]> www.ginac.de Git - ginac.git/blobdiff - ginac/normal.cpp
Finalize 1.7.6 release.
[ginac.git] / ginac / normal.cpp
index b2e8d109013951385b17e551d31d405542282679..5fda185981b13fdd82e800ff842db8f3ec2e1ce5 100644 (file)
@@ -6,7 +6,7 @@
  *  computation, square-free factorization and rational function normalization. */
 
 /*
- *  GiNaC Copyright (C) 1999-2015 Johannes Gutenberg University Mainz, Germany
+ *  GiNaC Copyright (C) 1999-2019 Johannes Gutenberg University Mainz, Germany
  *
  *  This program is free software; you can redistribute it and/or modify
  *  it under the terms of the GNU General Public License as published by
@@ -146,7 +146,7 @@ struct sym_desc {
        /** Maximum number of terms of leading coefficient of symbol in both polynomials */
        size_t max_lcnops;
 
-       /** Commparison operator for sorting */
+       /** Comparison operator for sorting */
        bool operator<(const sym_desc &x) const
        {
                if (max_deg == x.max_deg)
@@ -196,8 +196,8 @@ static void collect_symbols(const ex &e, sym_desc_vec &v)
  *  @param v  vector of sym_desc structs (filled in) */
 static void get_symbol_stats(const ex &a, const ex &b, sym_desc_vec &v)
 {
-       collect_symbols(a.eval(), v);   // eval() to expand assigned symbols
-       collect_symbols(b.eval(), v);
+       collect_symbols(a, v);
+       collect_symbols(b, v);
        for (auto & it : v) {
                int deg_a = a.degree(it.sym);
                int deg_b = b.degree(it.sym);
@@ -212,10 +212,10 @@ static void get_symbol_stats(const ex &a, const ex &b, sym_desc_vec &v)
 
 #if 0
        std::clog << "Symbols:\n";
-       it = v.begin(); itend = v.end();
+       auto it = v.begin(), itend = v.end();
        while (it != itend) {
-               std::clog << " " << it->sym << ": deg_a=" << it->deg_a << ", deg_b=" << it->deg_b << ", ldeg_a=" << it->ldeg_a << ", ldeg_b=" << it->ldeg_b << ", max_deg=" << it->max_deg << ", max_lcnops=" << it->max_lcnops << endl;
-               std::clog << "  lcoeff_a=" << a.lcoeff(it->sym) << ", lcoeff_b=" << b.lcoeff(it->sym) << endl;
+               std::clog << " " << it->sym << ": deg_a=" << it->deg_a << ", deg_b=" << it->deg_b << ", ldeg_a=" << it->ldeg_a << ", ldeg_b=" << it->ldeg_b << ", max_deg=" << it->max_deg << ", max_lcnops=" << it->max_lcnops << std::endl;
+               std::clog << "  lcoeff_a=" << a.lcoeff(it->sym) << ", lcoeff_b=" << b.lcoeff(it->sym) << std::endl;
                ++it;
        }
 #endif
@@ -270,9 +270,15 @@ static numeric lcm_of_coefficients_denominators(const ex &e)
  *  @param lcm  LCM to multiply in */
 static ex multiply_lcm(const ex &e, const numeric &lcm)
 {
+       if (lcm.is_equal(*_num1_p))
+               // e * 1 -> e;
+               return e;
+
        if (is_exactly_a<mul>(e)) {
+               // (a*b*...)*lcm -> (a*lcma)*(b*lcmb)*...*(lcm/(lcma*lcmb*...))
                size_t num = e.nops();
-               exvector v; v.reserve(num + 1);
+               exvector v;
+               v.reserve(num + 1);
                numeric lcm_accum = *_num1_p;
                for (size_t i=0; i<num; i++) {
                        numeric op_lcm = lcmcoeff(e.op(i), *_num1_p);
@@ -282,18 +288,24 @@ static ex multiply_lcm(const ex &e, const numeric &lcm)
                v.push_back(lcm / lcm_accum);
                return dynallocate<mul>(v);
        } else if (is_exactly_a<add>(e)) {
+               // (a+b+...)*lcm -> a*lcm+b*lcm+...
                size_t num = e.nops();
-               exvector v; v.reserve(num);
+               exvector v;
+               v.reserve(num);
                for (size_t i=0; i<num; i++)
                        v.push_back(multiply_lcm(e.op(i), lcm));
                return dynallocate<add>(v);
        } else if (is_exactly_a<power>(e)) {
-               if (is_a<symbol>(e.op(0)))
-                       return e * lcm;
-               else
-                       return pow(multiply_lcm(e.op(0), lcm.power(ex_to<numeric>(e.op(1)).inverse())), e.op(1));
-       } else
-               return e * lcm;
+               if (!is_a<symbol>(e.op(0))) {
+                       // (b^e)*lcm -> (b*lcm^(1/e))^e if lcm^(1/e) ∈ ℚ (i.e. not a float)
+                       // but not for symbolic b, as evaluation would undo this again
+                       numeric root_of_lcm = lcm.power(ex_to<numeric>(e.op(1)).inverse());
+                       if (root_of_lcm.is_rational())
+                               return pow(multiply_lcm(e.op(0), root_of_lcm), e.op(1));
+               }
+       }
+       // can't recurse down into e
+       return dynallocate<mul>(e, lcm);
 }
 
