@ ex lcm(const ex &a, const ex &b, bool check_args)
  */
 
 /** Compute square-free factorization of multivariate polynomial a(x) using
- *  Yun´s algorithm.  Used internally by sqrfree().
+ *  Yun's algorithm.  Used internally by sqrfree().
  *
  *  @param a  multivariate polynomial over Z[X], treated here as univariate
- *            polynomial in x.
+ *            polynomial in x (needs not be expanded).
  *  @param x  variable to factor in
  *  @return   vector of factors sorted in ascending degree */
 static exvector sqrfree_yun(const ex &a, const symbol &x)
@@ -1479,6 +1792,9 @@ static exvector sqrfree_yun(const ex &a, const symbol &x)
        ex w = a;
        ex z = w.diff(x);
        ex g = gcd(w, z);
+       if (g.is_zero()) {
+               return res;
+       }
        if (g.is_equal(_ex1)) {
                res.push_back(a);
                return res;
@@ -1486,6 +1802,9 @@ static exvector sqrfree_yun(const ex &a, const symbol &x)
        ex y;
        do {
                w = quo(w, g, x);
+               if (w.is_zero()) {
+                       return res;
+               }
                y = quo(z, g, x);
                z = y - w.diff(x);
                g = gcd(w, z);
@@ -1497,7 +1816,7 @@ static exvector sqrfree_yun(const ex &a, const symbol &x)
 
 /** Compute a square-free factorization of a multivariate polynomial in Q[X].
  *
- *  @param a  multivariate polynomial over Q[X]
+ *  @param a  multivariate polynomial over Q[X] (needs not be expanded)
  *  @param l  lst of variables to factor in, may be left empty for autodetection
  *  @return   a square-free factorization of \p a.
  *
@@ -1532,8 +1851,8 @@ static exvector sqrfree_yun(const ex &a, const symbol &x)
  */
 ex sqrfree(const ex &a, const lst &l)
 {
-       if (is_exactly_a<numeric>(a) ||     // algorithm does not trap a==0
-           is_a<symbol>(a))        // shortcut
+       if (is_exactly_a<numeric>(a) ||
+           is_a<symbol>(a))        // shortcuts
                return a;
 
        // If no lst of variables to factorize in was specified we have to
@@ -1543,11 +1862,8 @@ ex sqrfree(const ex &a, const lst &l)
        if (l.nops()==0) {
                sym_desc_vec sdv;
                get_symbol_stats(a, _ex0, sdv);
-               sym_desc_vec::const_iterator it = sdv.begin(), itend = sdv.end();
-               while (it != itend) {
-                       args.append(it->sym);
-                       ++it;
-               }
+               for (auto & it : sdv)
+                       args.append(it.sym);
        } else {
                args = l;
        }
@@ -1570,18 +1886,15 @@ ex sqrfree(const ex &a, const lst &l)
 
        // recurse down the factors in remaining variables
        if (newargs.nops()>0) {
-               exvector::iterator i = factors.begin();
-               while (i != factors.end()) {
-                       *i = sqrfree(*i, newargs);
-                       ++i;
-               }
+               for (auto & it : factors)
+                       it = sqrfree(it, newargs);
        }
 
        // Done with recursion, now construct the final result
        ex result = _ex1;
-       exvector::const_iterator it = factors.begin(), itend = factors.end();
-       for (int p = 1; it!=itend; ++it, ++p)
-               result *= power(*it, p);
+       int p = 1;
+       for (auto & it : factors)
+               result *= pow(it, p++);
 
        // Yun's algorithm does not account for constant factors.  (For univariate
        // polynomials it works only in the monic case.)  We can correct this by
@@ -1592,7 +1905,7 @@ ex sqrfree(const ex &a, const lst &l)
        else
                result *= quo(tmp, result, x);
 
-       // Put in the reational overall factor again and return
+       // Put in the rational overall factor again and return
        return result * lcm.inverse();
 }
 
