]> www.ginac.de Git - ginac.git/blobdiff - ginac/normal.cpp
- fixed bug in Euclidean PRS algorithm
[ginac.git] / ginac / normal.cpp
index fe4eb3ccc6b3b6b2e1a8667c5b0a1c89ee2a6037..59323798b1cfa10fcf6faf223126deeff7ca7068 100644 (file)
@@ -3,10 +3,10 @@
  *  This file implements several functions that work on univariate and
  *  multivariate polynomials and rational functions.
  *  These functions include polynomial quotient and remainder, GCD and LCM
- *  computation, square-free factorization and rational function normalization.
+ *  computation, square-free factorization and rational function normalization. */
 
- *
- *  GiNaC Copyright (C) 1999 Johannes Gutenberg University Mainz, Germany
+/*
+ *  GiNaC Copyright (C) 1999-2000 Johannes Gutenberg University Mainz, Germany
  *
  *  This program is free software; you can redistribute it and/or modify
  *  it under the terms of the GNU General Public License as published by
@@ -24,6 +24,8 @@
  */
 
 #include <stdexcept>
+#include <algorithm>
+#include <map>
 
 #include "normal.h"
 #include "basic.h"
 #include "numeric.h"
 #include "power.h"
 #include "relational.h"
-#include "series.h"
+#include "pseries.h"
 #include "symbol.h"
+#include "utils.h"
+
+#ifndef NO_NAMESPACE_GINAC
+namespace GiNaC {
+#endif // ndef NO_NAMESPACE_GINAC
 
 // If comparing expressions (ex::compare()) is fast, you can set this to 1.
 // Some routines like quo(), rem() and gcd() will then return a quick answer
 #define FAST_COMPARE 1
 
 // Set this if you want divide_in_z() to use remembering
-#define USE_REMEMBER 1
+#define USE_REMEMBER 0
+
+// Set this if you want divide_in_z() to use trial division followed by
+// polynomial interpolation (usually slower except for very large problems)
+#define USE_TRIAL_DIVISION 0
+
+// Set this to enable some statistical output for the GCD routines
+#define STATISTICS 0
+
+
+#if STATISTICS
+// Statistics variables
+static int gcd_called = 0;
+static int sr_gcd_called = 0;
+static int heur_gcd_called = 0;
+static int heur_gcd_failed = 0;
+
+// Print statistics at end of program
+static struct _stat_print {
+       _stat_print() {}
+       ~_stat_print() {
+               cout << "gcd() called " << gcd_called << " times\n";
+               cout << "sr_gcd() called " << sr_gcd_called << " times\n";
+               cout << "heur_gcd() called " << heur_gcd_called << " times\n";
+               cout << "heur_gcd() failed " << heur_gcd_failed << " times\n";
+       }
+} stat_print;
+#endif
 
 
 /** Return pointer to first symbol found in expression.  Due to GiNaCĀ“s
  *  @param e  expression to search
  *  @param x  pointer to first symbol found (returned)
  *  @return "false" if no symbol was found, "true" otherwise */
-
 static bool get_first_symbol(const ex &e, const symbol *&x)
 {
     if (is_ex_exactly_of_type(e, symbol)) {
         x = static_cast<symbol *>(e.bp);
         return true;
     } else if (is_ex_exactly_of_type(e, add) || is_ex_exactly_of_type(e, mul)) {
-        for (int i=0; i<e.nops(); i++)
+        for (unsigned i=0; i<e.nops(); i++)
             if (get_first_symbol(e.op(i), x))
                 return true;
     } else if (is_ex_exactly_of_type(e, power)) {
@@ -81,8 +114,6 @@ static bool get_first_symbol(const ex &e, const symbol *&x)
  *  Statistical information about symbols in polynomials
  */
 
-#include <algorithm>
-
 /** This structure holds information about the highest and lowest degrees
  *  in which a symbol appears in two multivariate polynomials "a" and "b".
  *  A vector of these structures with information about all symbols in
@@ -105,11 +136,11 @@ struct sym_desc {
     /** Lowest degree of symbol in polynomial "b" */
     int ldeg_b;
 
-    /** Minimum of ldeg_a and ldeg_b (Used for sorting) */
-    int min_deg;
+    /** Maximum of deg_a and deg_b (Used for sorting) */
+    int max_deg;
 
     /** Commparison operator for sorting */
-    bool operator<(const sym_desc &x) const {return min_deg < x.min_deg;}
+    bool operator<(const sym_desc &x) const {return max_deg < x.max_deg;}
 };
 
 // Vector of sym_desc structures
@@ -135,7 +166,7 @@ static void collect_symbols(const ex &e, sym_desc_vec &v)
     if (is_ex_exactly_of_type(e, symbol)) {
         add_symbol(static_cast<symbol *>(e.bp), v);
     } else if (is_ex_exactly_of_type(e, add) || is_ex_exactly_of_type(e, mul)) {
-        for (int i=0; i<e.nops(); i++)
+        for (unsigned i=0; i<e.nops(); i++)
             collect_symbols(e.op(i), v);
     } else if (is_ex_exactly_of_type(e, power)) {
         collect_symbols(e.op(0), v);
@@ -154,7 +185,6 @@ static void collect_symbols(const ex &e, sym_desc_vec &v)
  *  @param a  first multivariate polynomial
  *  @param b  second multivariate polynomial
  *  @param v  vector of sym_desc structs (filled in) */
-
 static void get_symbol_stats(const ex &a, const ex &b, sym_desc_vec &v)
 {
     collect_symbols(a.eval(), v);   // eval() to expand assigned symbols
@@ -165,12 +195,21 @@ static void get_symbol_stats(const ex &a, const ex &b, sym_desc_vec &v)
         int deg_b = b.degree(*(it->sym));
         it->deg_a = deg_a;
         it->deg_b = deg_b;
-        it->min_deg = min(deg_a, deg_b);
+        it->max_deg = max(deg_a, deg_b);
         it->ldeg_a = a.ldegree(*(it->sym));
         it->ldeg_b = b.ldegree(*(it->sym));
         it++;
     }
     sort(v.begin(), v.end());
+#if 0
+       clog << "Symbols:\n";
+       it = v.begin(); itend = v.end();
+       while (it != itend) {
+               clog << " " << *it->sym << ": deg_a=" << it->deg_a << ", deg_b=" << it->deg_b << ", ldeg_a=" << it->ldeg_a << ", ldeg_b=" << it->ldeg_b << ", max_deg=" << it->max_deg << endl;
+               clog << "  lcoeff_a=" << a.lcoeff(*(it->sym)) << ", lcoeff_b=" << b.lcoeff(*(it->sym)) << endl;
+               it++;
+       }
+#endif
 }
 
 
@@ -184,28 +223,59 @@ static numeric lcmcoeff(const ex &e, const numeric &l)
 {
     if (e.info(info_flags::rational))
         return lcm(ex_to_numeric(e).denom(), l);
-    else if (is_ex_exactly_of_type(e, add) || is_ex_exactly_of_type(e, mul)) {
-        numeric c = numONE();
-        for (int i=0; i<e.nops(); i++) {
+    else if (is_ex_exactly_of_type(e, add)) {
+        numeric c = _num1();
+        for (unsigned i=0; i<e.nops(); i++)
             c = lcmcoeff(e.op(i), c);
-        }
+        return lcm(c, l);
+    } else if (is_ex_exactly_of_type(e, mul)) {
+        numeric c = _num1();
+        for (unsigned i=0; i<e.nops(); i++)
+            c *= lcmcoeff(e.op(i), _num1());
         return lcm(c, l);
     } else if (is_ex_exactly_of_type(e, power))
-        return lcmcoeff(e.op(0), l);
+        return pow(lcmcoeff(e.op(0), l), ex_to_numeric(e.op(1)));
     return l;
 }
 
 /** Compute LCM of denominators of coefficients of a polynomial.
  *  Given a polynomial with rational coefficients, this function computes
  *  the LCM of the denominators of all coefficients. This can be used
- *  To bring a polynomial from Q[X] to Z[X].
+ *  to bring a polynomial from Q[X] to Z[X].
  *
- *  @param e  multivariate polynomial
+ *  @param e  multivariate polynomial (need not be expanded)
  *  @return LCM of denominators of coefficients */
-
 static numeric lcm_of_coefficients_denominators(const ex &e)
 {
-    return lcmcoeff(e.expand(), numONE());
+    return lcmcoeff(e, _num1());
+}
+
+/** Bring polynomial from Q[X] to Z[X] by multiplying in the previously
+ *  determined LCM of the coefficient's denominators.
+ *
+ *  @param e  multivariate polynomial (need not be expanded)
+ *  @param lcm  LCM to multiply in */
+static ex multiply_lcm(const ex &e, const numeric &lcm)
+{
+       if (is_ex_exactly_of_type(e, mul)) {
+               ex c = _ex1();
+               numeric lcm_accum = _num1();
+               for (unsigned i=0; i<e.nops(); i++) {
+                       numeric op_lcm = lcmcoeff(e.op(i), _num1());
+                       c *= multiply_lcm(e.op(i), op_lcm);
+                       lcm_accum *= op_lcm;
+               }
+               c *= lcm / lcm_accum;
+               return c;
+       } else if (is_ex_exactly_of_type(e, add)) {
+               ex c = _ex0();
+               for (unsigned i=0; i<e.nops(); i++)
+                       c += multiply_lcm(e.op(i), lcm);
+               return c;
+       } else if (is_ex_exactly_of_type(e, power)) {
+               return pow(multiply_lcm(e.op(0), lcm.power(ex_to_numeric(e.op(1)).inverse())), e.op(1));
+       } else
+               return e * lcm;
 }
 