 
@@ -388,7 +400,7 @@ ex quo(const ex &a, const ex &b, const ex &x, bool check_args)
                        if (!divide(rcoeff, blcoeff, term, false))
                                return dynallocate<fail>();
                }
-               term *= power(x, rdeg - bdeg);
+               term *= pow(x, rdeg - bdeg);
                v.push_back(term);
                r -= (term * b).expand();
                if (r.is_zero())
@@ -441,7 +453,7 @@ ex rem(const ex &a, const ex &b, const ex &x, bool check_args)
                        if (!divide(rcoeff, blcoeff, term, false))
                                return dynallocate<fail>();
                }
-               term *= power(x, rdeg - bdeg);
+               term *= pow(x, rdeg - bdeg);
                r -= (term * b).expand();
                if (r.is_zero())
                        break;
@@ -501,23 +513,23 @@ ex prem(const ex &a, const ex &b, const ex &x, bool check_args)
                if (bdeg == 0)
                        eb = _ex0;
                else
-                       eb -= blcoeff * power(x, bdeg);
+                       eb -= blcoeff * pow(x, bdeg);
        } else
                blcoeff = _ex1;
 
        int delta = rdeg - bdeg + 1, i = 0;
        while (rdeg >= bdeg && !r.is_zero()) {
                ex rlcoeff = r.coeff(x, rdeg);
-               ex term = (power(x, rdeg - bdeg) * eb * rlcoeff).expand();
+               ex term = (pow(x, rdeg - bdeg) * eb * rlcoeff).expand();
                if (rdeg == 0)
                        r = _ex0;
                else
-                       r -= rlcoeff * power(x, rdeg);
+                       r -= rlcoeff * pow(x, rdeg);
                r = (blcoeff * r).expand() - term;
                rdeg = r.degree(x);
                i++;
        }
-       return power(blcoeff, delta - i) * r;
+       return pow(blcoeff, delta - i) * r;
 }
 
 
@@ -553,17 +565,17 @@ ex sprem(const ex &a, const ex &b, const ex &x, bool check_args)
                if (bdeg == 0)
                        eb = _ex0;
                else
-                       eb -= blcoeff * power(x, bdeg);
+                       eb -= blcoeff * pow(x, bdeg);
        } else
                blcoeff = _ex1;
 
        while (rdeg >= bdeg && !r.is_zero()) {
                ex rlcoeff = r.coeff(x, rdeg);
-               ex term = (power(x, rdeg - bdeg) * eb * rlcoeff).expand();
+               ex term = (pow(x, rdeg - bdeg) * eb * rlcoeff).expand();
                if (rdeg == 0)
                        r = _ex0;
                else
-                       r -= rlcoeff * power(x, rdeg);
+                       r -= rlcoeff * pow(x, rdeg);
                r = (blcoeff * r).expand() - term;
                rdeg = r.degree(x);
        }
@@ -663,7 +675,7 @@ bool divide(const ex &a, const ex &b, ex &q, bool check_args)
                int a_exp = ex_to<numeric>(a.op(1)).to_int();
                ex rem_i;
                if (divide(ab, b, rem_i, false)) {
-                       q = rem_i*power(ab, a_exp - 1);
+                       q = rem_i * pow(ab, a_exp - 1);
                        return true;
                }
 // code below is commented-out because it leads to a significant slowdown
@@ -693,7 +705,7 @@ bool divide(const ex &a, const ex &b, ex &q, bool check_args)
                else
                        if (!divide(rcoeff, blcoeff, term, false))
                                return false;
-               term *= power(x, rdeg - bdeg);
+               term *= pow(x, rdeg - bdeg);
                v.push_back(term);
                r -= (term * b).expand();
                if (r.is_zero()) {
@@ -876,7 +888,7 @@ static bool divide_in_z(const ex &a, const ex &b, ex &q, sym_desc_vec::const_ite
                ex term, rcoeff = r.coeff(x, rdeg);
                if (!divide_in_z(rcoeff, blcoeff, term, var+1))
                        break;
-               term = (term * power(x, rdeg - bdeg)).expand();
+               term = (term * pow(x, rdeg - bdeg)).expand();
                v.push_back(term);
                r -= (term * eb).expand();
                if (r.is_zero()) {
@@ -1237,7 +1249,7 @@ static ex interpolate(const ex &gamma, const numeric &xi, const ex &x, int degre
        numeric rxi = xi.inverse();
        for (int i=0; !e.is_zero(); i++) {
                ex gi = e.smod(xi);
-               g.push_back(gi * power(x, i));
+               g.push_back(gi * pow(x, i));
                e = (e - gi) * rxi;
        }
        return dynallocate<add>(g);
@@ -1458,7 +1470,7 @@ ex gcd(const ex &a, const ex &b, ex *ca, ex *cb, bool check_args, unsigned optio
        }
 