@@ -1686,16 +1999,18 @@ ex sqrfree_parfrac(const ex & a, const symbol & x)
  *  @see ex::normal */
 static ex replace_with_symbol(const ex & e, exmap & repl, exmap & rev_lookup)
 {
+       // Since the repl contains replaced expressions we should search for them
+       ex e_replaced = e.subs(repl, subs_options::no_pattern);
+
        // Expression already replaced? Then return the assigned symbol
-       exmap::const_iterator it = rev_lookup.find(e);
+       auto it = rev_lookup.find(e_replaced);
        if (it != rev_lookup.end())
                return it->second;
-       
+
        // Otherwise create new symbol and add to list, taking care that the
        // replacement expression doesn't itself contain symbols from repl,
        // because subs() is not recursive
-       ex es = (new symbol)->setflag(status_flags::dynallocated);
-       ex e_replaced = e.subs(repl, subs_options::no_pattern);
+       ex es = dynallocate<symbol>();
        repl.insert(std::make_pair(es, e_replaced));
        rev_lookup.insert(std::make_pair(e_replaced, es));
        return es;
@@ -1708,16 +2023,18 @@ static ex replace_with_symbol(const ex & e, exmap & repl, exmap & rev_lookup)
  *  @see basic::to_polynomial */
 static ex replace_with_symbol(const ex & e, exmap & repl)
 {
+       // Since the repl contains replaced expressions we should search for them
+       ex e_replaced = e.subs(repl, subs_options::no_pattern);
+
        // Expression already replaced? Then return the assigned symbol
-       for (exmap::const_iterator it = repl.begin(); it != repl.end(); ++it)
-               if (it->second.is_equal(e))
-                       return it->first;
-       
+       for (auto & it : repl)
+               if (it.second.is_equal(e_replaced))
+                       return it.first;
+
        // Otherwise create new symbol and add to list, taking care that the
        // replacement expression doesn't itself contain symbols from repl,
        // because subs() is not recursive
-       ex es = (new symbol)->setflag(status_flags::dynallocated);
-       ex e_replaced = e.subs(repl, subs_options::no_pattern);
+       ex es = dynallocate<symbol>();
        repl.insert(std::make_pair(es, e_replaced));
        return es;
 }
@@ -1725,36 +2042,27 @@ static ex replace_with_symbol(const ex & e, exmap & repl)
 
 /** Function object to be applied by basic::normal(). */
 struct normal_map_function : public map_function {
-       int level;
-       normal_map_function(int l) : level(l) {}
-       ex operator()(const ex & e) { return normal(e, level); }
+       ex operator()(const ex & e) override { return normal(e); }
 };
 
 /** Default implementation of ex::normal(). It normalizes the children and
  *  replaces the object with a temporary symbol.
  *  @see ex::normal */
-ex basic::normal(exmap & repl, exmap & rev_lookup, int level) const
+ex basic::normal(exmap & repl, exmap & rev_lookup) const
 {
        if (nops() == 0)
-               return (new lst(replace_with_symbol(*this, repl, rev_lookup), _ex1))->setflag(status_flags::dynallocated);
-       else {
-               if (level == 1)
-                       return (new lst(replace_with_symbol(*this, repl, rev_lookup), _ex1))->setflag(status_flags::dynallocated);
-               else if (level == -max_recursion_level)
-                       throw(std::runtime_error("max recursion level reached"));
-               else {
-                       normal_map_function map_normal(level - 1);
-                       return (new lst(replace_with_symbol(map(map_normal), repl, rev_lookup), _ex1))->setflag(status_flags::dynallocated);
-               }
-       }
+               return dynallocate<lst>({replace_with_symbol(*this, repl, rev_lookup), _ex1});
+
+       normal_map_function map_normal;
+       return dynallocate<lst>({replace_with_symbol(map(map_normal), repl, rev_lookup), _ex1});
 }
 
 
 /** Implementation of ex::normal() for symbols. This returns the unmodified symbol.
  *  @see ex::normal */
-ex symbol::normal(exmap & repl, exmap & rev_lookup, int level) const
+ex symbol::normal(exmap & repl, exmap & rev_lookup) const
 {
-       return (new lst(*this, _ex1))->setflag(status_flags::dynallocated);
+       return dynallocate<lst>({*this, _ex1});
 }
 
 
@@ -1762,7 +2070,7 @@ ex symbol::normal(exmap & repl, exmap & rev_lookup, int level) const
  *  into re+I*im and replaces I and non-rational real numbers with a temporary
  *  symbol.
  *  @see ex::normal */
-ex numeric::normal(exmap & repl, exmap & rev_lookup, int level) const
+ex numeric::normal(exmap & repl, exmap & rev_lookup) const
 {
        numeric num = numer();
        ex numex = num;
@@ -1778,7 +2086,7 @@ ex numeric::normal(exmap & repl, exmap & rev_lookup, int level) const
        }
 