 
@@ -214,16 +284,15 @@ static numeric lcm_of_coefficients_denominators(const ex &e)
  *
  *  @param e  expanded polynomial
  *  @return integer content */
-
 numeric ex::integer_content(void) const
 {
-    ASSERT(bp!=0);
+    GINAC_ASSERT(bp!=0);
     return bp->integer_content();
 }
 
 numeric basic::integer_content(void) const
 {
-    return numONE();
+    return _num1();
 }
 
 numeric numeric::integer_content(void) const
@@ -235,29 +304,29 @@ numeric add::integer_content(void) const
 {
     epvector::const_iterator it = seq.begin();
     epvector::const_iterator itend = seq.end();
-    numeric c = numZERO();
+    numeric c = _num0();
     while (it != itend) {
-        ASSERT(!is_ex_exactly_of_type(it->rest,numeric));
-        ASSERT(is_ex_exactly_of_type(it->coeff,numeric));
+        GINAC_ASSERT(!is_ex_exactly_of_type(it->rest,numeric));
+        GINAC_ASSERT(is_ex_exactly_of_type(it->coeff,numeric));
         c = gcd(ex_to_numeric(it->coeff), c);
         it++;
     }
-    ASSERT(is_ex_exactly_of_type(overall_coeff,numeric));
+    GINAC_ASSERT(is_ex_exactly_of_type(overall_coeff,numeric));
     c = gcd(ex_to_numeric(overall_coeff),c);
     return c;
 }
 
 numeric mul::integer_content(void) const
 {
-#ifdef DOASSERT
+#ifdef DO_GINAC_ASSERT
     epvector::const_iterator it = seq.begin();
     epvector::const_iterator itend = seq.end();
     while (it != itend) {
-        ASSERT(!is_ex_exactly_of_type(recombine_pair_to_ex(*it),numeric));
+        GINAC_ASSERT(!is_ex_exactly_of_type(recombine_pair_to_ex(*it),numeric));
         ++it;
     }
-#endif // def DOASSERT
-    ASSERT(is_ex_exactly_of_type(overall_coeff,numeric));
+#endif // def DO_GINAC_ASSERT
+    GINAC_ASSERT(is_ex_exactly_of_type(overall_coeff,numeric));
     return abs(ex_to_numeric(overall_coeff));
 }
 
@@ -275,7 +344,6 @@ numeric mul::integer_content(void) const
  *  @param check_args  check whether a and b are polynomials with rational
  *         coefficients (defaults to "true")
  *  @return quotient of a and b in Q[x] */
-
 ex quo(const ex &a, const ex &b, const symbol &x, bool check_args)
 {
     if (b.is_zero())
@@ -284,13 +352,13 @@ ex quo(const ex &a, const ex &b, const symbol &x, bool check_args)
         return a / b;
 #if FAST_COMPARE
     if (a.is_equal(b))
-        return exONE();
+        return _ex1();
 #endif
     if (check_args && (!a.info(info_flags::rational_polynomial) || !b.info(info_flags::rational_polynomial)))
         throw(std::invalid_argument("quo: arguments must be polynomials over the rationals"));
 
     // Polynomial long division
-    ex q = exZERO();
+    ex q = _ex0();
     ex r = a.expand();
     if (r.is_zero())
         return r;
@@ -326,20 +394,19 @@ ex quo(const ex &a, const ex &b, const symbol &x, bool check_args)
  *  @param check_args  check whether a and b are polynomials with rational
  *         coefficients (defaults to "true")
  *  @return remainder of a(x) and b(x) in Q[x] */
-
 ex rem(const ex &a, const ex &b, const symbol &x, bool check_args)
 {
     if (b.is_zero())
         throw(std::overflow_error("rem: division by zero"));
     if (is_ex_exactly_of_type(a, numeric)) {
         if  (is_ex_exactly_of_type(b, numeric))
-            return exZERO();
+            return _ex0();
         else
             return b;
     }
 #if FAST_COMPARE
     if (a.is_equal(b))
-        return exZERO();
+        return _ex0();
 #endif
     if (check_args && (!a.info(info_flags::rational_polynomial) || !b.info(info_flags::rational_polynomial)))
         throw(std::invalid_argument("rem: arguments must be polynomials over the rationals"));
@@ -378,14 +445,13 @@ ex rem(const ex &a, const ex &b, const symbol &x, bool check_args)
  *  @param check_args  check whether a and b are polynomials with rational
  *         coefficients (defaults to "true")
  *  @return pseudo-remainder of a(x) and b(x) in Z[x] */
-
 ex prem(const ex &a, const ex &b, const symbol &x, bool check_args)
 {
     if (b.is_zero())
         throw(std::overflow_error("prem: division by zero"));
     if (is_ex_exactly_of_type(a, numeric)) {
         if (is_ex_exactly_of_type(b, numeric))
-            return exZERO();
+            return _ex0();
         else
             return b;
     }
@@ -401,18 +467,18 @@ ex prem(const ex &a, const ex &b, const symbol &x, bool check_args)
     if (bdeg <= rdeg) {
         blcoeff = eb.coeff(x, bdeg);
         if (bdeg == 0)
-            eb = exZERO();
+            eb = _ex0();
         else
             eb -= blcoeff * power(x, bdeg);
     } else
-        blcoeff = exONE();
+        blcoeff = _ex1();
 
     int delta = rdeg - bdeg + 1, i = 0;
     while (rdeg >= bdeg && !r.is_zero()) {
         ex rlcoeff = r.coeff(x, rdeg);
         ex term = (power(x, rdeg - bdeg) * eb * rlcoeff).expand();
         if (rdeg == 0)
-            r = exZERO();
+            r = _ex0();
         else
             r -= rlcoeff * power(x, rdeg);
         r = (blcoeff * r).expand() - term;
@@ -423,6 +489,57 @@ ex prem(const ex &a, const ex &b, const symbol &x, bool check_args)
 }
 
 
+/** Sparse pseudo-remainder of polynomials a(x) and b(x) in Z[x].
+ *
+ *  @param a  first polynomial in x (dividend)
+ *  @param b  second polynomial in x (divisor)
+ *  @param x  a and b are polynomials in x
+ *  @param check_args  check whether a and b are polynomials with rational
+ *         coefficients (defaults to "true")
+ *  @return sparse pseudo-remainder of a(x) and b(x) in Z[x] */
+
+ex sprem(const ex &a, const ex &b, const symbol &x, bool check_args)
+{
+    if (b.is_zero())
+        throw(std::overflow_error("prem: division by zero"));
+    if (is_ex_exactly_of_type(a, numeric)) {
+        if (is_ex_exactly_of_type(b, numeric))
+            return _ex0();
+        else
+            return b;
+    }
+    if (check_args && (!a.info(info_flags::rational_polynomial) || !b.info(info_flags::rational_polynomial)))
+        throw(std::invalid_argument("prem: arguments must be polynomials over the rationals"));
+
+    // Polynomial long division
+    ex r = a.expand();
+    ex eb = b.expand();
+    int rdeg = r.degree(x);
+    int bdeg = eb.degree(x);
+    ex blcoeff;
+    if (bdeg <= rdeg) {
+        blcoeff = eb.coeff(x, bdeg);
+        if (bdeg == 0)
+            eb = _ex0();
+        else
+            eb -= blcoeff * power(x, bdeg);
+    } else
+        blcoeff = _ex1();
+
+    while (rdeg >= bdeg && !r.is_zero()) {
+        ex rlcoeff = r.coeff(x, rdeg);
+        ex term = (power(x, rdeg - bdeg) * eb * rlcoeff).expand();
+        if (rdeg == 0)
+            r = _ex0();
+        else
+            r -= rlcoeff * power(x, rdeg);
+        r = (blcoeff * r).expand() - term;
+        rdeg = r.degree(x);
+    }
+    return r;
+}
+
+
 /** Exact polynomial division of a(X) by b(X) in Q[X].
  *  
  *  @param a  first multivariate polynomial (dividend)
@@ -432,12 +549,13 @@ ex prem(const ex &a, const ex &b, const symbol &x, bool check_args)
  *         coefficients (defaults to "true")
  *  @return "true" when exact division succeeds (quotient returned in q),
  *          "false" otherwise */
-
 bool divide(const ex &a, const ex &b, ex &q, bool check_args)
 {
-    q = exZERO();
+    q = _ex0();
     if (b.is_zero())
         throw(std::overflow_error("divide: division by zero"));
+    if (a.is_zero())
+        return true;
     if (is_ex_exactly_of_type(b, numeric)) {
         q = a / b;
         return true;
@@ -445,11 +563,12 @@ bool divide(const ex &a, const ex &b, ex &q, bool check_args)
         return false;
 #if FAST_COMPARE
     if (a.is_equal(b)) {
-        q = exONE();
+        q = _ex1();
         return true;
     }
 #endif
-    if (check_args && (!a.info(info_flags::rational_polynomial) || !b.info(info_flags::rational_polynomial)))
+    if (check_args && (!a.info(info_flags::rational_polynomial) ||
+                       !b.info(info_flags::rational_polynomial)))
         throw(std::invalid_argument("divide: arguments must be polynomials over the rationals"));
 
     // Find first symbol
@@ -488,8 +607,6 @@ bool divide(const ex &a, const ex &b, ex &q, bool check_args)
  *  Remembering
  */
 
-#include <map>
-
 typedef pair<ex, ex> ex2;
 typedef pair<ex, bool> exbool;
 