        // Some trivial cases
-       ex aex = a.expand(), bex = b.expand();
+       ex aex = a.expand();
        if (aex.is_zero()) {
                if (ca)
                        *ca = _ex0;
@@ -1466,6 +1478,7 @@ ex gcd(const ex &a, const ex &b, ex *ca, ex *cb, bool check_args, unsigned optio
                        *cb = _ex1;
                return b;
        }
+       ex bex = b.expand();
        if (bex.is_zero()) {
                if (ca)
                        *ca = _ex1;
@@ -1536,7 +1549,7 @@ ex gcd(const ex &a, const ex &b, ex *ca, ex *cb, bool check_args, unsigned optio
 
        // The symbol with least degree which is contained in both polynomials
        // is our main variable
-       sym_desc_vec::iterator vari = sym_stats.begin();
+       auto vari = sym_stats.begin();
        while ((vari != sym_stats.end()) && 
               (((vari->ldeg_b == 0) && (vari->deg_b == 0)) ||
                ((vari->ldeg_a == 0) && (vari->deg_a == 0))))
@@ -1551,8 +1564,7 @@ ex gcd(const ex &a, const ex &b, ex *ca, ex *cb, bool check_args, unsigned optio
                        *cb = b;
                return _ex1;
        }
-       // move symbols which contained only in one of the polynomials
-       // to the end:
+       // move symbol contained only in one of the polynomials to the end:
        rotate(sym_stats.begin(), vari, sym_stats.end());
 
        sym_desc_vec::const_iterator var = sym_stats.begin();
@@ -1563,7 +1575,7 @@ ex gcd(const ex &a, const ex &b, ex *ca, ex *cb, bool check_args, unsigned optio
        int ldeg_b = var->ldeg_b;
        int min_ldeg = std::min(ldeg_a,ldeg_b);
        if (min_ldeg > 0) {
-               ex common = power(x, min_ldeg);
+               ex common = pow(x, min_ldeg);
                return gcd((aex / common).expand(), (bex / common).expand(), ca, cb, false) * common;
        }
 
@@ -1644,14 +1656,14 @@ static ex gcd_pf_pow_pow(const ex& a, const ex& b, ex* ca, ex* cb)
                        if (ca)
                                *ca = _ex1;
                        if (cb)
-                               *cb = power(p, exp_b - exp_a);
-                       return power(p, exp_a);
+                               *cb = pow(p, exp_b - exp_a);
+                       return pow(p, exp_a);
                } else {
                        if (ca)
-                               *ca = power(p, exp_a - exp_b);
+                               *ca = pow(p, exp_a - exp_b);
                        if (cb)
                                *cb = _ex1;
-                       return power(p, exp_b);
+                       return pow(p, exp_b);
                }
        }
 
@@ -1664,18 +1676,17 @@ static ex gcd_pf_pow_pow(const ex& a, const ex& b, ex* ca, ex* cb)
                        if (cb)
                                *cb = b;
                        return _ex1;
-                       // XXX: do I need to check for p_gcd = -1?
        }
 
        // there are common factors:
        // a(x) = g(x)^n A(x)^n, b(x) = g(x)^m B(x)^m ==>
        // gcd(a, b) = g(x)^n gcd(A(x)^n, g(x)^(n-m) B(x)^m
        if (exp_a < exp_b) {
-               ex pg =  gcd(power(p_co, exp_a), power(p_gcd, exp_b-exp_a)*power(pb_co, exp_b), ca, cb, false);
-               return power(p_gcd, exp_a)*pg;
+               ex pg =  gcd(pow(p_co, exp_a), pow(p_gcd, exp_b-exp_a)*pow(pb_co, exp_b), ca, cb, false);
+               return pow(p_gcd, exp_a)*pg;
        } else {
-               ex pg = gcd(power(p_gcd, exp_a - exp_b)*power(p_co, exp_a), power(pb_co, exp_b), ca, cb, false);
-               return power(p_gcd, exp_b)*pg;
+               ex pg = gcd(pow(p_gcd, exp_a - exp_b)*pow(p_co, exp_a), pow(pb_co, exp_b), ca, cb, false);
+               return pow(p_gcd, exp_b)*pg;
        }
 }
 