        // Denominator is always a real integer (see numeric::denom())
-       return (new lst(numex, denom()))->setflag(status_flags::dynallocated);
+       return dynallocate<lst>({numex, denom()});
 }
 
 
@@ -1790,17 +2098,17 @@ static ex frac_cancel(const ex &n, const ex &d)
 {
        ex num = n;
        ex den = d;
-       numeric pre_factor = _num1;
+       numeric pre_factor = *_num1_p;
 
 //std::clog << "frac_cancel num = " << num << ", den = " << den << std::endl;
 
        // Handle trivial case where denominator is 1
        if (den.is_equal(_ex1))
-               return (new lst(num, den))->setflag(status_flags::dynallocated);
+               return dynallocate<lst>({num, den});
 
        // Handle special cases where numerator or denominator is 0
        if (num.is_zero())
-               return (new lst(num, _ex1))->setflag(status_flags::dynallocated);
+               return dynallocate<lst>({num, _ex1});
        if (den.expand().is_zero())
                throw(std::overflow_error("frac_cancel: division by zero in frac_cancel"));
 
@@ -1839,32 +2147,25 @@ static ex frac_cancel(const ex &n, const ex &d)
 
        // Return result as list
 //std::clog << " returns num = " << num << ", den = " << den << ", pre_factor = " << pre_factor << std::endl;
-       return (new lst(num * pre_factor.numer(), den * pre_factor.denom()))->setflag(status_flags::dynallocated);
+       return dynallocate<lst>({num * pre_factor.numer(), den * pre_factor.denom()});
 }
 
 
 /** Implementation of ex::normal() for a sum. It expands terms and performs
  *  fractional addition.
  *  @see ex::normal */
-ex add::normal(exmap & repl, exmap & rev_lookup, int level) const
+ex add::normal(exmap & repl, exmap & rev_lookup) const
 {
-       if (level == 1)
-               return (new lst(replace_with_symbol(*this, repl, rev_lookup), _ex1))->setflag(status_flags::dynallocated);
-       else if (level == -max_recursion_level)
-               throw(std::runtime_error("max recursion level reached"));
-
        // Normalize children and split each one into numerator and denominator
        exvector nums, dens;
        nums.reserve(seq.size()+1);
        dens.reserve(seq.size()+1);
-       epvector::const_iterator it = seq.begin(), itend = seq.end();
-       while (it != itend) {
-               ex n = ex_to<basic>(recombine_pair_to_ex(*it)).normal(repl, rev_lookup, level-1);
+       for (auto & it : seq) {
+               ex n = ex_to<basic>(recombine_pair_to_ex(it)).normal(repl, rev_lookup);
                nums.push_back(n.op(0));
                dens.push_back(n.op(1));
-               it++;
        }
-       ex n = ex_to<numeric>(overall_coeff).normal(repl, rev_lookup, level-1);
+       ex n = ex_to<numeric>(overall_coeff).normal(repl, rev_lookup);
        nums.push_back(n.op(0));
        dens.push_back(n.op(1));
        GINAC_ASSERT(nums.size() == dens.size());
@@ -1874,8 +2175,8 @@ ex add::normal(exmap & repl, exmap & rev_lookup, int level) const
 //std::clog << "add::normal uses " << nums.size() << " summands:\n";
 
        // Add fractions sequentially
-       exvector::const_iterator num_it = nums.begin(), num_itend = nums.end();
-       exvector::const_iterator den_it = dens.begin(), den_itend = dens.end();
+       auto num_it = nums.begin(), num_itend = nums.end();
+       auto den_it = dens.begin(), den_itend = dens.end();
 //std::clog << " num = " << *num_it << ", den = " << *den_it << std::endl;
        ex num = *num_it++, den = *den_it++;
        while (num_it != num_itend) {
@@ -1888,7 +2189,7 @@ ex add::normal(exmap & repl, exmap & rev_lookup, int level) const
                        num_it++; den_it++;
                }
 