@@ -522,10 +639,10 @@ typedef map<ex2, exbool, ex2_less> ex2_exbool_remember;
  *  @see get_symbol_stats, heur_gcd */
 static bool divide_in_z(const ex &a, const ex &b, ex &q, sym_desc_vec::const_iterator var)
 {
-    q = exZERO();
+    q = _ex0();
     if (b.is_zero())
         throw(std::overflow_error("divide_in_z: division by zero"));
-    if (b.is_equal(exONE())) {
+    if (b.is_equal(_ex1())) {
         q = a;
         return true;
     }
@@ -538,7 +655,7 @@ static bool divide_in_z(const ex &a, const ex &b, ex &q, sym_desc_vec::const_ite
     }
 #if FAST_COMPARE
     if (a.is_equal(b)) {
-        q = exONE();
+        q = _ex1();
         return true;
     }
 #endif
@@ -561,61 +678,32 @@ static bool divide_in_z(const ex &a, const ex &b, ex &q, sym_desc_vec::const_ite
     if (bdeg > adeg)
         return false;
 
-#if 1
-
-    // Polynomial long division (recursive)
-    ex r = a.expand();
-    if (r.is_zero())
-        return true;
-    int rdeg = adeg;
-    ex eb = b.expand();
-    ex blcoeff = eb.coeff(*x, bdeg);
-    while (rdeg >= bdeg) {
-        ex term, rcoeff = r.coeff(*x, rdeg);
-        if (!divide_in_z(rcoeff, blcoeff, term, var+1))
-            break;
-        term = (term * power(*x, rdeg - bdeg)).expand();
-        q += term;
-        r -= (term * eb).expand();
-        if (r.is_zero()) {
-#if USE_REMEMBER
-            dr_remember[ex2(a, b)] = exbool(q, true);
-#endif
-            return true;
-        }
-        rdeg = r.degree(*x);
-    }
-#if USE_REMEMBER
-    dr_remember[ex2(a, b)] = exbool(q, false);
-#endif
-    return false;
-
-#else
+#if USE_TRIAL_DIVISION
 
-    // Trial division using polynomial interpolation
+    // Trial division with polynomial interpolation
     int i, k;
 
     // Compute values at evaluation points 0..adeg
     vector<numeric> alpha; alpha.reserve(adeg + 1);
     exvector u; u.reserve(adeg + 1);
-    numeric point = numZERO();
+    numeric point = _num0();
     ex c;
     for (i=0; i<=adeg; i++) {
         ex bs = b.subs(*x == point);
         while (bs.is_zero()) {
-            point += numONE();
+            point += _num1();
             bs = b.subs(*x == point);
         }
         if (!divide_in_z(a.subs(*x == point), bs, c, var+1))
             return false;
         alpha.push_back(point);
         u.push_back(c);
-        point += numONE();
+        point += _num1();
     }
 
     // Compute inverses
     vector<numeric> rcp; rcp.reserve(adeg + 1);
-    rcp.push_back(0);
+    rcp.push_back(_num0());
     for (k=1; k<=adeg; k++) {
         numeric product = alpha[k] - alpha[0];
         for (i=1; i<k; i++)
@@ -643,6 +731,36 @@ static bool divide_in_z(const ex &a, const ex &b, ex &q, sym_desc_vec::const_ite
         return true;
     } else
         return false;
+
+#else
+
+    // Polynomial long division (recursive)
+    ex r = a.expand();
+    if (r.is_zero())
+        return true;
+    int rdeg = adeg;
+    ex eb = b.expand();
+    ex blcoeff = eb.coeff(*x, bdeg);
+    while (rdeg >= bdeg) {
+        ex term, rcoeff = r.coeff(*x, rdeg);
+        if (!divide_in_z(rcoeff, blcoeff, term, var+1))
+            break;
+        term = (term * power(*x, rdeg - bdeg)).expand();
+        q += term;
+        r -= (term * eb).expand();
+        if (r.is_zero()) {
+#if USE_REMEMBER
+            dr_remember[ex2(a, b)] = exbool(q, true);
+#endif
+            return true;
+        }
+        rdeg = r.degree(*x);
+    }
+#if USE_REMEMBER
+    dr_remember[ex2(a, b)] = exbool(q, false);
+#endif
+    return false;
+
 #endif
 }
 
@@ -662,7 +780,7 @@ ex ex::unit(const symbol &x) const
 {
     ex c = expand().lcoeff(x);
     if (is_ex_exactly_of_type(c, numeric))
-        return c < exZERO() ? exMINUSONE() : exONE();
+        return c < _ex0() ? _ex_1() : _ex1();
     else {
         const symbol *y;
         if (get_first_symbol(c, y))
@@ -683,12 +801,12 @@ ex ex::unit(const symbol &x) const
 ex ex::content(const symbol &x) const
 {
     if (is_zero())
-        return exZERO();
+        return _ex0();
     if (is_ex_exactly_of_type(*this, numeric))
         return info(info_flags::negative) ? -*this : *this;
     ex e = expand();
     if (e.is_zero())
-        return exZERO();
+        return _ex0();
 
     // First, try the integer content
     ex c = e.integer_content();
@@ -702,7 +820,7 @@ ex ex::content(const symbol &x) const
     int ldeg = e.ldegree(x);
     if (deg == ldeg)
         return e.lcoeff(x) / e.unit(x);
-    c = exZERO();
+    c = _ex0();
     for (int i=ldeg; i<=deg; i++)
         c = gcd(e.coeff(x, i), c, NULL, NULL, false);
     return c;
@@ -719,13 +837,13 @@ ex ex::content(const symbol &x) const
 ex ex::primpart(const symbol &x) const
 {
     if (is_zero())
-        return exZERO();
+        return _ex0();
     if (is_ex_exactly_of_type(*this, numeric))
-        return exONE();
+        return _ex1();
 
     ex c = content(x);
     if (c.is_zero())
-        return exZERO();
+        return _ex0();
     ex u = unit(x);
     if (is_ex_exactly_of_type(c, numeric))
         return *this / (c * u);
@@ -741,15 +859,14 @@ ex ex::primpart(const symbol &x) const
  *  @param x  variable in which to compute the primitive part
  *  @param c  previously computed content part
  *  @return primitive part */
-
 ex ex::primpart(const symbol &x, const ex &c) const
 {
     if (is_zero())
-        return exZERO();
+        return _ex0();
     if (c.is_zero())
-        return exZERO();
+        return _ex0();
     if (is_ex_exactly_of_type(*this, numeric))
-        return exONE();
+        return _ex1();
 
     ex u = unit(x);
     if (is_ex_exactly_of_type(c, numeric))
@@ -763,8 +880,9 @@ ex ex::primpart(const symbol &x, const ex &c) const
  *  GCD of multivariate polynomials
  */
 
-/** Compute GCD of multivariate polynomials using the subresultant PRS
- *  algorithm. This function is used internally gy gcd().
+/** Compute GCD of polynomials in Q[X] using the Euclidean algorithm (not
+ *  really suited for multivariate GCDs). This function is only provided for
+ *  testing purposes.
  *
  *  @param a  first multivariate polynomial
  *  @param b  second multivariate polynomial
@@ -772,8 +890,142 @@ ex ex::primpart(const symbol &x, const ex &c) const
  *  @return the GCD as a new expression
  *  @see gcd */
 
-static ex sr_gcd(const ex &a, const ex &b, const symbol *x)
+static ex eu_gcd(const ex &a, const ex &b, const symbol *x)
 {
+//clog << "eu_gcd(" << a << "," << b << ")\n";
+
+    // Sort c and d so that c has higher degree
+    ex c, d;
+    int adeg = a.degree(*x), bdeg = b.degree(*x);
+    if (adeg >= bdeg) {
+        c = a;
+        d = b;
+    } else {
+        c = b;
+        d = a;
+    }
+
+       // Normalize in Q[x]
+       c = c / c.lcoeff(*x);
+       d = d / d.lcoeff(*x);
+
+       // Euclidean algorithm
+    ex r;
+    for (;;) {
+//clog << " d = " << d << endl;
+        r = rem(c, d, *x, false);
+        if (r.is_zero())
+            return d / d.lcoeff(*x);
+        c = d;
+               d = r;
+    }
+}
+
+
+/** Compute GCD of multivariate polynomials using the Euclidean PRS algorithm
+ *  with pseudo-remainders ("World's Worst GCD Algorithm", staying in Z[X]).
+ *  This function is only provided for testing purposes.
+ *
+ *  @param a  first multivariate polynomial
+ *  @param b  second multivariate polynomial
+ *  @param x  pointer to symbol (main variable) in which to compute the GCD in
+ *  @return the GCD as a new expression
+ *  @see gcd */
+
+static ex euprem_gcd(const ex &a, const ex &b, const symbol *x)
+{
+//clog << "euprem_gcd(" << a << "," << b << ")\n";
+
+    // Sort c and d so that c has higher degree
+    ex c, d;
+    int adeg = a.degree(*x), bdeg = b.degree(*x);
+    if (adeg >= bdeg) {
+        c = a;
+        d = b;
+    } else {
+        c = b;
+        d = a;
+    }
+
+       // Calculate GCD of contents
+       ex gamma = gcd(c.content(*x), d.content(*x), NULL, NULL, false);
+
+       // Euclidean algorithm with pseudo-remainders
+    ex r;
+    for (;;) {
+//clog << " d = " << d << endl;
+        r = prem(c, d, *x, false);
+        if (r.is_zero())
+            return d.primpart(*x) * gamma;
+        c = d;
+               d = r;
+    }
+}
+
+
+/** Compute GCD of multivariate polynomials using the primitive Euclidean
+ *  PRS algorithm (complete content removal at each step). This function is
+ *  only provided for testing purposes.
+ *
+ *  @param a  first multivariate polynomial
+ *  @param b  second multivariate polynomial
+ *  @param x  pointer to symbol (main variable) in which to compute the GCD in
+ *  @return the GCD as a new expression
+ *  @see gcd */
+
+static ex peu_gcd(const ex &a, const ex &b, const symbol *x)
+{
+//clog << "peu_gcd(" << a << "," << b << ")\n";
+
+    // Sort c and d so that c has higher degree
+    ex c, d;
+    int adeg = a.degree(*x), bdeg = b.degree(*x);
+    int ddeg;
+    if (adeg >= bdeg) {
+        c = a;
+        d = b;
+        ddeg = bdeg;
+    } else {
+        c = b;
+        d = a;
+        ddeg = adeg;
+    }
+
+    // Remove content from c and d, to be attached to GCD later
+    ex cont_c = c.content(*x);
+    ex cont_d = d.content(*x);
+    ex gamma = gcd(cont_c, cont_d, NULL, NULL, false);
+    if (ddeg == 0)
+        return gamma;
+    c = c.primpart(*x, cont_c);
+    d = d.primpart(*x, cont_d);
+
+    // Euclidean algorithm with content removal
+       ex r;
+    for (;;) {
+//clog << " d = " << d << endl;
+        r = prem(c, d, *x, false);
+        if (r.is_zero())
+            return gamma * d;
+        c = d;
+               d = r.primpart(*x);
+    }
+}
+
+
+/** Compute GCD of multivariate polynomials using the reduced PRS algorithm.
+ *  This function is only provided for testing purposes.
+ *
+ *  @param a  first multivariate polynomial
+ *  @param b  second multivariate polynomial
+ *  @param x  pointer to symbol (main variable) in which to compute the GCD in
+ *  @return the GCD as a new expression
+ *  @see gcd */
+
+static ex red_gcd(const ex &a, const ex &b, const symbol *x)
+{
+//clog << "red_gcd(" << a << "," << b << ")\n";
+
     // Sort c and d so that c has higher degree
     ex c, d;
     int adeg = a.degree(*x), bdeg = b.degree(*x);
@@ -799,19 +1051,21 @@ static ex sr_gcd(const ex &a, const ex &b, const symbol *x)
     c = c.primpart(*x, cont_c);
     d = d.primpart(*x, cont_d);
 