@@ -1694,17 +1705,27 @@ static ex gcd_pf_pow(const ex& a, const ex& b, ex* ca, ex* cb)
        if (p.is_equal(b)) {
                // a = p^n, b = p, gcd = p
                if (ca)
-                       *ca = power(p, a.op(1) - 1);
+                       *ca = pow(p, exp_a - 1);
                if (cb)
                        *cb = _ex1;
                return p;
-       } 
+       }
+       if (is_a<symbol>(p)) {
+               // Cancel trivial common factor
+               int ldeg_a = ex_to<numeric>(exp_a).to_int();
+               int ldeg_b = b.ldegree(p);
+               int min_ldeg = std::min(ldeg_a, ldeg_b);
+               if (min_ldeg > 0) {
+                       ex common = pow(p, min_ldeg);
+                       return gcd(pow(p, ldeg_a - min_ldeg), (b / common).expand(), ca, cb, false) * common;
+               }
+       }
 
        ex p_co, bpart_co;
        ex p_gcd = gcd(p, b, &p_co, &bpart_co, false);
 
-       // a(x) = p(x)^n, gcd(p, b) = 1 ==> gcd(a, b) = 1
        if (p_gcd.is_equal(_ex1)) {
+               // a(x) = p(x)^n, gcd(p, b) = 1 ==> gcd(a, b) = 1
                if (ca)
                        *ca = a;
                if (cb)
@@ -1712,7 +1733,7 @@ static ex gcd_pf_pow(const ex& a, const ex& b, ex* ca, ex* cb)
                return _ex1;
        }
        // a(x) = g(x)^n A(x)^n, b(x) = g(x) B(x) ==> gcd(a, b) = g(x) gcd(g(x)^(n-1) A(x)^n, B(x))
-       ex rg = gcd(power(p_gcd, exp_a-1)*power(p_co, exp_a), bpart_co, ca, cb, false);
+       ex rg = gcd(pow(p_gcd, exp_a-1)*pow(p_co, exp_a), bpart_co, ca, cb, false);
        return p_gcd*rg;
 }
 
@@ -1771,34 +1792,47 @@ ex lcm(const ex &a, const ex &b, bool check_args)
  *  Yun's algorithm.  Used internally by sqrfree().
  *
  *  @param a  multivariate polynomial over Z[X], treated here as univariate
- *            polynomial in x.
+ *            polynomial in x (needs not be expanded).
  *  @param x  variable to factor in
- *  @return   vector of factors sorted in ascending degree */
-static exvector sqrfree_yun(const ex &a, const symbol &x)
+ *  @return   vector of expairs (factor, exponent), sorted by exponents */
+static epvector sqrfree_yun(const ex &a, const symbol &x)
 {
-       exvector res;
        ex w = a;
        ex z = w.diff(x);
        ex g = gcd(w, z);
+       if (g.is_zero()) {
+               return epvector{};
+       }
        if (g.is_equal(_ex1)) {
-               res.push_back(a);
-               return res;
+               return epvector{expair(a, _ex1)};
        }
-       ex y;
+       epvector results;
+       ex exponent = _ex0;
        do {
                w = quo(w, g, x);
-               y = quo(z, g, x);
-               z = y - w.diff(x);
+               if (w.is_zero()) {
+                       return results;
+               }
+               z = quo(z, g, x) - w.diff(x);
+               exponent = exponent + 1;
+               if (w.is_equal(x)) {
+                       // shortcut for x^n with n ∈ ℕ
+                       exponent += quo(z, w.diff(x), x);
+                       results.push_back(expair(w, exponent));
+                       break;
+               }
                g = gcd(w, z);
-               res.push_back(g);
+               if (!g.is_equal(_ex1)) {
+                       results.push_back(expair(g, exponent));
+               }
        } while (!z.is_zero());
-       return res;
+       return results;
 }
 
