]> www.ginac.de Git - ginac.git/blobdiff - ginac/normal.cpp
gcd_pf_pow: get rid of duplicate code.
[ginac.git] / ginac / normal.cpp
index 2bb3a4300c92b4976d7204a6ab49f5ecee636464..6392e3f144648814b384f71ea4d612e3b683c84f 100644 (file)
@@ -1417,11 +1417,11 @@ static bool heur_gcd(ex& res, const ex& a, const ex& b, ex *ca, ex *cb,
 
 // gcd helper to handle partially factored polynomials (to avoid expanding
 // large expressions). At least one of the arguments should be a power.
-static ex gcd_pf_pow(const ex& a, const ex& b, ex* ca, ex* cb, bool check_args);
+static ex gcd_pf_pow(const ex& a, const ex& b, ex* ca, ex* cb);
 
 // gcd helper to handle partially factored polynomials (to avoid expanding
 // large expressions). At least one of the arguments should be a product.
-static ex gcd_pf_mul(const ex& a, const ex& b, ex* ca, ex* cb, bool check_args);
+static ex gcd_pf_mul(const ex& a, const ex& b, ex* ca, ex* cb);
 
 /** Compute GCD (Greatest Common Divisor) of multivariate polynomials a(X)
  *  and b(X) in Z[X]. Optionally also compute the cofactors of a and b,
@@ -1467,10 +1467,10 @@ ex gcd(const ex &a, const ex &b, ex *ca, ex *cb, bool check_args, unsigned optio
        // Partially factored cases (to avoid expanding large expressions)
        if (!(options & gcd_options::no_part_factored)) {
                if (is_exactly_a<mul>(a) || is_exactly_a<mul>(b))
-                       return gcd_pf_mul(a, b, ca, cb, check_args);
+                       return gcd_pf_mul(a, b, ca, cb);
 #if FAST_COMPARE
                if (is_exactly_a<power>(a) || is_exactly_a<power>(b))
-                       return gcd_pf_pow(a, b, ca, cb, check_args);
+                       return gcd_pf_pow(a, b, ca, cb);
 #endif
        }
 
@@ -1639,119 +1639,101 @@ ex gcd(const ex &a, const ex &b, ex *ca, ex *cb, bool check_args, unsigned optio
        return g;
 }
 