-    // First element of subresultant sequence
-    ex r = exZERO(), ri = exONE(), psi = exONE();
+    // First element of divisor sequence
+    ex r, ri = _ex1();
     int delta = cdeg - ddeg;
 
     for (;;) {
         // Calculate polynomial pseudo-remainder
+//clog << " d = " << d << endl;
         r = prem(c, d, *x, false);
         if (r.is_zero())
             return gamma * d.primpart(*x);
         c = d;
         cdeg = ddeg;
-        if (!divide(r, ri * power(psi, delta), d, false))
-            throw(std::runtime_error("invalid expression in sr_gcd(), division failed"));
+
+        if (!divide(r, pow(ri, delta), d, false))
+            throw(std::runtime_error("invalid expression in red_gcd(), division failed"));
         ddeg = d.degree(*x);
         if (ddeg == 0) {
             if (is_ex_exactly_of_type(r, numeric))
@@ -820,12 +1074,88 @@ static ex sr_gcd(const ex &a, const ex &b, const symbol *x)
                 return gamma * r.primpart(*x);
         }
 
-        // Next element of subresultant sequence
         ri = c.expand().lcoeff(*x);
+        delta = cdeg - ddeg;
+    }
+}
+
+
+/** Compute GCD of multivariate polynomials using the subresultant PRS
+ *  algorithm. This function is used internally by gcd().
+ *
+ *  @param a   first multivariate polynomial
+ *  @param b   second multivariate polynomial
+ *  @param var iterator to first element of vector of sym_desc structs
+ *  @return the GCD as a new expression
+ *  @see gcd */
+
+static ex sr_gcd(const ex &a, const ex &b, sym_desc_vec::const_iterator var)
+{
+//clog << "sr_gcd(" << a << "," << b << ")\n";
+#if STATISTICS
+       sr_gcd_called++;
+#endif
+
+    // The first symbol is our main variable
+    const symbol &x = *(var->sym);
+
+    // Sort c and d so that c has higher degree
+    ex c, d;
+    int adeg = a.degree(x), bdeg = b.degree(x);
+    int cdeg, ddeg;
+    if (adeg >= bdeg) {
+        c = a;
+        d = b;
+        cdeg = adeg;
+        ddeg = bdeg;
+    } else {
+        c = b;
+        d = a;
+        cdeg = bdeg;
+        ddeg = adeg;
+    }
+
+    // Remove content from c and d, to be attached to GCD later
+    ex cont_c = c.content(x);
+    ex cont_d = d.content(x);
+    ex gamma = gcd(cont_c, cont_d, NULL, NULL, false);
+    if (ddeg == 0)
+        return gamma;
+    c = c.primpart(x, cont_c);
+    d = d.primpart(x, cont_d);
+//clog << " content " << gamma << " removed, continuing with sr_gcd(" << c << "," << d << ")\n";
+
+    // First element of subresultant sequence
+    ex r = _ex0(), ri = _ex1(), psi = _ex1();
+    int delta = cdeg - ddeg;
+
+    for (;;) {
+        // Calculate polynomial pseudo-remainder
+//clog << " start of loop, psi = " << psi << ", calculating pseudo-remainder...\n";
+//clog << " d = " << d << endl;
+        r = prem(c, d, x, false);
+        if (r.is_zero())
+            return gamma * d.primpart(x);
+        c = d;
+        cdeg = ddeg;
+//clog << " dividing...\n";
+        if (!divide_in_z(r, ri * pow(psi, delta), d, var+1))
+            throw(std::runtime_error("invalid expression in sr_gcd(), division failed"));
+        ddeg = d.degree(x);
+        if (ddeg == 0) {
+            if (is_ex_exactly_of_type(r, numeric))
+                return gamma;
+            else
+                return gamma * r.primpart(x);
+        }
+
+        // Next element of subresultant sequence
+//clog << " calculating next subresultant...\n";
+        ri = c.expand().lcoeff(x);
         if (delta == 1)
             psi = ri;
         else if (delta)
-            divide(power(ri, delta), power(psi, delta-1), psi, false);
+            divide_in_z(pow(ri, delta), pow(psi, delta-1), psi, var+1);
         delta = cdeg - ddeg;
     }
 }
@@ -837,16 +1167,15 @@ static ex sr_gcd(const ex &a, const ex &b, const symbol *x)
  *  @param e  expanded multivariate polynomial
  *  @return maximum coefficient
  *  @see heur_gcd */
-
 numeric ex::max_coefficient(void) const
 {
-    ASSERT(bp!=0);
+    GINAC_ASSERT(bp!=0);
     return bp->max_coefficient();
 }
 
 numeric basic::max_coefficient(void) const
 {
-    return numONE();
+    return _num1();
 }
 
 numeric numeric::max_coefficient(void) const
@@ -858,11 +1187,11 @@ numeric add::max_coefficient(void) const
 {
     epvector::const_iterator it = seq.begin();
     epvector::const_iterator itend = seq.end();
-    ASSERT(is_ex_exactly_of_type(overall_coeff,numeric));
+    GINAC_ASSERT(is_ex_exactly_of_type(overall_coeff,numeric));
     numeric cur_max = abs(ex_to_numeric(overall_coeff));
     while (it != itend) {
         numeric a;
-        ASSERT(!is_ex_exactly_of_type(it->rest,numeric));
+        GINAC_ASSERT(!is_ex_exactly_of_type(it->rest,numeric));
         a = abs(ex_to_numeric(it->coeff));
         if (a > cur_max)
             cur_max = a;
@@ -873,15 +1202,15 @@ numeric add::max_coefficient(void) const
 
 numeric mul::max_coefficient(void) const
 {
-#ifdef DOASSERT
+#ifdef DO_GINAC_ASSERT
     epvector::const_iterator it = seq.begin();
     epvector::const_iterator itend = seq.end();
     while (it != itend) {
-        ASSERT(!is_ex_exactly_of_type(recombine_pair_to_ex(*it),numeric));
+        GINAC_ASSERT(!is_ex_exactly_of_type(recombine_pair_to_ex(*it),numeric));
         it++;
     }
-#endif // def DOASSERT
-    ASSERT(is_ex_exactly_of_type(overall_coeff,numeric));
+#endif // def DO_GINAC_ASSERT
+    GINAC_ASSERT(is_ex_exactly_of_type(overall_coeff,numeric));
     return abs(ex_to_numeric(overall_coeff));
 }
 
@@ -893,10 +1222,9 @@ numeric mul::max_coefficient(void) const
  *  @param xi  modulus
  *  @return mapped polynomial
  *  @see heur_gcd */
-
 ex ex::smod(const numeric &xi) const
 {
-    ASSERT(bp!=0);
+    GINAC_ASSERT(bp!=0);
     return bp->smod(xi);
 }
 