 
 /** Compute a square-free factorization of a multivariate polynomial in Q[X].
  *
- *  @param a  multivariate polynomial over Q[X]
+ *  @param a  multivariate polynomial over Q[X] (needs not be expanded)
  *  @param l  lst of variables to factor in, may be left empty for autodetection
  *  @return   a square-free factorization of \p a.
  *
@@ -1833,8 +1867,8 @@ static exvector sqrfree_yun(const ex &a, const symbol &x)
  */
 ex sqrfree(const ex &a, const lst &l)
 {
-       if (is_exactly_a<numeric>(a) ||     // algorithm does not trap a==0
-           is_a<symbol>(a))        // shortcut
+       if (is_exactly_a<numeric>(a) ||
+           is_a<symbol>(a))        // shortcuts
                return a;
 
        // If no lst of variables to factorize in was specified we have to
@@ -1860,30 +1894,28 @@ ex sqrfree(const ex &a, const lst &l)
        const ex tmp = multiply_lcm(a,lcm);
 
        // find the factors
-       exvector factors = sqrfree_yun(tmp, x);
+       epvector factors = sqrfree_yun(tmp, x);
 
-       // construct the next list of symbols with the first element popped
-       lst newargs = args;
-       newargs.remove_first();
+       // remove symbol x and proceed recursively with the remaining symbols
+       args.remove_first();
 
        // recurse down the factors in remaining variables
-       if (newargs.nops()>0) {
+       if (args.nops()>0) {
                for (auto & it : factors)
-                       it = sqrfree(it, newargs);
+                       it.rest = sqrfree(it.rest, args);
        }
 
        // Done with recursion, now construct the final result
        ex result = _ex1;
-       int p = 1;
        for (auto & it : factors)
-               result *= power(it, p++);
+               result *= pow(it.rest, it.coeff);
 
        // Yun's algorithm does not account for constant factors.  (For univariate
        // polynomials it works only in the monic case.)  We can correct this by
        // inserting what has been lost back into the result.  For completeness
        // we'll also have to recurse down that factor in the remaining variables.
-       if (newargs.nops()>0)
-               result *= sqrfree(quo(tmp, result, x), newargs);
+       if (args.nops()>0)
+               result *= sqrfree(quo(tmp, result, x), args);
        else
                result *= quo(tmp, result, x);
 
@@ -1911,24 +1943,21 @@ ex sqrfree_parfrac(const ex & a, const symbol & x)
 //clog << "red_poly = " << red_poly << ", red_numer = " << red_numer << endl;
 
        // Factorize denominator and compute cofactors
-       exvector yun = sqrfree_yun(denom, x);
-//clog << "yun factors: " << exprseq(yun) << endl;
-       size_t num_yun = yun.size();
-       exvector factor; factor.reserve(num_yun);
-       exvector cofac; cofac.reserve(num_yun);
-       for (size_t i=0; i<num_yun; i++) {
-               if (!yun[i].is_equal(_ex1)) {
-                       for (size_t j=0; j<=i; j++) {
-                               factor.push_back(pow(yun[i], j+1));
-                               ex prod = _ex1;
-                               for (size_t k=0; k<num_yun; k++) {
-                                       if (k == i)
-                                               prod *= pow(yun[k], i-j);
-                                       else
-                                               prod *= pow(yun[k], k+1);
-                               }
-                               cofac.push_back(prod.expand());
+       epvector yun = sqrfree_yun(denom, x);
+       size_t yun_max_exponent = yun.empty() ? 0 : ex_to<numeric>(yun.back().coeff).to_int();
+       exvector factor, cofac;
+       for (size_t i=0; i<yun.size(); i++) {
+               numeric i_exponent = ex_to<numeric>(yun[i].coeff);
+               for (size_t j=0; j<i_exponent; j++) {
+                       factor.push_back(pow(yun[i].rest, j+1));
+                       ex prod = _ex1;
+                       for (size_t k=0; k<yun.size(); k++) {
+                               if (yun[k].coeff == i_exponent)
+                                       prod *= pow(yun[k].rest, i_exponent-1-j);
+                               else
+                                       prod *= pow(yun[k].rest, yun[k].coeff);
                        }
+                       cofac.push_back(prod.expand());
                }
        }
        size_t num_factors = factor.size();
@@ -2024,34 +2053,25 @@ static ex replace_with_symbol(const ex & e, exmap & repl)
 
 /** Function object to be applied by basic::normal(). */
 struct normal_map_function : public map_function {
-       int level;
-       normal_map_function(int l) : level(l) {}
-       ex operator()(const ex & e) override { return normal(e, level); }
+       ex operator()(const ex & e) override { return normal(e); }
 };
 