-               // Additiion of two fractions, taking advantage of the fact that
+               // Addition of two fractions, taking advantage of the fact that
                // the heuristic GCD algorithm computes the cofactors at no extra cost
                ex co_den1, co_den2;
                ex g = gcd(den, next_den, &co_den1, &co_den2, false);
@@ -1905,31 +2206,23 @@ ex add::normal(exmap & repl, exmap & rev_lookup, int level) const
 /** Implementation of ex::normal() for a product. It cancels common factors
  *  from fractions.
  *  @see ex::normal() */
-ex mul::normal(exmap & repl, exmap & rev_lookup, int level) const
+ex mul::normal(exmap & repl, exmap & rev_lookup) const
 {
-       if (level == 1)
-               return (new lst(replace_with_symbol(*this, repl, rev_lookup), _ex1))->setflag(status_flags::dynallocated);
-       else if (level == -max_recursion_level)
-               throw(std::runtime_error("max recursion level reached"));
-
        // Normalize children, separate into numerator and denominator
        exvector num; num.reserve(seq.size());
        exvector den; den.reserve(seq.size());
        ex n;
-       epvector::const_iterator it = seq.begin(), itend = seq.end();
-       while (it != itend) {
-               n = ex_to<basic>(recombine_pair_to_ex(*it)).normal(repl, rev_lookup, level-1);
+       for (auto & it : seq) {
+               n = ex_to<basic>(recombine_pair_to_ex(it)).normal(repl, rev_lookup);
                num.push_back(n.op(0));
                den.push_back(n.op(1));
-               it++;
        }
-       n = ex_to<numeric>(overall_coeff).normal(repl, rev_lookup, level-1);
+       n = ex_to<numeric>(overall_coeff).normal(repl, rev_lookup);
        num.push_back(n.op(0));
        den.push_back(n.op(1));
 
        // Perform fraction cancellation
-       return frac_cancel((new mul(num))->setflag(status_flags::dynallocated),
-                          (new mul(den))->setflag(status_flags::dynallocated));
+       return frac_cancel(dynallocate<mul>(num), dynallocate<mul>(den));
 }
 
 
@@ -1937,16 +2230,11 @@ ex mul::normal(exmap & repl, exmap & rev_lookup, int level) const
  *  distributes integer exponents to numerator and denominator, and replaces
  *  non-integer powers by temporary symbols.
  *  @see ex::normal */
-ex power::normal(exmap & repl, exmap & rev_lookup, int level) const
+ex power::normal(exmap & repl, exmap & rev_lookup) const
 {
-       if (level == 1)
-               return (new lst(replace_with_symbol(*this, repl, rev_lookup), _ex1))->setflag(status_flags::dynallocated);
-       else if (level == -max_recursion_level)
-               throw(std::runtime_error("max recursion level reached"));
-
        // Normalize basis and exponent (exponent gets reassembled)
-       ex n_basis = ex_to<basic>(basis).normal(repl, rev_lookup, level-1);
-       ex n_exponent = ex_to<basic>(exponent).normal(repl, rev_lookup, level-1);
+       ex n_basis = ex_to<basic>(basis).normal(repl, rev_lookup);
+       ex n_exponent = ex_to<basic>(exponent).normal(repl, rev_lookup);
        n_exponent = n_exponent.op(0) / n_exponent.op(1);
 
        if (n_exponent.info(info_flags::integer)) {
@@ -1954,12 +2242,12 @@ ex power::normal(exmap & repl, exmap & rev_lookup, int level) const
                if (n_exponent.info(info_flags::positive)) {
 
                        // (a/b)^n -> {a^n, b^n}
-                       return (new lst(power(n_basis.op(0), n_exponent), power(n_basis.op(1), n_exponent)))->setflag(status_flags::dynallocated);
+                       return dynallocate<lst>({pow(n_basis.op(0), n_exponent), pow(n_basis.op(1), n_exponent)});
 
                } else if (n_exponent.info(info_flags::negative)) {
 
                        // (a/b)^-n -> {b^n, a^n}
-                       return (new lst(power(n_basis.op(1), -n_exponent), power(n_basis.op(0), -n_exponent)))->setflag(status_flags::dynallocated);
+                       return dynallocate<lst>({pow(n_basis.op(1), -n_exponent), pow(n_basis.op(0), -n_exponent)});
                }
 
        } else {
@@ -1967,43 +2255,41 @@ ex power::normal(exmap & repl, exmap & rev_lookup, int level) const
                if (n_exponent.info(info_flags::positive)) {
 