@@ -907,7 +1235,11 @@ ex basic::smod(const numeric &xi) const
 
 ex numeric::smod(const numeric &xi) const
 {
+#ifndef NO_NAMESPACE_GINAC
+    return GiNaC::smod(*this, xi);
+#else // ndef NO_NAMESPACE_GINAC
     return ::smod(*this, xi);
+#endif // ndef NO_NAMESPACE_GINAC
 }
 
 ex add::smod(const numeric &xi) const
@@ -917,37 +1249,49 @@ ex add::smod(const numeric &xi) const
     epvector::const_iterator it = seq.begin();
     epvector::const_iterator itend = seq.end();
     while (it != itend) {
-        ASSERT(!is_ex_exactly_of_type(it->rest,numeric));
+        GINAC_ASSERT(!is_ex_exactly_of_type(it->rest,numeric));
+#ifndef NO_NAMESPACE_GINAC
+        numeric coeff = GiNaC::smod(ex_to_numeric(it->coeff), xi);
+#else // ndef NO_NAMESPACE_GINAC
         numeric coeff = ::smod(ex_to_numeric(it->coeff), xi);
+#endif // ndef NO_NAMESPACE_GINAC
         if (!coeff.is_zero())
             newseq.push_back(expair(it->rest, coeff));
         it++;
     }
-    ASSERT(is_ex_exactly_of_type(overall_coeff,numeric));
+    GINAC_ASSERT(is_ex_exactly_of_type(overall_coeff,numeric));
+#ifndef NO_NAMESPACE_GINAC
+    numeric coeff = GiNaC::smod(ex_to_numeric(overall_coeff), xi);
+#else // ndef NO_NAMESPACE_GINAC
     numeric coeff = ::smod(ex_to_numeric(overall_coeff), xi);
+#endif // ndef NO_NAMESPACE_GINAC
     return (new add(newseq,coeff))->setflag(status_flags::dynallocated);
 }
 
 ex mul::smod(const numeric &xi) const
 {
-#ifdef DOASSERT
+#ifdef DO_GINAC_ASSERT
     epvector::const_iterator it = seq.begin();
     epvector::const_iterator itend = seq.end();
     while (it != itend) {
-        ASSERT(!is_ex_exactly_of_type(recombine_pair_to_ex(*it),numeric));
+        GINAC_ASSERT(!is_ex_exactly_of_type(recombine_pair_to_ex(*it),numeric));
         it++;
     }
-#endif // def DOASSERT
+#endif // def DO_GINAC_ASSERT
     mul * mulcopyp=new mul(*this);
-    ASSERT(is_ex_exactly_of_type(overall_coeff,numeric));
-    mulcopyp->overall_coeff=::smod(ex_to_numeric(overall_coeff),xi);
+    GINAC_ASSERT(is_ex_exactly_of_type(overall_coeff,numeric));
+#ifndef NO_NAMESPACE_GINAC
+    mulcopyp->overall_coeff = GiNaC::smod(ex_to_numeric(overall_coeff),xi);
+#else // ndef NO_NAMESPACE_GINAC
+    mulcopyp->overall_coeff = ::smod(ex_to_numeric(overall_coeff),xi);
+#endif // ndef NO_NAMESPACE_GINAC
     mulcopyp->clearflag(status_flags::evaluated);
     mulcopyp->clearflag(status_flags::hash_calculated);
     return mulcopyp->setflag(status_flags::dynallocated);
 }
 
 
-/** Exception thrown by heur_gcd() to signal failure */
+/** Exception thrown by heur_gcd() to signal failure. */
 class gcdheu_failed {};
 
 /** Compute GCD of multivariate polynomials using the heuristic GCD algorithm.
@@ -965,9 +1309,14 @@ class gcdheu_failed {};
  *  @return the GCD as a new expression
  *  @see gcd
  *  @exception gcdheu_failed() */
-
 static ex heur_gcd(const ex &a, const ex &b, ex *ca, ex *cb, sym_desc_vec::const_iterator var)
 {
+//clog << "heur_gcd(" << a << "," << b << ")\n";
+#if STATISTICS
+       heur_gcd_called++;
+#endif
+
+       // GCD of two numeric values -> CLN
     if (is_ex_exactly_of_type(a, numeric) && is_ex_exactly_of_type(b, numeric)) {
         numeric g = gcd(ex_to_numeric(a), ex_to_numeric(b));
         numeric rg;
@@ -981,38 +1330,40 @@ static ex heur_gcd(const ex &a, const ex &b, ex *ca, ex *cb, sym_desc_vec::const
     }
 
     // The first symbol is our main variable
-    const symbol *x = var->sym;
+    const symbol &x = *(var->sym);
 
     // Remove integer content
     numeric gc = gcd(a.integer_content(), b.integer_content());
     numeric rgc = gc.inverse();
     ex p = a * rgc;
     ex q = b * rgc;
-    int maxdeg = max(p.degree(*x), q.degree(*x));
+    int maxdeg = max(p.degree(x), q.degree(x));
 
     // Find evaluation point
     numeric mp = p.max_coefficient(), mq = q.max_coefficient();
     numeric xi;
     if (mp > mq)
-        xi = mq * numTWO() + numTWO();
+        xi = mq * _num2() + _num2();
     else
-        xi = mp * numTWO() + numTWO();
+        xi = mp * _num2() + _num2();
 
     // 6 tries maximum
     for (int t=0; t<6; t++) {
-        if (xi.int_length() * maxdeg > 50000)
+        if (xi.int_length() * maxdeg > 100000) {
+//clog << "giving up heur_gcd, xi.int_length = " << xi.int_length() << ", maxdeg = " << maxdeg << endl;
             throw gcdheu_failed();
+               }
 
         // Apply evaluation homomorphism and calculate GCD
-        ex gamma = heur_gcd(p.subs(*x == xi), q.subs(*x == xi), NULL, NULL, var+1).expand();
+        ex gamma = heur_gcd(p.subs(x == xi), q.subs(x == xi), NULL, NULL, var+1).expand();
         if (!is_ex_exactly_of_type(gamma, fail)) {
 
             // Reconstruct polynomial from GCD of mapped polynomials
-            ex g = exZERO();
+            ex g = _ex0();
             numeric rxi = xi.inverse();
             for (int i=0; !gamma.is_zero(); i++) {
                 ex gi = gamma.smod(xi);
-                g += gi * power(*x, i);
+                g += gi * power(x, i);
                 gamma = (gamma - gi) * rxi;
             }
             // Remove integer content
@@ -1022,8 +1373,8 @@ static ex heur_gcd(const ex &a, const ex &b, ex *ca, ex *cb, sym_desc_vec::const
             ex dummy;
             if (divide_in_z(p, g, ca ? *ca : dummy, var) && divide_in_z(q, g, cb ? *cb : dummy, var)) {
                 g *= gc;
-                ex lc = g.lcoeff(*x);
-                if (is_ex_exactly_of_type(lc, numeric) && lc.compare(exZERO()) < 0)
+                ex lc = g.lcoeff(x);
+                if (is_ex_exactly_of_type(lc, numeric) && ex_to_numeric(lc).is_negative())
                     return -g;
                 else
                     return g;
@@ -1045,53 +1396,144 @@ static ex heur_gcd(const ex &a, const ex &b, ex *ca, ex *cb, sym_desc_vec::const
  *  @param check_args  check whether a and b are polynomials with rational
  *         coefficients (defaults to "true")
  *  @return the GCD as a new expression */
-
 ex gcd(const ex &a, const ex &b, ex *ca, ex *cb, bool check_args)
 {
+//clog << "gcd(" << a << "," << b << ")\n";
+#if STATISTICS
+       gcd_called++;
+#endif
+
+       // GCD of numerics -> CLN
+    if (is_ex_exactly_of_type(a, numeric) && is_ex_exactly_of_type(b, numeric)) {
+        numeric g = gcd(ex_to_numeric(a), ex_to_numeric(b));
+        if (ca)
+            *ca = ex_to_numeric(a) / g;
+        if (cb)
+            *cb = ex_to_numeric(b) / g;
+        return g;
+    }
+
+       // Check arguments
+    if (check_args && !a.info(info_flags::rational_polynomial) || !b.info(info_flags::rational_polynomial)) {
+        throw(std::invalid_argument("gcd: arguments must be polynomials over the rationals"));
+    }
+
+       // Partially factored cases (to avoid expanding large expressions)
+       if (is_ex_exactly_of_type(a, mul)) {
+               if (is_ex_exactly_of_type(b, mul) && b.nops() > a.nops())
+                       goto factored_b;
+factored_a:
+               ex g = _ex1();
+               ex acc_ca = _ex1();
+               ex part_b = b;
+               for (unsigned i=0; i<a.nops(); i++) {
+                       ex part_ca, part_cb;
+                       g *= gcd(a.op(i), part_b, &part_ca, &part_cb, check_args);
+                       acc_ca *= part_ca;
+                       part_b = part_cb;
+               }
+               if (ca)
+                       *ca = acc_ca;
+               if (cb)
+                       *cb = part_b;
+               return g;
+       } else if (is_ex_exactly_of_type(b, mul)) {
+               if (is_ex_exactly_of_type(a, mul) && a.nops() > b.nops())
+                       goto factored_a;
+factored_b:
+               ex g = _ex1();
+               ex acc_cb = _ex1();
+               ex part_a = a;
+               for (unsigned i=0; i<b.nops(); i++) {
+                       ex part_ca, part_cb;
+                       g *= gcd(part_a, b.op(i), &part_ca, &part_cb, check_args);
+                       acc_cb *= part_cb;
+                       part_a = part_ca;
+               }
+               if (ca)
+                       *ca = part_a;
+               if (cb)
+                       *cb = acc_cb;
+               return g;
+       }
+
+#if FAST_COMPARE
+       // Input polynomials of the form poly^n are sometimes also trivial
+       if (is_ex_exactly_of_type(a, power)) {
+               ex p = a.op(0);
+               if (is_ex_exactly_of_type(b, power)) {
+                       if (p.is_equal(b.op(0))) {
+                               // a = p^n, b = p^m, gcd = p^min(n, m)
+                               ex exp_a = a.op(1), exp_b = b.op(1);
+                               if (exp_a < exp_b) {
+                                       if (ca)
+                                               *ca = _ex1();
+                                       if (cb)
+                                               *cb = power(p, exp_b - exp_a);
+                                       return power(p, exp_a);
+                               } else {
+                                       if (ca)
+                                               *ca = power(p, exp_a - exp_b);
+                                       if (cb)
+                                               *cb = _ex1();
+                                       return power(p, exp_b);
+                               }
+                       }
+               } else {
+                       if (p.is_equal(b)) {
+                               // a = p^n, b = p, gcd = p
+                               if (ca)
+                                       *ca = power(p, a.op(1) - 1);
+                               if (cb)
+                                       *cb = _ex1();
+                               return p;
+                       }
+               }
+       } else if (is_ex_exactly_of_type(b, power)) {
+               ex p = b.op(0);
+               if (p.is_equal(a)) {
+                       // a = p, b = p^n, gcd = p
+                       if (ca)
+                               *ca = _ex1();
+                       if (cb)
+                               *cb = power(p, b.op(1) - 1);
+                       return p;
+               }
+       }
+#endif
+
     // Some trivial cases
-    if (a.is_zero()) {
+       ex aex = a.expand(), bex = b.expand();
+    if (aex.is_zero()) {
         if (ca)
-            *ca = exZERO();
+            *ca = _ex0();
         if (cb)
-            *cb = exONE();
+            *cb = _ex1();
         return b;
     }
-    if (b.is_zero()) {
+    if (bex.is_zero()) {
         if (ca)
-            *ca = exONE();
+            *ca = _ex1();
         if (cb)
-            *cb = exZERO();
+            *cb = _ex0();
         return a;
     }
-    if (a.is_equal(exONE()) || b.is_equal(exONE())) {
+    if (aex.is_equal(_ex1()) || bex.is_equal(_ex1())) {
         if (ca)
             *ca = a;
         if (cb)
             *cb = b;
-        return exONE();
+        return _ex1();
     }
 #if FAST_COMPARE
     if (a.is_equal(b)) {
         if (ca)
-            *ca = exONE();
+            *ca = _ex1();
         if (cb)
-            *cb = exONE();
+            *cb = _ex1();
         return a;
     }
 #endif
-    if (is_ex_exactly_of_type(a, numeric) && is_ex_exactly_of_type(b, numeric)) {
-        numeric g = gcd(ex_to_numeric(a), ex_to_numeric(b));
-        if (ca)
-            *ca = ex_to_numeric(a) / g;
-        if (cb)
-            *cb = ex_to_numeric(b) / g;
-        return g;
-    }
-    if (check_args && !a.info(info_flags::rational_polynomial) || !b.info(info_flags::rational_polynomial)) {
-        cerr << "a=" << a << endl;
-        cerr << "b=" << b << endl;
-        throw(std::invalid_argument("gcd: arguments must be polynomials over the rationals"));
-    }
 