 /** Default implementation of ex::normal(). It normalizes the children and
  *  replaces the object with a temporary symbol.
  *  @see ex::normal */
-ex basic::normal(exmap & repl, exmap & rev_lookup, int level) const
+ex basic::normal(exmap & repl, exmap & rev_lookup) const
 {
        if (nops() == 0)
                return dynallocate<lst>({replace_with_symbol(*this, repl, rev_lookup), _ex1});
-       else {
-               if (level == 1)
-                       return dynallocate<lst>({replace_with_symbol(*this, repl, rev_lookup), _ex1});
-               else if (level == -max_recursion_level)
-                       throw(std::runtime_error("max recursion level reached"));
-               else {
-                       normal_map_function map_normal(level - 1);
-                       return dynallocate<lst>({replace_with_symbol(map(map_normal), repl, rev_lookup), _ex1});
-               }
-       }
+
+       normal_map_function map_normal;
+       return dynallocate<lst>({replace_with_symbol(map(map_normal), repl, rev_lookup), _ex1});
 }
 
 
 /** Implementation of ex::normal() for symbols. This returns the unmodified symbol.
  *  @see ex::normal */
-ex symbol::normal(exmap & repl, exmap & rev_lookup, int level) const
+ex symbol::normal(exmap & repl, exmap & rev_lookup) const
 {
        return dynallocate<lst>({*this, _ex1});
 }
@@ -2061,7 +2081,7 @@ ex symbol::normal(exmap & repl, exmap & rev_lookup, int level) const
  *  into re+I*im and replaces I and non-rational real numbers with a temporary
  *  symbol.
  *  @see ex::normal */
-ex numeric::normal(exmap & repl, exmap & rev_lookup, int level) const
+ex numeric::normal(exmap & repl, exmap & rev_lookup) const
 {
        numeric num = numer();
        ex numex = num;
@@ -2145,23 +2165,18 @@ static ex frac_cancel(const ex &n, const ex &d)
 /** Implementation of ex::normal() for a sum. It expands terms and performs
  *  fractional addition.
  *  @see ex::normal */
-ex add::normal(exmap & repl, exmap & rev_lookup, int level) const
+ex add::normal(exmap & repl, exmap & rev_lookup) const
 {
-       if (level == 1)
-               return dynallocate<lst>({replace_with_symbol(*this, repl, rev_lookup), _ex1});
-       else if (level == -max_recursion_level)
-               throw(std::runtime_error("max recursion level reached"));
-
        // Normalize children and split each one into numerator and denominator
        exvector nums, dens;
        nums.reserve(seq.size()+1);
        dens.reserve(seq.size()+1);
        for (auto & it : seq) {
-               ex n = ex_to<basic>(recombine_pair_to_ex(it)).normal(repl, rev_lookup, level-1);
+               ex n = ex_to<basic>(recombine_pair_to_ex(it)).normal(repl, rev_lookup);
                nums.push_back(n.op(0));
                dens.push_back(n.op(1));
        }
-       ex n = ex_to<numeric>(overall_coeff).normal(repl, rev_lookup, level-1);
+       ex n = ex_to<numeric>(overall_coeff).normal(repl, rev_lookup);
        nums.push_back(n.op(0));
        dens.push_back(n.op(1));
        GINAC_ASSERT(nums.size() == dens.size());
@@ -2202,23 +2217,18 @@ ex add::normal(exmap & repl, exmap & rev_lookup, int level) const
 /** Implementation of ex::normal() for a product. It cancels common factors
  *  from fractions.
  *  @see ex::normal() */
-ex mul::normal(exmap & repl, exmap & rev_lookup, int level) const
+ex mul::normal(exmap & repl, exmap & rev_lookup) const
 {
-       if (level == 1)
-               return dynallocate<lst>({replace_with_symbol(*this, repl, rev_lookup), _ex1});
-       else if (level == -max_recursion_level)
-               throw(std::runtime_error("max recursion level reached"));
-
        // Normalize children, separate into numerator and denominator
        exvector num; num.reserve(seq.size());
        exvector den; den.reserve(seq.size());
        ex n;
        for (auto & it : seq) {
-               n = ex_to<basic>(recombine_pair_to_ex(it)).normal(repl, rev_lookup, level-1);
+               n = ex_to<basic>(recombine_pair_to_ex(it)).normal(repl, rev_lookup);
                num.push_back(n.op(0));
                den.push_back(n.op(1));
        }
-       n = ex_to<numeric>(overall_coeff).normal(repl, rev_lookup, level-1);
+       n = ex_to<numeric>(overall_coeff).normal(repl, rev_lookup);
        num.push_back(n.op(0));
        den.push_back(n.op(1));
 
