]> www.ginac.de Git - ginac.git/blobdiff - ginac/normal.cpp
Replace use of NULL by C++11 nullptr.
[ginac.git] / ginac / normal.cpp
index e97a7ce4a2c19c7f530881e5c1257e7562f20604..6870b77f4b7c8b589d05a1ceafd842cfadb82e88 100644 (file)
@@ -6,7 +6,7 @@
  *  computation, square-free factorization and rational function normalization. */
 
 /*
- *  GiNaC Copyright (C) 1999-2008 Johannes Gutenberg University Mainz, Germany
+ *  GiNaC Copyright (C) 1999-2015 Johannes Gutenberg University Mainz, Germany
  *
  *  This program is free software; you can redistribute it and/or modify
  *  it under the terms of the GNU General Public License as published by
@@ -23,9 +23,6 @@
  *  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
  */
 
-#include <algorithm>
-#include <map>
-
 #include "normal.h"
 #include "basic.h"
 #include "ex.h"
 #include "pseries.h"
 #include "symbol.h"
 #include "utils.h"
+#include "polynomial/chinrem_gcd.h"
+
+#include <algorithm>
+#include <map>
 
 namespace GiNaC {
 
@@ -672,12 +673,13 @@ bool divide(const ex &a, const ex &b, ex &q, bool check_args)
                        q = rem_i*power(ab, a_exp - 1);
                        return true;
                }
-               for (int i=2; i < a_exp; i++) {
-                       if (divide(power(ab, i), b, rem_i, false)) {
-                               q = rem_i*power(ab, a_exp - i);
-                               return true;
-                       }
-               } // ... so we *really* need to expand expression.
+// code below is commented-out because it leads to a significant slowdown
+//             for (int i=2; i < a_exp; i++) {
+//                     if (divide(power(ab, i), b, rem_i, false)) {
+//                             q = rem_i*power(ab, a_exp - i);
+//                             return true;
+//                     }
+//             } // ... so we *really* need to expand expression.
        }
        
        // Polynomial long division (recursive)
@@ -959,7 +961,7 @@ ex ex::content(const ex &x) const
                return lcoeff * c / lcoeff.unit(x);
        ex cont = _ex0;
        for (int i=ldeg; i<=deg; i++)
-               cont = gcd(r.coeff(x, i), cont, NULL, NULL, false);
+               cont = gcd(r.coeff(x, i), cont, nullptr, nullptr, false);
        return cont * c;
 }
 
@@ -1099,7 +1101,7 @@ static ex sr_gcd(const ex &a, const ex &b, sym_desc_vec::const_iterator var)
        // Remove content from c and d, to be attached to GCD later
        ex cont_c = c.content(x);
        ex cont_d = d.content(x);
-       ex gamma = gcd(cont_c, cont_d, NULL, NULL, false);
+       ex gamma = gcd(cont_c, cont_d, nullptr, nullptr, false);
        if (ddeg == 0)
                return gamma;
        c = c.primpart(x, cont_c);
@@ -1270,9 +1272,9 @@ class gcdheu_failed {};
  *
  *  @param a  first integer multivariate polynomial (expanded)
  *  @param b  second integer multivariate polynomial (expanded)
- *  @param ca  cofactor of polynomial a (returned), NULL to suppress
+ *  @param ca  cofactor of polynomial a (returned), nullptr to suppress
  *             calculation of cofactor
- *  @param cb  cofactor of polynomial b (returned), NULL to suppress
+ *  @param cb  cofactor of polynomial b (returned), nullptr to suppress
  *             calculation of cofactor
  *  @param var iterator to first element of vector of sym_desc structs
  *  @param res the GCD (returned)
@@ -1363,9 +1365,9 @@ static bool heur_gcd_z(ex& res, const ex &a, const ex &b, ex *ca, ex *cb,
  *
  *  @param a  first rational multivariate polynomial (expanded)
  *  @param b  second rational multivariate polynomial (expanded)
- *  @param ca  cofactor of polynomial a (returned), NULL to suppress
+ *  @param ca  cofactor of polynomial a (returned), nullptr to suppress
  *             calculation of cofactor
- *  @param cb  cofactor of polynomial b (returned), NULL to suppress
+ *  @param cb  cofactor of polynomial b (returned), nullptr to suppress
  *             calculation of cofactor
  *  @param var iterator to first element of vector of sym_desc structs
  *  @param res the GCD (returned)
@@ -1429,8 +1431,8 @@ static ex gcd_pf_mul(const ex& a, const ex& b, ex* ca, ex* cb);
  *
  *  @param a  first multivariate polynomial
  *  @param b  second multivariate polynomial
- *  @param ca pointer to expression that will receive the cofactor of a, or NULL
- *  @param cb pointer to expression that will receive the cofactor of b, or NULL
+ *  @param ca pointer to expression that will receive the cofactor of a, or nullptr
+ *  @param cb pointer to expression that will receive the cofactor of b, or nullptr
  *  @param check_args  check whether a and b are polynomials with rational
  *         coefficients (defaults to "true")
  *  @return the GCD as a new expression */
@@ -1533,7 +1535,7 @@ ex gcd(const ex &a, const ex &b, ex *ca, ex *cb, bool check_args, unsigned optio
                if (ca)
                        *ca = ex_to<numeric>(aex)/g;
                if (cb)
-                       *cb = bex/g;
+                       *cb = bex/g;
                return g;
        }
 