     // Gather symbol statistics
     sym_desc_vec sym_stats;
@@ -1099,50 +1541,78 @@ ex gcd(const ex &a, const ex &b, ex *ca, ex *cb, bool check_args)
 
     // The symbol with least degree is our main variable
     sym_desc_vec::const_iterator var = sym_stats.begin();
-    const symbol *x = var->sym;
+    const symbol &x = *(var->sym);
 
     // Cancel trivial common factor
     int ldeg_a = var->ldeg_a;
     int ldeg_b = var->ldeg_b;
     int min_ldeg = min(ldeg_a, ldeg_b);
     if (min_ldeg > 0) {
-        ex common = power(*x, min_ldeg);
+        ex common = power(x, min_ldeg);
 //clog << "trivial common factor " << common << endl;
-        return gcd((a / common).expand(), (b / common).expand(), ca, cb, false) * common;
+        return gcd((aex / common).expand(), (bex / common).expand(), ca, cb, false) * common;
     }
 
     // Try to eliminate variables
     if (var->deg_a == 0) {
-//clog << "eliminating variable " << *x << " from b" << endl;
-        ex c = b.content(*x);
-        ex g = gcd(a, c, ca, cb, false);
+//clog << "eliminating variable " << x << " from b" << endl;
+        ex c = bex.content(x);
+        ex g = gcd(aex, c, ca, cb, false);
         if (cb)
-            *cb *= b.unit(*x) * b.primpart(*x, c);
+            *cb *= bex.unit(x) * bex.primpart(x, c);
         return g;
     } else if (var->deg_b == 0) {
-//clog << "eliminating variable " << *x << " from a" << endl;
-        ex c = a.content(*x);
-        ex g = gcd(c, b, ca, cb, false);
+//clog << "eliminating variable " << x << " from a" << endl;
+        ex c = aex.content(x);
+        ex g = gcd(c, bex, ca, cb, false);
         if (ca)
-            *ca *= a.unit(*x) * a.primpart(*x, c);
+            *ca *= aex.unit(x) * aex.primpart(x, c);
         return g;
     }
 
-    // Try heuristic algorithm first, fall back to PRS if that failed
     ex g;
+#if 1
+    // Try heuristic algorithm first, fall back to PRS if that failed
     try {
-        g = heur_gcd(a.expand(), b.expand(), ca, cb, var);
+        g = heur_gcd(aex, bex, ca, cb, var);
     } catch (gcdheu_failed) {
         g = *new ex(fail());
     }
     if (is_ex_exactly_of_type(g, fail)) {
-//clog << "heuristics failed\n";
-        g = sr_gcd(a, b, x);
-        if (ca)
-            divide(a, g, *ca, false);
-        if (cb)
-            divide(b, g, *cb, false);
-    }
+//clog << "heuristics failed" << endl;
+#if STATISTICS
+               heur_gcd_failed++;
+#endif
+#endif
+//             g = heur_gcd(aex, bex, ca, cb, var);
+//             g = eu_gcd(aex, bex, &x);
+//             g = euprem_gcd(aex, bex, &x);
+//             g = peu_gcd(aex, bex, &x);
+//             g = red_gcd(aex, bex, &x);
+               g = sr_gcd(aex, bex, var);
+               if (g.is_equal(_ex1())) {
+                       // Keep cofactors factored if possible
+                       if (ca)
+                               *ca = a;
+                       if (cb)
+                               *cb = b;
+               } else {
+               if (ca)
+                   divide(aex, g, *ca, false);
+               if (cb)
+                   divide(bex, g, *cb, false);
+               }
+#if 1
+    } else {
+               if (g.is_equal(_ex1())) {
+                       // Keep cofactors factored if possible
+                       if (ca)
+                               *ca = a;
+                       if (cb)
+                               *cb = b;
+               }
+       }
+#endif
     return g;
 }
 
@@ -1157,7 +1627,7 @@ ex gcd(const ex &a, const ex &b, ex *ca, ex *cb, bool check_args)
 ex lcm(const ex &a, const ex &b, bool check_args)
 {
     if (is_ex_exactly_of_type(a, numeric) && is_ex_exactly_of_type(b, numeric))
-        return gcd(ex_to_numeric(a), ex_to_numeric(b));
+        return lcm(ex_to_numeric(a), ex_to_numeric(b));
     if (check_args && !a.info(info_flags::rational_polynomial) || !b.info(info_flags::rational_polynomial))
         throw(std::invalid_argument("lcm: arguments must be polynomials over the rationals"));
     
@@ -1179,8 +1649,8 @@ static ex univariate_gcd(const ex &a, const ex &b, const symbol &x)
         return b;
     if (b.is_zero())
         return a;
-    if (a.is_equal(exONE()) || b.is_equal(exONE()))
-        return exONE();
+    if (a.is_equal(_ex1()) || b.is_equal(_ex1()))
+        return _ex1();
     if (is_ex_of_type(a, numeric) && is_ex_of_type(b, numeric))
         return gcd(ex_to_numeric(a), ex_to_numeric(b));
     if (!a.info(info_flags::rational_polynomial) || !b.info(info_flags::rational_polynomial))
@@ -1215,11 +1685,11 @@ static ex univariate_gcd(const ex &a, const ex &b, const symbol &x)
 ex sqrfree(const ex &a, const symbol &x)
 {
     int i = 1;
-    ex res = exONE();
+    ex res = _ex1();
     ex b = a.diff(x);
     ex c = univariate_gcd(a, b, x);
     ex w;
-    if (c.is_equal(exONE())) {
+    if (c.is_equal(_ex1())) {
         w = a;
     } else {
         w = quo(a, c, x);
@@ -1242,16 +1712,25 @@ ex sqrfree(const ex &a, const symbol &x)
  *  Normal form of rational functions
  */
 
-// Create a symbol for replacing the expression "e" (or return a previously
-// assigned symbol). The symbol is appended to sym_list and returned, the
-// expression is appended to repl_list.
+/*
+ *  Note: The internal normal() functions (= basic::normal() and overloaded
+ *  functions) all return lists of the form {numerator, denominator}. This
+ *  is to get around mul::eval()'s automatic expansion of numeric coefficients.
+ *  E.g. (a+b)/3 is automatically converted to a/3+b/3 but we want to keep
+ *  the information that (a+b) is the numerator and 3 is the denominator.
+ */
+
+/** Create a symbol for replacing the expression "e" (or return a previously
+ *  assigned symbol). The symbol is appended to sym_lst and returned, the
+ *  expression is appended to repl_lst.
+ *  @see ex::normal */
 static ex replace_with_symbol(const ex &e, lst &sym_lst, lst &repl_lst)
 {
     // Expression already in repl_lst? Then return the assigned symbol
-    for (int i=0; i<repl_lst.nops(); i++)
+    for (unsigned i=0; i<repl_lst.nops(); i++)
         if (repl_lst.op(i).is_equal(e))
             return sym_lst.op(i);
-
+    
     // Otherwise create new symbol and add to list, taking care that the
        // replacement expression doesn't contain symbols from the sym_lst
        // because subs() is not recursive
@@ -1263,21 +1742,41 @@ static ex replace_with_symbol(const ex &e, lst &sym_lst, lst &repl_lst)
     return es;
 }
 