@@ -2231,16 +2241,11 @@ ex mul::normal(exmap & repl, exmap & rev_lookup, int level) const
  *  distributes integer exponents to numerator and denominator, and replaces
  *  non-integer powers by temporary symbols.
  *  @see ex::normal */
-ex power::normal(exmap & repl, exmap & rev_lookup, int level) const
+ex power::normal(exmap & repl, exmap & rev_lookup) const
 {
-       if (level == 1)
-               return dynallocate<lst>({replace_with_symbol(*this, repl, rev_lookup), _ex1});
-       else if (level == -max_recursion_level)
-               throw(std::runtime_error("max recursion level reached"));
-
        // Normalize basis and exponent (exponent gets reassembled)
-       ex n_basis = ex_to<basic>(basis).normal(repl, rev_lookup, level-1);
-       ex n_exponent = ex_to<basic>(exponent).normal(repl, rev_lookup, level-1);
+       ex n_basis = ex_to<basic>(basis).normal(repl, rev_lookup);
+       ex n_exponent = ex_to<basic>(exponent).normal(repl, rev_lookup);
        n_exponent = n_exponent.op(0) / n_exponent.op(1);
 
        if (n_exponent.info(info_flags::integer)) {
@@ -2248,12 +2253,12 @@ ex power::normal(exmap & repl, exmap & rev_lookup, int level) const
                if (n_exponent.info(info_flags::positive)) {
 
                        // (a/b)^n -> {a^n, b^n}
-                       return dynallocate<lst>({power(n_basis.op(0), n_exponent), power(n_basis.op(1), n_exponent)});
+                       return dynallocate<lst>({pow(n_basis.op(0), n_exponent), pow(n_basis.op(1), n_exponent)});
 
                } else if (n_exponent.info(info_flags::negative)) {
 
                        // (a/b)^-n -> {b^n, a^n}
-                       return dynallocate<lst>({power(n_basis.op(1), -n_exponent), power(n_basis.op(0), -n_exponent)});
+                       return dynallocate<lst>({pow(n_basis.op(1), -n_exponent), pow(n_basis.op(0), -n_exponent)});
                }
 
        } else {
@@ -2261,32 +2266,32 @@ ex power::normal(exmap & repl, exmap & rev_lookup, int level) const
                if (n_exponent.info(info_flags::positive)) {
 
                        // (a/b)^x -> {sym((a/b)^x), 1}
-                       return dynallocate<lst>({replace_with_symbol(power(n_basis.op(0) / n_basis.op(1), n_exponent), repl, rev_lookup), _ex1});
+                       return dynallocate<lst>({replace_with_symbol(pow(n_basis.op(0) / n_basis.op(1), n_exponent), repl, rev_lookup), _ex1});
 
                } else if (n_exponent.info(info_flags::negative)) {
 
                        if (n_basis.op(1).is_equal(_ex1)) {
 
                                // a^-x -> {1, sym(a^x)}
-                               return dynallocate<lst>({_ex1, replace_with_symbol(power(n_basis.op(0), -n_exponent), repl, rev_lookup)});
+                               return dynallocate<lst>({_ex1, replace_with_symbol(pow(n_basis.op(0), -n_exponent), repl, rev_lookup)});
 
                        } else {
 
                                // (a/b)^-x -> {sym((b/a)^x), 1}
-                               return dynallocate<lst>({replace_with_symbol(power(n_basis.op(1) / n_basis.op(0), -n_exponent), repl, rev_lookup), _ex1});
+                               return dynallocate<lst>({replace_with_symbol(pow(n_basis.op(1) / n_basis.op(0), -n_exponent), repl, rev_lookup), _ex1});
                        }
                }
        }
 
        // (a/b)^x -> {sym((a/b)^x, 1}
-       return dynallocate<lst>({replace_with_symbol(power(n_basis.op(0) / n_basis.op(1), n_exponent), repl, rev_lookup), _ex1});
+       return dynallocate<lst>({replace_with_symbol(pow(n_basis.op(0) / n_basis.op(1), n_exponent), repl, rev_lookup), _ex1});
 }
 
 
 /** Implementation of ex::normal() for pseries. It normalizes each coefficient
  *  and replaces the series by a temporary symbol.
  *  @see ex::normal */
-ex pseries::normal(exmap & repl, exmap & rev_lookup, int level) const
+ex pseries::normal(exmap & repl, exmap & rev_lookup) const
 {
        epvector newseq;
        for (auto & it : seq) {
@@ -2309,13 +2314,12 @@ ex pseries::normal(exmap & repl, exmap & rev_lookup, int level) const
  *  expression can be treated as a rational function). normal() is applied
  *  recursively to arguments of functions etc.
  *
- *  @param level maximum depth of recursion
  *  @return normalized expression */
-ex ex::normal(int level) const
+ex ex::normal() const
 {
        exmap repl, rev_lookup;
 