-static ex gcd_pf_pow(const ex& a, const ex& b, ex* ca, ex* cb, bool check_args)
-{
-       if (is_exactly_a<power>(a)) {
-               ex p = a.op(0);
-               const ex& exp_a = a.op(1);
-               if (is_exactly_a<power>(b)) {
-                       ex pb = b.op(0);
-                       const ex& exp_b = b.op(1);
-                       if (p.is_equal(pb)) {
-                               // a = p^n, b = p^m, gcd = p^min(n, m)
-                               if (exp_a < exp_b) {
-                                       if (ca)
-                                               *ca = _ex1;
-                                       if (cb)
-                                               *cb = power(p, exp_b - exp_a);
-                                       return power(p, exp_a);
-                               } else {
-                                       if (ca)
-                                               *ca = power(p, exp_a - exp_b);
-                                       if (cb)
-                                               *cb = _ex1;
-                                       return power(p, exp_b);
-                               }
-                       } else {
-                               ex p_co, pb_co;
-                               ex p_gcd = gcd(p, pb, &p_co, &pb_co, check_args);
-                               if (p_gcd.is_equal(_ex1)) {
-                                       // a(x) = p(x)^n, b(x) = p_b(x)^m, gcd (p, p_b) = 1 ==>
-                                       // gcd(a,b) = 1
-                                       if (ca)
-                                               *ca = a;
-                                       if (cb)
-                                               *cb = b;
-                                       return _ex1;
-                                       // XXX: do I need to check for p_gcd = -1?
-                               } else {
-                                       // there are common factors:
-                                       // a(x) = g(x)^n A(x)^n, b(x) = g(x)^m B(x)^m ==>
-                                       // gcd(a, b) = g(x)^n gcd(A(x)^n, g(x)^(n-m) B(x)^m
-                                       if (exp_a < exp_b) {
-                                               return power(p_gcd, exp_a)*
-                                                       gcd(power(p_co, exp_a), power(p_gcd, exp_b-exp_a)*power(pb_co, exp_b), ca, cb, false);
-                                       } else {
-                                               return power(p_gcd, exp_b)*
-                                                       gcd(power(p_gcd, exp_a - exp_b)*power(p_co, exp_a), power(pb_co, exp_b), ca, cb, false);
-                                       }
-                               } // p_gcd.is_equal(_ex1)
-                       } // p.is_equal(pb)
-
-               } else {
-                       if (p.is_equal(b)) {
-                               // a = p^n, b = p, gcd = p
-                               if (ca)
-                                       *ca = power(p, a.op(1) - 1);
-                               if (cb)
-                                       *cb = _ex1;
-                               return p;
-                       } 
-
-                       ex p_co, bpart_co;
-                       ex p_gcd = gcd(p, b, &p_co, &bpart_co, false);
-
-                       if (p_gcd.is_equal(_ex1)) {
-                               // a(x) = p(x)^n, gcd(p, b) = 1 ==> gcd(a, b) = 1
-                               if (ca)
-                                       *ca = a;
-                               if (cb)
-                                       *cb = b;
-                               return _ex1;
-                       } else {
-                               // a(x) = g(x)^n A(x)^n, b(x) = g(x) B(x) ==> gcd(a, b) = g(x) gcd(g(x)^(n-1) A(x)^n, B(x))
-                               return p_gcd*gcd(power(p_gcd, exp_a-1)*power(p_co, exp_a), bpart_co, ca, cb, false);
-                       }
-               } // is_exactly_a<power>(b)
-
-       } else if (is_exactly_a<power>(b)) {
-               ex p = b.op(0);
-               if (p.is_equal(a)) {
-                       // a = p, b = p^n, gcd = p
+// gcd helper to handle partially factored polynomials (to avoid expanding
+// large expressions). Both arguments should be powers.
+static ex gcd_pf_pow_pow(const ex& a, const ex& b, ex* ca, ex* cb)
+{
+       ex p = a.op(0);
+       const ex& exp_a = a.op(1);
+       ex pb = b.op(0);
+       const ex& exp_b = b.op(1);
+       if (p.is_equal(pb)) {
+               // a = p^n, b = p^m, gcd = p^min(n, m)
+               if (exp_a < exp_b) {
                        if (ca)
                                *ca = _ex1;
                        if (cb)
-                               *cb = power(p, b.op(1) - 1);
-                       return p;
+                               *cb = power(p, exp_b - exp_a);
+                       return power(p, exp_a);
+               } else {
+                       if (ca)
+                               *ca = power(p, exp_a - exp_b);
+                       if (cb)
+                               *cb = _ex1;
+                       return power(p, exp_b);
                }
-
-               ex p_co, apart_co;
-               const ex& exp_b(b.op(1));
-               ex p_gcd = gcd(a, p, &apart_co, &p_co, false);
+       } else {
+               ex p_co, pb_co;
+               ex p_gcd = gcd(p, pb, &p_co, &pb_co, false);
                if (p_gcd.is_equal(_ex1)) {
-                       // b=p(x)^n, gcd(a, p) = 1 ==> gcd(a, b) == 1
+                       // a(x) = p(x)^n, b(x) = p_b(x)^m, gcd (p, p_b) = 1 ==>
+                       // gcd(a,b) = 1
                        if (ca)
                                *ca = a;
                        if (cb)
                                *cb = b;
                        return _ex1;
+                       // XXX: do I need to check for p_gcd = -1?
                } else {
                        // there are common factors:
-                       // a(x) = g(x) A(x), b(x) = g(x)^n B(x)^n ==> gcd = g(x) gcd(g(x)^(n-1) A(x)^n, B(x))
-
-                       return p_gcd*gcd(apart_co, power(p_gcd, exp_b-1)*power(p_co, exp_b), ca, cb, false);
+                       // a(x) = g(x)^n A(x)^n, b(x) = g(x)^m B(x)^m ==>
+                       // gcd(a, b) = g(x)^n gcd(A(x)^n, g(x)^(n-m) B(x)^m
+                       if (exp_a < exp_b) {
+                               return power(p_gcd, exp_a)*
+                                       gcd(power(p_co, exp_a), power(p_gcd, exp_b-exp_a)*power(pb_co, exp_b), ca, cb, false);
+                       } else {
+                               return power(p_gcd, exp_b)*
+                                       gcd(power(p_gcd, exp_a - exp_b)*power(p_co, exp_a), power(pb_co, exp_b), ca, cb, false);
+                       }
                } // p_gcd.is_equal(_ex1)
+       } // p.is_equal(pb)
+}
+
+static ex gcd_pf_pow(const ex& a, const ex& b, ex* ca, ex* cb)
+{
+       if (is_exactly_a<power>(a) && is_exactly_a<power>(b))
+               return gcd_pf_pow_pow(a, b, ca, cb);
+
+       if (is_exactly_a<power>(b) && (! is_exactly_a<power>(a)))
+               return gcd_pf_pow(b, a, cb, ca);
+
+       GINAC_ASSERT(is_exactly_a<power>(a));
+
+       ex p = a.op(0);
+       const ex& exp_a = a.op(1);
+       if (p.is_equal(b)) {
+               // a = p^n, b = p, gcd = p
+               if (ca)
+                       *ca = power(p, a.op(1) - 1);
+               if (cb)
+                       *cb = _ex1;
+               return p;
+       } 
+
+       ex p_co, bpart_co;
+       ex p_gcd = gcd(p, b, &p_co, &bpart_co, false);
+
+       // a(x) = p(x)^n, gcd(p, b) = 1 ==> gcd(a, b) = 1
+       if (p_gcd.is_equal(_ex1)) {
+               if (ca)
+                       *ca = a;
+               if (cb)
+                       *cb = b;
+               return _ex1;
        }
+       // a(x) = g(x)^n A(x)^n, b(x) = g(x) B(x) ==> gcd(a, b) = g(x) gcd(g(x)^(n-1) A(x)^n, B(x))
+       ex rg = gcd(power(p_gcd, exp_a-1)*power(p_co, exp_a), bpart_co, ca, cb, false);
+       return p_gcd*rg;
 }
 