@@ -1622,8 +1624,15 @@ ex gcd(const ex &a, const ex &b, ex *ca, ex *cb, bool check_args, unsigned optio
                }
 #endif
        }
+       if (options & gcd_options::use_sr_gcd) {
+               g = sr_gcd(aex, bex, var);
+       } else {
+               exvector vars;
+               for (std::size_t n = sym_stats.size(); n-- != 0; )
+                       vars.push_back(sym_stats[n].sym);
+               g = chinrem_gcd(aex, bex, vars);
+       }
 
-       g = sr_gcd(aex, bex, var);
        if (g.is_equal(_ex1)) {
                // Keep cofactors factored if possible
                if (ca)
@@ -1639,109 +1648,91 @@ ex gcd(const ex &a, const ex &b, ex *ca, ex *cb, bool check_args, unsigned optio
        return g;
 }
 
-static ex gcd_pf_pow(const ex& a, const ex& b, ex* ca, ex* cb)
+// gcd helper to handle partially factored polynomials (to avoid expanding
+// large expressions). Both arguments should be powers.
+static ex gcd_pf_pow_pow(const ex& a, const ex& b, ex* ca, ex* cb)
 {
-       if (is_exactly_a<power>(a)) {
-               ex p = a.op(0);
-               const ex& exp_a = a.op(1);
-               if (is_exactly_a<power>(b)) {
-                       ex pb = b.op(0);
-                       const ex& exp_b = b.op(1);
-                       if (p.is_equal(pb)) {
-                               // a = p^n, b = p^m, gcd = p^min(n, m)
-                               if (exp_a < exp_b) {
-                                       if (ca)
-                                               *ca = _ex1;
-                                       if (cb)
-                                               *cb = power(p, exp_b - exp_a);
-                                       return power(p, exp_a);
-                               } else {
-                                       if (ca)
-                                               *ca = power(p, exp_a - exp_b);
-                                       if (cb)
-                                               *cb = _ex1;
-                                       return power(p, exp_b);
-                               }
-                       } else {
-                               ex p_co, pb_co;
-                               ex p_gcd = gcd(p, pb, &p_co, &pb_co, false);
-                               if (p_gcd.is_equal(_ex1)) {
-                                       // a(x) = p(x)^n, b(x) = p_b(x)^m, gcd (p, p_b) = 1 ==>
-                                       // gcd(a,b) = 1
-                                       if (ca)
-                                               *ca = a;
-                                       if (cb)
-                                               *cb = b;
-                                       return _ex1;
-                                       // XXX: do I need to check for p_gcd = -1?
-                               } else {
-                                       // there are common factors:
-                                       // a(x) = g(x)^n A(x)^n, b(x) = g(x)^m B(x)^m ==>
-                                       // gcd(a, b) = g(x)^n gcd(A(x)^n, g(x)^(n-m) B(x)^m
-                                       if (exp_a < exp_b) {
-                                               return power(p_gcd, exp_a)*
-                                                       gcd(power(p_co, exp_a), power(p_gcd, exp_b-exp_a)*power(pb_co, exp_b), ca, cb, false);
-                                       } else {
-                                               return power(p_gcd, exp_b)*
-                                                       gcd(power(p_gcd, exp_a - exp_b)*power(p_co, exp_a), power(pb_co, exp_b), ca, cb, false);
-                                       }
-                               } // p_gcd.is_equal(_ex1)
-                       } // p.is_equal(pb)
-
-               } else {
-                       if (p.is_equal(b)) {
-                               // a = p^n, b = p, gcd = p
-                               if (ca)
-                                       *ca = power(p, a.op(1) - 1);
-                               if (cb)
-                                       *cb = _ex1;
-                               return p;
-                       } 
-
-                       ex p_co, bpart_co;
-                       ex p_gcd = gcd(p, b, &p_co, &bpart_co, false);
-
-                       if (p_gcd.is_equal(_ex1)) {
-                               // a(x) = p(x)^n, gcd(p, b) = 1 ==> gcd(a, b) = 1
-                               if (ca)
-                                       *ca = a;
-                               if (cb)
-                                       *cb = b;
-                               return _ex1;
-                       } else {
-                               // a(x) = g(x)^n A(x)^n, b(x) = g(x) B(x) ==> gcd(a, b) = g(x) gcd(g(x)^(n-1) A(x)^n, B(x))
-                               return p_gcd*gcd(power(p_gcd, exp_a-1)*power(p_co, exp_a), bpart_co, ca, cb, false);
-                       }
-               } // is_exactly_a<power>(b)
+       ex p = a.op(0);
+       const ex& exp_a = a.op(1);
+       ex pb = b.op(0);
+       const ex& exp_b = b.op(1);
 