-       ex e = bp->normal(repl, rev_lookup, level);
+       ex e = bp->normal(repl, rev_lookup);
        GINAC_ASSERT(is_a<lst>(e));
 
        // Re-insert replaced symbols
@@ -2336,7 +2340,7 @@ ex ex::numer() const
 {
        exmap repl, rev_lookup;
 
-       ex e = bp->normal(repl, rev_lookup, 0);
+       ex e = bp->normal(repl, rev_lookup);
        GINAC_ASSERT(is_a<lst>(e));
 
        // Re-insert replaced symbols
@@ -2356,7 +2360,7 @@ ex ex::denom() const
 {
        exmap repl, rev_lookup;
 
-       ex e = bp->normal(repl, rev_lookup, 0);
+       ex e = bp->normal(repl, rev_lookup);
        GINAC_ASSERT(is_a<lst>(e));
 
        // Re-insert replaced symbols
@@ -2376,7 +2380,7 @@ ex ex::numer_denom() const
 {
        exmap repl, rev_lookup;
 
-       ex e = bp->normal(repl, rev_lookup, 0);
+       ex e = bp->normal(repl, rev_lookup);
        GINAC_ASSERT(is_a<lst>(e));
 
        // Re-insert replaced symbols
@@ -2405,47 +2409,11 @@ ex ex::to_rational(exmap & repl) const
        return bp->to_rational(repl);
 }
 
-// GiNaC 1.1 compatibility function
-ex ex::to_rational(lst & repl_lst) const
-{
-       // Convert lst to exmap
-       exmap m;
-       for (auto & it : repl_lst)
-               m.insert(std::make_pair(it.op(0), it.op(1)));
-
-       ex ret = bp->to_rational(m);
-
-       // Convert exmap back to lst
-       repl_lst.remove_all();
-       for (auto & it : m)
-               repl_lst.append(it.first == it.second);
-
-       return ret;
-}
-
 ex ex::to_polynomial(exmap & repl) const
 {
        return bp->to_polynomial(repl);
 }
 
-// GiNaC 1.1 compatibility function
-ex ex::to_polynomial(lst & repl_lst) const
-{
-       // Convert lst to exmap
-       exmap m;
-       for (auto & it : repl_lst)
-               m.insert(std::make_pair(it.op(0), it.op(1)));
-
-       ex ret = bp->to_polynomial(m);
-
-       // Convert exmap back to lst
-       repl_lst.remove_all();
-       for (auto & it : m)
-               repl_lst.append(it.first == it.second);
-
-       return ret;
-}
-
 /** Default implementation of ex::to_rational(). This replaces the object with
  *  a temporary symbol. */
 ex basic::to_rational(exmap & repl) const
@@ -2516,7 +2484,7 @@ ex numeric::to_polynomial(exmap & repl) const
 ex power::to_rational(exmap & repl) const
 {
        if (exponent.info(info_flags::integer))
-               return power(basis.to_rational(repl), exponent);
+               return pow(basis.to_rational(repl), exponent);
        else
                return replace_with_symbol(*this, repl);
 }
@@ -2526,17 +2494,17 @@ ex power::to_rational(exmap & repl) const
 ex power::to_polynomial(exmap & repl) const
 {
        if (exponent.info(info_flags::posint))
-               return power(basis.to_rational(repl), exponent);
+               return pow(basis.to_rational(repl), exponent);
        else if (exponent.info(info_flags::negint))
        {
                ex basis_pref = collect_common_factors(basis);
                if (is_exactly_a<mul>(basis_pref) || is_exactly_a<power>(basis_pref)) {
                        // (A*B)^n will be automagically transformed to A^n*B^n
-                       ex t = power(basis_pref, exponent);
+                       ex t = pow(basis_pref, exponent);
                        return t.to_polynomial(repl);
                }
                else
-                       return power(replace_with_symbol(power(basis, _ex_1), repl), -exponent);
+                       return pow(replace_with_symbol(pow(basis, _ex_1), repl), -exponent);
        } 
        else
                return replace_with_symbol(*this, repl);
@@ -2655,8 +2623,8 @@ term_done:        ;
                        ex eb = e.op(0).to_polynomial(repl);
                        ex factor_local(_ex1);
                        ex pre_res = find_common_factor(eb, factor_local, repl);
-                       factor *= power(factor_local, e_exp);
-                       return power(pre_res, e_exp);
+                       factor *= pow(factor_local, e_exp);
+                       return pow(pre_res, e_exp);
                        
                } else
                        return e.to_polynomial(repl);