                        // (a/b)^x -> {sym((a/b)^x), 1}
-                       return (new lst(replace_with_symbol(power(n_basis.op(0) / n_basis.op(1), n_exponent), repl, rev_lookup), _ex1))->setflag(status_flags::dynallocated);
+                       return dynallocate<lst>({replace_with_symbol(pow(n_basis.op(0) / n_basis.op(1), n_exponent), repl, rev_lookup), _ex1});
 
                } else if (n_exponent.info(info_flags::negative)) {
 
                        if (n_basis.op(1).is_equal(_ex1)) {
 
                                // a^-x -> {1, sym(a^x)}
-                               return (new lst(_ex1, replace_with_symbol(power(n_basis.op(0), -n_exponent), repl, rev_lookup)))->setflag(status_flags::dynallocated);
+                               return dynallocate<lst>({_ex1, replace_with_symbol(pow(n_basis.op(0), -n_exponent), repl, rev_lookup)});
 
                        } else {
 
                                // (a/b)^-x -> {sym((b/a)^x), 1}
-                               return (new lst(replace_with_symbol(power(n_basis.op(1) / n_basis.op(0), -n_exponent), repl, rev_lookup), _ex1))->setflag(status_flags::dynallocated);
+                               return dynallocate<lst>({replace_with_symbol(pow(n_basis.op(1) / n_basis.op(0), -n_exponent), repl, rev_lookup), _ex1});
                        }
                }
        }
 
        // (a/b)^x -> {sym((a/b)^x, 1}
-       return (new lst(replace_with_symbol(power(n_basis.op(0) / n_basis.op(1), n_exponent), repl, rev_lookup), _ex1))->setflag(status_flags::dynallocated);
+       return dynallocate<lst>({replace_with_symbol(pow(n_basis.op(0) / n_basis.op(1), n_exponent), repl, rev_lookup), _ex1});
 }
 
 
 /** Implementation of ex::normal() for pseries. It normalizes each coefficient
  *  and replaces the series by a temporary symbol.
  *  @see ex::normal */
-ex pseries::normal(exmap & repl, exmap & rev_lookup, int level) const
+ex pseries::normal(exmap & repl, exmap & rev_lookup) const
 {
        epvector newseq;
-       epvector::const_iterator i = seq.begin(), end = seq.end();
-       while (i != end) {
-               ex restexp = i->rest.normal();
+       for (auto & it : seq) {
+               ex restexp = it.rest.normal();
                if (!restexp.is_zero())
-                       newseq.push_back(expair(restexp, i->coeff));
-               ++i;
+                       newseq.push_back(expair(restexp, it.coeff));
        }
-       ex n = pseries(relational(var,point), newseq);
-       return (new lst(replace_with_symbol(n, repl, rev_lookup), _ex1))->setflag(status_flags::dynallocated);
+       ex n = pseries(relational(var,point), std::move(newseq));
+       return dynallocate<lst>({replace_with_symbol(n, repl, rev_lookup), _ex1});
 }
 
 
@@ -2017,13 +2303,12 @@ ex pseries::normal(exmap & repl, exmap & rev_lookup, int level) const
  *  expression can be treated as a rational function). normal() is applied
  *  recursively to arguments of functions etc.
  *
- *  @param level maximum depth of recursion
  *  @return normalized expression */
-ex ex::normal(int level) const
+ex ex::normal() const
 {
        exmap repl, rev_lookup;
 
-       ex e = bp->normal(repl, rev_lookup, level);
+       ex e = bp->normal(repl, rev_lookup);
        GINAC_ASSERT(is_a<lst>(e));
 
        // Re-insert replaced symbols
@@ -2044,7 +2329,7 @@ ex ex::numer() const
 {
        exmap repl, rev_lookup;
 
-       ex e = bp->normal(repl, rev_lookup, 0);
+       ex e = bp->normal(repl, rev_lookup);
        GINAC_ASSERT(is_a<lst>(e));
 
        // Re-insert replaced symbols
@@ -2064,7 +2349,7 @@ ex ex::denom() const
 {
        exmap repl, rev_lookup;
 
-       ex e = bp->normal(repl, rev_lookup, 0);
+       ex e = bp->normal(repl, rev_lookup);
        GINAC_ASSERT(is_a<lst>(e));
 
        // Re-insert replaced symbols
@@ -2074,7 +2359,7 @@ ex ex::denom() const
                return e.op(1).subs(repl, subs_options::no_pattern);
 }
 