-       } else if (is_exactly_a<power>(b)) {
-               ex p = b.op(0);
-               if (p.is_equal(a)) {
-                       // a = p, b = p^n, gcd = p
+       // a = p^n, b = p^m, gcd = p^min(n, m)
+       if (p.is_equal(pb)) {
+               if (exp_a < exp_b) {
                        if (ca)
                                *ca = _ex1;
                        if (cb)
-                               *cb = power(p, b.op(1) - 1);
-                       return p;
+                               *cb = power(p, exp_b - exp_a);
+                       return power(p, exp_a);
+               } else {
+                       if (ca)
+                               *ca = power(p, exp_a - exp_b);
+                       if (cb)
+                               *cb = _ex1;
+                       return power(p, exp_b);
                }
+       }
 
-               ex p_co, apart_co;
-               const ex& exp_b(b.op(1));
-               ex p_gcd = gcd(a, p, &apart_co, &p_co, false);
-               if (p_gcd.is_equal(_ex1)) {
-                       // b=p(x)^n, gcd(a, p) = 1 ==> gcd(a, b) == 1
+       ex p_co, pb_co;
+       ex p_gcd = gcd(p, pb, &p_co, &pb_co, false);
+       // a(x) = p(x)^n, b(x) = p_b(x)^m, gcd (p, p_b) = 1 ==> gcd(a,b) = 1
+       if (p_gcd.is_equal(_ex1)) {
                        if (ca)
                                *ca = a;
                        if (cb)
                                *cb = b;
                        return _ex1;
-               } else {
-                       // there are common factors:
-                       // a(x) = g(x) A(x), b(x) = g(x)^n B(x)^n ==> gcd = g(x) gcd(g(x)^(n-1) A(x)^n, B(x))
+                       // XXX: do I need to check for p_gcd = -1?
+       }
+
+       // there are common factors:
+       // a(x) = g(x)^n A(x)^n, b(x) = g(x)^m B(x)^m ==>
+       // gcd(a, b) = g(x)^n gcd(A(x)^n, g(x)^(n-m) B(x)^m
+       if (exp_a < exp_b) {
+               ex pg =  gcd(power(p_co, exp_a), power(p_gcd, exp_b-exp_a)*power(pb_co, exp_b), ca, cb, false);
+               return power(p_gcd, exp_a)*pg;
+       } else {
+               ex pg = gcd(power(p_gcd, exp_a - exp_b)*power(p_co, exp_a), power(pb_co, exp_b), ca, cb, false);
+               return power(p_gcd, exp_b)*pg;
+       }
+}
+
+static ex gcd_pf_pow(const ex& a, const ex& b, ex* ca, ex* cb)
+{
+       if (is_exactly_a<power>(a) && is_exactly_a<power>(b))
+               return gcd_pf_pow_pow(a, b, ca, cb);
+
+       if (is_exactly_a<power>(b) && (! is_exactly_a<power>(a)))
+               return gcd_pf_pow(b, a, cb, ca);
+
+       GINAC_ASSERT(is_exactly_a<power>(a));
+
+       ex p = a.op(0);
+       const ex& exp_a = a.op(1);
+       if (p.is_equal(b)) {
+               // a = p^n, b = p, gcd = p
+               if (ca)
+                       *ca = power(p, a.op(1) - 1);
+               if (cb)
+                       *cb = _ex1;
+               return p;
+       } 
 
-                       return p_gcd*gcd(apart_co, power(p_gcd, exp_b-1)*power(p_co, exp_b), ca, cb, false);
-               } // p_gcd.is_equal(_ex1)
+       ex p_co, bpart_co;
+       ex p_gcd = gcd(p, b, &p_co, &bpart_co, false);
+
+       // a(x) = p(x)^n, gcd(p, b) = 1 ==> gcd(a, b) = 1
+       if (p_gcd.is_equal(_ex1)) {
+               if (ca)
+                       *ca = a;
+               if (cb)
+                       *cb = b;
+               return _ex1;
        }
+       // a(x) = g(x)^n A(x)^n, b(x) = g(x) B(x) ==> gcd(a, b) = g(x) gcd(g(x)^(n-1) A(x)^n, B(x))
+       ex rg = gcd(power(p_gcd, exp_a-1)*power(p_co, exp_a), bpart_co, ca, cb, false);
+       return p_gcd*rg;
 }
 
 static ex gcd_pf_mul(const ex& a, const ex& b, ex* ca, ex* cb)
@@ -1921,7 +1912,7 @@ ex sqrfree(const ex &a, const lst &l)
        else
                result *= quo(tmp, result, x);
 