+/** Create a symbol for replacing the expression "e" (or return a previously
+ *  assigned symbol). An expression of the form "symbol == expression" is added
+ *  to repl_lst and the symbol is returned.
+ *  @see ex::to_rational */
+static ex replace_with_symbol(const ex &e, lst &repl_lst)
+{
+    // Expression already in repl_lst? Then return the assigned symbol
+    for (unsigned i=0; i<repl_lst.nops(); i++)
+        if (repl_lst.op(i).op(1).is_equal(e))
+            return repl_lst.op(i).op(0);
+    
+    // Otherwise create new symbol and add to list, taking care that the
+       // replacement expression doesn't contain symbols from the sym_lst
+       // because subs() is not recursive
+       symbol s;
+       ex es(s);
+       ex e_replaced = e.subs(repl_lst);
+    repl_lst.append(es == e_replaced);
+    return es;
+}
 
 /** Default implementation of ex::normal(). It replaces the object with a
  *  temporary symbol.
  *  @see ex::normal */
 ex basic::normal(lst &sym_lst, lst &repl_lst, int level) const
 {
-    return replace_with_symbol(*this, sym_lst, repl_lst);
+    return (new lst(replace_with_symbol(*this, sym_lst, repl_lst), _ex1()))->setflag(status_flags::dynallocated);
 }
 
 
-/** Implementation of ex::normal() for symbols. This returns the unmodifies symbol.
+/** Implementation of ex::normal() for symbols. This returns the unmodified symbol.
  *  @see ex::normal */
 ex symbol::normal(lst &sym_lst, lst &repl_lst, int level) const
 {
-    return *this;
+    return (new lst(*this, _ex1()))->setflag(status_flags::dynallocated);
 }
 
 
@@ -1287,53 +1786,53 @@ ex symbol::normal(lst &sym_lst, lst &repl_lst, int level) const
  *  @see ex::normal */
 ex numeric::normal(lst &sym_lst, lst &repl_lst, int level) const
 {
-    if (is_real())
-        if (is_rational())
-            return *this;
-               else
-                   return replace_with_symbol(*this, sym_lst, repl_lst);
-    else { // complex
-        numeric re = real(), im = imag();
-               ex re_ex = re.is_rational() ? re : replace_with_symbol(re, sym_lst, repl_lst);
-               ex im_ex = im.is_rational() ? im : replace_with_symbol(im, sym_lst, repl_lst);
-               return re_ex + im_ex * replace_with_symbol(I, sym_lst, repl_lst);
-       }
-}
+       numeric num = numer();
+       ex numex = num;
+
+    if (num.is_real()) {
+        if (!num.is_integer())
+            numex = replace_with_symbol(numex, sym_lst, repl_lst);
+    } else { // complex
+        numeric re = num.real(), im = num.imag();
+        ex re_ex = re.is_rational() ? re : replace_with_symbol(re, sym_lst, repl_lst);
+        ex im_ex = im.is_rational() ? im : replace_with_symbol(im, sym_lst, repl_lst);
+        numex = re_ex + im_ex * replace_with_symbol(I, sym_lst, repl_lst);
+    }
 
+       // Denominator is always a real integer (see numeric::denom())
+       return (new lst(numex, denom()))->setflag(status_flags::dynallocated);
+}
 
-/*
- *  Helper function for fraction cancellation (returns cancelled fraction n/d)
- */
 
+/** Fraction cancellation.
+ *  @param n  numerator
+ *  @param d  denominator
+ *  @return cancelled fraction {n, d} as a list */
 static ex frac_cancel(const ex &n, const ex &d)
 {
     ex num = n;
     ex den = d;
-    ex pre_factor = exONE();
+    numeric pre_factor = _num1();
+
+//clog << "frac_cancel num = " << num << ", den = " << den << endl;
 
     // Handle special cases where numerator or denominator is 0
     if (num.is_zero())
-        return exZERO();
+               return (new lst(_ex0(), _ex1()))->setflag(status_flags::dynallocated);
     if (den.expand().is_zero())
         throw(std::overflow_error("frac_cancel: division by zero in frac_cancel"));
 
-    // More special cases
-    if (is_ex_exactly_of_type(den, numeric))
-        return num / den;
-    if (num.is_zero())
-        return exZERO();
-
     // Bring numerator and denominator to Z[X] by multiplying with
     // LCM of all coefficients' denominators
-    ex num_lcm = lcm_of_coefficients_denominators(num);
-    ex den_lcm = lcm_of_coefficients_denominators(den);
-    num *= num_lcm;
-    den *= den_lcm;
+    numeric num_lcm = lcm_of_coefficients_denominators(num);
+    numeric den_lcm = lcm_of_coefficients_denominators(den);
+       num = multiply_lcm(num, num_lcm);
+       den = multiply_lcm(den, den_lcm);
     pre_factor = den_lcm / num_lcm;
 
     // Cancel GCD from numerator and denominator
     ex cnum, cden;
-    if (gcd(num, den, &cnum, &cden, false) != exONE()) {
+    if (gcd(num, den, &cnum, &cden, false) != _ex1()) {
                num = cnum;
                den = cden;
        }
@@ -1342,12 +1841,16 @@ static ex frac_cancel(const ex &n, const ex &d)
        // as defined by get_first_symbol() is made positive)
        const symbol *x;
        if (get_first_symbol(den, x)) {
-               if (den.unit(*x).compare(exZERO()) < 0) {
-                       num *= exMINUSONE();
-                       den *= exMINUSONE();
+                GINAC_ASSERT(is_ex_exactly_of_type(den.unit(*x),numeric));
+               if (ex_to_numeric(den.unit(*x)).is_negative()) {
+                       num *= _ex_1();
+                       den *= _ex_1();
                }
        }
-    return pre_factor * num / den;
+
+       // Return result as list
+//clog << " returns num = " << num << ", den = " << den << ", pre_factor = " << pre_factor << endl;
+    return (new lst(num * pre_factor.numer(), den * pre_factor.denom()))->setflag(status_flags::dynallocated);
 }
 
 
@@ -1356,47 +1859,75 @@ static ex frac_cancel(const ex &n, const ex &d)
  *  @see ex::normal */
 ex add::normal(lst &sym_lst, lst &repl_lst, int level) const
 {
-    // Normalize and expand children
+       if (level == 1)
+               return (new lst(*this, _ex1()))->setflag(status_flags::dynallocated);
+       else if (level == -max_recursion_level)
+        throw(std::runtime_error("max recursion level reached"));
+
+    // Normalize and expand children, chop into summands
     exvector o;
     o.reserve(seq.size()+1);
     epvector::const_iterator it = seq.begin(), itend = seq.end();
     while (it != itend) {
+
+               // Normalize and expand child
         ex n = recombine_pair_to_ex(*it).bp->normal(sym_lst, repl_lst, level-1).expand();
-        if (is_ex_exactly_of_type(n, add)) {
-            epvector::const_iterator bit = (static_cast<add *>(n.bp))->seq.begin(), bitend = (static_cast<add *>(n.bp))->seq.end();
+
+               // If numerator is a sum, chop into summands
+        if (is_ex_exactly_of_type(n.op(0), add)) {
+            epvector::const_iterator bit = ex_to_add(n.op(0)).seq.begin(), bitend = ex_to_add(n.op(0)).seq.end();
             while (bit != bitend) {
-                o.push_back(recombine_pair_to_ex(*bit));
+                o.push_back((new lst(recombine_pair_to_ex(*bit), n.op(1)))->setflag(status_flags::dynallocated));
                 bit++;
             }
-            o.push_back((static_cast<add *>(n.bp))->overall_coeff);
+
+                       // The overall_coeff is already normalized (== rational), we just
+                       // split it into numerator and denominator
+                       GINAC_ASSERT(ex_to_numeric(ex_to_add(n.op(0)).overall_coeff).is_rational());
+                       numeric overall = ex_to_numeric(ex_to_add(n.op(0)).overall_coeff);
+            o.push_back((new lst(overall.numer(), overall.denom() * n.op(1)))->setflag(status_flags::dynallocated));
         } else
             o.push_back(n);
         it++;
     }
     o.push_back(overall_coeff.bp->normal(sym_lst, repl_lst, level-1));
 
+       // o is now a vector of {numerator, denominator} lists
+
     // Determine common denominator
-    ex den = exONE();
+    ex den = _ex1();
     exvector::const_iterator ait = o.begin(), aitend = o.end();
+//clog << "add::normal uses the following summands:\n";
     while (ait != aitend) {
-        den = lcm((*ait).denom(false), den, false);
+//clog << " num = " << ait->op(0) << ", den = " << ait->op(1) << endl;
+        den = lcm(ait->op(1), den, false);
         ait++;
     }
+//clog << " common denominator = " << den << endl;
 
     // Add fractions
-    if (den.is_equal(exONE()))
-        return (new add(o))->setflag(status_flags::dynallocated);
-    else {
+    if (den.is_equal(_ex1())) {
+
+               // Common denominator is 1, simply add all numerators
+        exvector num_seq;
+               for (ait=o.begin(); ait!=aitend; ait++) {
+                       num_seq.push_back(ait->op(0));
+               }
+               return (new lst((new add(num_seq))->setflag(status_flags::dynallocated), den))->setflag(status_flags::dynallocated);
+
+       } else {
+
+               // Perform fractional addition
         exvector num_seq;
         for (ait=o.begin(); ait!=aitend; ait++) {
             ex q;
-            if (!divide(den, (*ait).denom(false), q, false)) {
+            if (!divide(den, ait->op(1), q, false)) {
                 // should not happen
                 throw(std::runtime_error("invalid expression in add::normal, division failed"));
             }
-            num_seq.push_back((*ait).numer(false) * q);
+            num_seq.push_back((ait->op(0) * q).expand());
         }
-        ex num = add(num_seq);
+        ex num = (new add(num_seq))->setflag(status_flags::dynallocated);
 