-/** Get numerator and denominator of an expression. If the expresison is not
+/** Get numerator and denominator of an expression. If the expression is not
  *  of the normal form "numerator/denominator", it is first converted to this
  *  form and then a list [numerator, denominator] is returned.
  *
@@ -2084,7 +2369,7 @@ ex ex::numer_denom() const
 {
        exmap repl, rev_lookup;
 
-       ex e = bp->normal(repl, rev_lookup, 0);
+       ex e = bp->normal(repl, rev_lookup);
        GINAC_ASSERT(is_a<lst>(e));
 
        // Re-insert replaced symbols
@@ -2118,15 +2403,15 @@ ex ex::to_rational(lst & repl_lst) const
 {
        // Convert lst to exmap
        exmap m;
-       for (lst::const_iterator it = repl_lst.begin(); it != repl_lst.end(); ++it)
-               m.insert(std::make_pair(it->op(0), it->op(1)));
+       for (auto & it : repl_lst)
+               m.insert(std::make_pair(it.op(0), it.op(1)));
 
        ex ret = bp->to_rational(m);
 
        // Convert exmap back to lst
        repl_lst.remove_all();
-       for (exmap::const_iterator it = m.begin(); it != m.end(); ++it)
-               repl_lst.append(it->first == it->second);
+       for (auto & it : m)
+               repl_lst.append(it.first == it.second);
 
        return ret;
 }
@@ -2141,15 +2426,15 @@ ex ex::to_polynomial(lst & repl_lst) const
 {
        // Convert lst to exmap
        exmap m;
-       for (lst::const_iterator it = repl_lst.begin(); it != repl_lst.end(); ++it)
-               m.insert(std::make_pair(it->op(0), it->op(1)));
+       for (auto & it : repl_lst)
+               m.insert(std::make_pair(it.op(0), it.op(1)));
 
        ex ret = bp->to_polynomial(m);
 
        // Convert exmap back to lst
        repl_lst.remove_all();
-       for (exmap::const_iterator it = m.begin(); it != m.end(); ++it)
-               repl_lst.append(it->first == it->second);
+       for (auto & it : m)
+               repl_lst.append(it.first == it.second);
 
        return ret;
 }
@@ -2224,7 +2509,7 @@ ex numeric::to_polynomial(exmap & repl) const
 ex power::to_rational(exmap & repl) const
 {
        if (exponent.info(info_flags::integer))
-               return power(basis.to_rational(repl), exponent);
+               return pow(basis.to_rational(repl), exponent);
        else
                return replace_with_symbol(*this, repl);
 }
@@ -2234,7 +2519,18 @@ ex power::to_rational(exmap & repl) const
 ex power::to_polynomial(exmap & repl) const
 {
        if (exponent.info(info_flags::posint))
-               return power(basis.to_rational(repl), exponent);
+               return pow(basis.to_rational(repl), exponent);
+       else if (exponent.info(info_flags::negint))
+       {
+               ex basis_pref = collect_common_factors(basis);
+               if (is_exactly_a<mul>(basis_pref) || is_exactly_a<power>(basis_pref)) {
+                       // (A*B)^n will be automagically transformed to A^n*B^n
+                       ex t = pow(basis_pref, exponent);
+                       return t.to_polynomial(repl);
+               }
+               else
+                       return pow(replace_with_symbol(pow(basis, _ex_1), repl), -exponent);
+       } 
        else
                return replace_with_symbol(*this, repl);
 }
@@ -2245,17 +2541,15 @@ ex expairseq::to_rational(exmap & repl) const
 {
        epvector s;
        s.reserve(seq.size());
-       epvector::const_iterator i = seq.begin(), end = seq.end();
-       while (i != end) {
-               s.push_back(split_ex_to_pair(recombine_pair_to_ex(*i).to_rational(repl)));
-               ++i;
-       }
+       for (auto & it : seq)
+               s.push_back(split_ex_to_pair(recombine_pair_to_ex(it).to_rational(repl)));
+
        ex oc = overall_coeff.to_rational(repl);
        if (oc.info(info_flags::numeric))
-               return thisexpairseq(s, overall_coeff);
+               return thisexpairseq(std::move(s), overall_coeff);
        else
-               s.push_back(combine_ex_with_coeff_to_pair(oc, _ex1));
-       return thisexpairseq(s, default_overall_coeff());
+               s.push_back(expair(oc, _ex1));
+       return thisexpairseq(std::move(s), default_overall_coeff());
 }
 