-       // Put in the reational overall factor again and return
+       // Put in the rational overall factor again and return
        return result * lcm.inverse();
 }
 
@@ -2015,16 +2006,18 @@ ex sqrfree_parfrac(const ex & a, const symbol & x)
  *  @see ex::normal */
 static ex replace_with_symbol(const ex & e, exmap & repl, exmap & rev_lookup)
 {
+       // Since the repl contains replaced expressions we should search for them
+       ex e_replaced = e.subs(repl, subs_options::no_pattern);
+
        // Expression already replaced? Then return the assigned symbol
-       exmap::const_iterator it = rev_lookup.find(e);
+       exmap::const_iterator it = rev_lookup.find(e_replaced);
        if (it != rev_lookup.end())
                return it->second;
-       
+
        // Otherwise create new symbol and add to list, taking care that the
        // replacement expression doesn't itself contain symbols from repl,
        // because subs() is not recursive
        ex es = (new symbol)->setflag(status_flags::dynallocated);
-       ex e_replaced = e.subs(repl, subs_options::no_pattern);
        repl.insert(std::make_pair(es, e_replaced));
        rev_lookup.insert(std::make_pair(e_replaced, es));
        return es;
@@ -2037,16 +2030,18 @@ static ex replace_with_symbol(const ex & e, exmap & repl, exmap & rev_lookup)
  *  @see basic::to_polynomial */
 static ex replace_with_symbol(const ex & e, exmap & repl)
 {
+       // Since the repl contains replaced expressions we should search for them
+       ex e_replaced = e.subs(repl, subs_options::no_pattern);
+
        // Expression already replaced? Then return the assigned symbol
        for (exmap::const_iterator it = repl.begin(); it != repl.end(); ++it)
-               if (it->second.is_equal(e))
+               if (it->second.is_equal(e_replaced))
                        return it->first;
-       
+
        // Otherwise create new symbol and add to list, taking care that the
        // replacement expression doesn't itself contain symbols from repl,
        // because subs() is not recursive
        ex es = (new symbol)->setflag(status_flags::dynallocated);
-       ex e_replaced = e.subs(repl, subs_options::no_pattern);
        repl.insert(std::make_pair(es, e_replaced));
        return es;
 }
@@ -2217,7 +2212,7 @@ ex add::normal(exmap & repl, exmap & rev_lookup, int level) const
                        num_it++; den_it++;
                }
 
-               // Additiion of two fractions, taking advantage of the fact that
+               // Addition of two fractions, taking advantage of the fact that
                // the heuristic GCD algorithm computes the cofactors at no extra cost
                ex co_den1, co_den2;
                ex g = gcd(den, next_den, &co_den1, &co_den2, false);
@@ -2403,7 +2398,7 @@ ex ex::denom() const
                return e.op(1).subs(repl, subs_options::no_pattern);
 }
 
-/** Get numerator and denominator of an expression. If the expresison is not
+/** Get numerator and denominator of an expression. If the expression is not
  *  of the normal form "numerator/denominator", it is first converted to this
  *  form and then a list [numerator, denominator] is returned.
  *
@@ -2592,10 +2587,10 @@ ex expairseq::to_rational(exmap & repl) const
        }
        ex oc = overall_coeff.to_rational(repl);
        if (oc.info(info_flags::numeric))
-               return thisexpairseq(s, overall_coeff);
+               return thisexpairseq(std::move(s), overall_coeff);
        else
                s.push_back(combine_ex_with_coeff_to_pair(oc, _ex1));
-       return thisexpairseq(s, default_overall_coeff());
+       return thisexpairseq(std::move(s), default_overall_coeff());
 }
 
 /** Implementation of ex::to_polynomial() for expairseqs. */
@@ -2610,10 +2605,10 @@ ex expairseq::to_polynomial(exmap & repl) const
        }
        ex oc = overall_coeff.to_polynomial(repl);
        if (oc.info(info_flags::numeric))
-               return thisexpairseq(s, overall_coeff);
+               return thisexpairseq(std::move(s), overall_coeff);
        else
                s.push_back(combine_ex_with_coeff_to_pair(oc, _ex1));
-       return thisexpairseq(s, default_overall_coeff());
+       return thisexpairseq(std::move(s), default_overall_coeff());
 }