-static ex gcd_pf_mul(const ex& a, const ex& b, ex* ca, ex* cb, bool check_args)
+static ex gcd_pf_mul(const ex& a, const ex& b, ex* ca, ex* cb)
 {
        if (is_exactly_a<mul>(a) && is_exactly_a<mul>(b)
                                 && (b.nops() >  a.nops()))
-               return gcd_pf_mul(b, a, cb, ca, check_args);
+               return gcd_pf_mul(b, a, cb, ca);
 
        if (is_exactly_a<mul>(b) && (!is_exactly_a<mul>(a)))
-               return gcd_pf_mul(b, a, cb, ca, check_args);
+               return gcd_pf_mul(b, a, cb, ca);
 
        GINAC_ASSERT(is_exactly_a<mul>(a));
        size_t num = a.nops();
@@ -1760,7 +1742,7 @@ static ex gcd_pf_mul(const ex& a, const ex& b, ex* ca, ex* cb, bool check_args)
        ex part_b = b;
        for (size_t i=0; i<num; i++) {
                ex part_ca, part_cb;
-               g.push_back(gcd(a.op(i), part_b, &part_ca, &part_cb, check_args));
+               g.push_back(gcd(a.op(i), part_b, &part_ca, &part_cb, false));
                acc_ca.push_back(part_ca);
                part_b = part_cb;
        }