 /** Implementation of ex::to_polynomial() for expairseqs. */
@@ -2263,17 +2557,15 @@ ex expairseq::to_polynomial(exmap & repl) const
 {
        epvector s;
        s.reserve(seq.size());
-       epvector::const_iterator i = seq.begin(), end = seq.end();
-       while (i != end) {
-               s.push_back(split_ex_to_pair(recombine_pair_to_ex(*i).to_polynomial(repl)));
-               ++i;
-       }
+       for (auto & it : seq)
+               s.push_back(split_ex_to_pair(recombine_pair_to_ex(it).to_polynomial(repl)));
+
        ex oc = overall_coeff.to_polynomial(repl);
        if (oc.info(info_flags::numeric))
-               return thisexpairseq(s, overall_coeff);
+               return thisexpairseq(std::move(s), overall_coeff);
        else
-               s.push_back(combine_ex_with_coeff_to_pair(oc, _ex1));
-       return thisexpairseq(s, default_overall_coeff());
+               s.push_back(expair(oc, _ex1));
+       return thisexpairseq(std::move(s), default_overall_coeff());
 }
 
 
@@ -2292,7 +2584,7 @@ static ex find_common_factor(const ex & e, ex & factor, exmap & repl)
                for (size_t i=0; i<num; i++) {
                        ex x = e.op(i).to_polynomial(repl);
 
-                       if (is_exactly_a<add>(x) || is_exactly_a<mul>(x)) {
+                       if (is_exactly_a<add>(x) || is_exactly_a<mul>(x) || is_a<power>(x)) {
                                ex f = 1;
                                x = find_common_factor(x, f, repl);
                                x *= f;
@@ -2328,7 +2620,7 @@ static ex find_common_factor(const ex & e, ex & factor, exmap & repl)
                                                        else
                                                                v.push_back(t.op(k));
                                                }
-                                               t = (new mul(v))->setflag(status_flags::dynallocated);
+                                               t = dynallocate<mul>(v);
                                                goto term_done;
                                        }
                                }
@@ -2338,7 +2630,7 @@ static ex find_common_factor(const ex & e, ex & factor, exmap & repl)
                        t = x;
 term_done:     ;
                }
-               return (new add(terms))->setflag(status_flags::dynallocated);
+               return dynallocate<add>(terms);
 
        } else if (is_exactly_a<mul>(e)) {
 
@@ -2348,11 +2640,19 @@ term_done:      ;
                for (size_t i=0; i<num; i++)
                        v.push_back(find_common_factor(e.op(i), factor, repl));
 
-               return (new mul(v))->setflag(status_flags::dynallocated);
+               return dynallocate<mul>(v);
 
        } else if (is_exactly_a<power>(e)) {
-
-               return e.to_polynomial(repl);
+               const ex e_exp(e.op(1));
+               if (e_exp.info(info_flags::integer)) {
+                       ex eb = e.op(0).to_polynomial(repl);
+                       ex factor_local(_ex1);
+                       ex pre_res = find_common_factor(eb, factor_local, repl);
+                       factor *= pow(factor_local, e_exp);
+                       return pow(pre_res, e_exp);
+                       
+               } else
+                       return e.to_polynomial(repl);
 
        } else
                return e;
@@ -2363,7 +2663,7 @@ term_done:        ;
  *  'a*(b*x+b*y)' to 'a*b*(x+y)'. */
 ex collect_common_factors(const ex & e)
 {
-       if (is_exactly_a<add>(e) || is_exactly_a<mul>(e)) {
+       if (is_exactly_a<add>(e) || is_exactly_a<mul>(e) || is_exactly_a<power>(e)) {
 
                exmap repl;
                ex factor = 1;
@@ -2381,6 +2681,10 @@ ex resultant(const ex & e1, const ex & e2, const ex & s)
 {
        const ex ee1 = e1.expand();
        const ex ee2 = e2.expand();
+       if (!ee1.info(info_flags::polynomial) ||
+           !ee2.info(info_flags::polynomial))
+               throw(std::runtime_error("resultant(): arguments must be polynomials"));
+
        const int h1 = ee1.degree(s);
        const int l1 = ee1.ldegree(s);
        const int h2 = ee2.degree(s);