         // Cancel common factors from num/den
         return frac_cancel(num, den);
@@ -1409,17 +1940,28 @@ ex add::normal(lst &sym_lst, lst &repl_lst, int level) const
  *  @see ex::normal() */
 ex mul::normal(lst &sym_lst, lst &repl_lst, int level) const
 {
-    // Normalize children
-    exvector o;
-    o.reserve(seq.size()+1);
+       if (level == 1)
+               return (new lst(*this, _ex1()))->setflag(status_flags::dynallocated);
+       else if (level == -max_recursion_level)
+        throw(std::runtime_error("max recursion level reached"));
+
+    // Normalize children, separate into numerator and denominator
+       ex num = _ex1();
+       ex den = _ex1(); 
+       ex n;
     epvector::const_iterator it = seq.begin(), itend = seq.end();
     while (it != itend) {
-        o.push_back(recombine_pair_to_ex(*it).bp->normal(sym_lst, repl_lst, level-1));
+               n = recombine_pair_to_ex(*it).bp->normal(sym_lst, repl_lst, level-1);
+               num *= n.op(0);
+               den *= n.op(1);
         it++;
     }
-    o.push_back(overall_coeff.bp->normal(sym_lst, repl_lst, level-1));
-    ex n = (new mul(o))->setflag(status_flags::dynallocated);
-    return frac_cancel(n.numer(false), n.denom(false));
+       n = overall_coeff.bp->normal(sym_lst, repl_lst, level-1);
+       num *= n.op(0);
+       den *= n.op(1);
+
+       // Perform fraction cancellation
+    return frac_cancel(num, den);
 }
 
 
@@ -1429,24 +1971,60 @@ ex mul::normal(lst &sym_lst, lst &repl_lst, int level) const
  *  @see ex::normal */
 ex power::normal(lst &sym_lst, lst &repl_lst, int level) const
 {
-    if (exponent.info(info_flags::integer)) {
-        // Integer powers are distributed
-        ex n = basis.bp->normal(sym_lst, repl_lst, level-1);
-        ex num = n.numer(false);
-        ex den = n.denom(false);
-        return power(num, exponent) / power(den, exponent);
-    } else {
-        // Non-integer powers are replaced by temporary symbol (after normalizing basis)
-        ex n = power(basis.bp->normal(sym_lst, repl_lst, level-1), exponent);
-        return replace_with_symbol(n, sym_lst, repl_lst);
+       if (level == 1)
+               return (new lst(*this, _ex1()))->setflag(status_flags::dynallocated);
+       else if (level == -max_recursion_level)
+        throw(std::runtime_error("max recursion level reached"));
+
+       // Normalize basis
+    ex n = basis.bp->normal(sym_lst, repl_lst, level-1);
+
+       if (exponent.info(info_flags::integer)) {
+
+           if (exponent.info(info_flags::positive)) {
+
+                       // (a/b)^n -> {a^n, b^n}
+                       return (new lst(power(n.op(0), exponent), power(n.op(1), exponent)))->setflag(status_flags::dynallocated);
+
+               } else if (exponent.info(info_flags::negative)) {
+
+                       // (a/b)^-n -> {b^n, a^n}
+                       return (new lst(power(n.op(1), -exponent), power(n.op(0), -exponent)))->setflag(status_flags::dynallocated);
+               }
+
+       } else {
+
+               if (exponent.info(info_flags::positive)) {
+
+                       // (a/b)^x -> {sym((a/b)^x), 1}
+                       return (new lst(replace_with_symbol(power(n.op(0) / n.op(1), exponent), sym_lst, repl_lst), _ex1()))->setflag(status_flags::dynallocated);
+
+               } else if (exponent.info(info_flags::negative)) {
+
+                       if (n.op(1).is_equal(_ex1())) {
+
+                               // a^-x -> {1, sym(a^x)}
+                               return (new lst(_ex1(), replace_with_symbol(power(n.op(0), -exponent), sym_lst, repl_lst)))->setflag(status_flags::dynallocated);
+
+                       } else {
+
+                               // (a/b)^-x -> {sym((b/a)^x), 1}
+                               return (new lst(replace_with_symbol(power(n.op(1) / n.op(0), -exponent), sym_lst, repl_lst), _ex1()))->setflag(status_flags::dynallocated);
+                       }
+
+               } else {        // exponent not numeric
+
+                       // (a/b)^x -> {sym((a/b)^x, 1}
+                       return (new lst(replace_with_symbol(power(n.op(0) / n.op(1), exponent), sym_lst, repl_lst), _ex1()))->setflag(status_flags::dynallocated);
+               }
     }
 }
 
 
-/** Implementation of ex::normal() for series. It normalizes each coefficient and
+/** Implementation of ex::normal() for pseries. It normalizes each coefficient and
  *  replaces the series by a temporary symbol.
  *  @see ex::normal */
-ex series::normal(lst &sym_lst, lst &repl_lst, int level) const
+ex pseries::normal(lst &sym_lst, lst &repl_lst, int level) const
 {
     epvector new_seq;
     new_seq.reserve(seq.size());
@@ -1456,9 +2034,16 @@ ex series::normal(lst &sym_lst, lst &repl_lst, int level) const
         new_seq.push_back(expair(it->rest.normal(), it->coeff));
         it++;
     }
+    ex n = pseries(relational(var,point), new_seq);
+       return (new lst(replace_with_symbol(n, sym_lst, repl_lst), _ex1()))->setflag(status_flags::dynallocated);
+}
+
 
-    ex n = series(var, point, new_seq);
-    return replace_with_symbol(n, sym_lst, repl_lst);
+/** Implementation of ex::normal() for relationals. It normalizes both sides.
+ *  @see ex::normal */
+ex relational::normal(lst &sym_lst, lst &repl_lst, int level) const
+{
+       return (new lst(relational(lh.normal(), rh.normal(), o), _ex1()))->setflag(status_flags::dynallocated);
 }
 
 
@@ -1466,8 +2051,8 @@ ex series::normal(lst &sym_lst, lst &repl_lst, int level) const
  *  This function converts an expression to its normal form
  *  "numerator/denominator", where numerator and denominator are (relatively
  *  prime) polynomials. Any subexpressions which are not rational functions
- *  (like non-rational numbers, non-integer powers or functions like Sin(),
- *  Cos() etc.) are replaced by temporary symbols which are re-substituted by
+ *  (like non-rational numbers, non-integer powers or functions like sin(),
+ *  cos() etc.) are replaced by temporary symbols which are re-substituted by
  *  the (normalized) subexpressions before normal() returns (this way, any
  *  expression can be treated as a rational function). normal() is applied
  *  recursively to arguments of functions etc.
@@ -1477,9 +2062,147 @@ ex series::normal(lst &sym_lst, lst &repl_lst, int level) const
 ex ex::normal(int level) const
 {
     lst sym_lst, repl_lst;
+
     ex e = bp->normal(sym_lst, repl_lst, level);
+       GINAC_ASSERT(is_ex_of_type(e, lst));
+
+       // Re-insert replaced symbols
     if (sym_lst.nops() > 0)
-        return e.subs(sym_lst, repl_lst);
-    else
-        return e;
+        e = e.subs(sym_lst, repl_lst);
+
+       // Convert {numerator, denominator} form back to fraction
+    return e.op(0) / e.op(1);
+}
+
+/** Numerator of an expression. If the expression is not of the normal form
+ *  "numerator/denominator", it is first converted to this form and then the
+ *  numerator is returned.
+ *
+ *  @see ex::normal
+ *  @return numerator */
+ex ex::numer(void) const
+{
+    lst sym_lst, repl_lst;
+
+    ex e = bp->normal(sym_lst, repl_lst, 0);
+       GINAC_ASSERT(is_ex_of_type(e, lst));
+
+       // Re-insert replaced symbols
+    if (sym_lst.nops() > 0)
+        return e.op(0).subs(sym_lst, repl_lst);
+       else
+               return e.op(0);
+}
+
+/** Denominator of an expression. If the expression is not of the normal form
+ *  "numerator/denominator", it is first converted to this form and then the
+ *  denominator is returned.
+ *
+ *  @see ex::normal
+ *  @return denominator */
+ex ex::denom(void) const
+{
+    lst sym_lst, repl_lst;
+
+    ex e = bp->normal(sym_lst, repl_lst, 0);
+       GINAC_ASSERT(is_ex_of_type(e, lst));
+
+       // Re-insert replaced symbols
+    if (sym_lst.nops() > 0)
+        return e.op(1).subs(sym_lst, repl_lst);
+       else
+               return e.op(1);
+}
+
+
+/** Default implementation of ex::to_rational(). It replaces the object with a
+ *  temporary symbol.
+ *  @see ex::to_rational */
+ex basic::to_rational(lst &repl_lst) const
+{
+       return replace_with_symbol(*this, repl_lst);
+}
+
+
+/** Implementation of ex::to_rational() for symbols. This returns the
+ *  unmodified symbol.
+ *  @see ex::to_rational */
+ex symbol::to_rational(lst &repl_lst) const
+{
+    return *this;
 }
+
+
+/** Implementation of ex::to_rational() for a numeric. It splits complex
+ *  numbers into re+I*im and replaces I and non-rational real numbers with a
+ *  temporary symbol.
+ *  @see ex::to_rational */
+ex numeric::to_rational(lst &repl_lst) const
+{
+    if (is_real()) {
+        if (!is_rational())
+            return replace_with_symbol(*this, repl_lst);
+    } else { // complex
+        numeric re = real();
+        numeric im = imag();
+        ex re_ex = re.is_rational() ? re : replace_with_symbol(re, repl_lst);
+        ex im_ex = im.is_rational() ? im : replace_with_symbol(im, repl_lst);
+        return re_ex + im_ex * replace_with_symbol(I, repl_lst);
+    }
+       return *this;
+}
+
+
+/** Implementation of ex::to_rational() for powers. It replaces non-integer
+ *  powers by temporary symbols.
+ *  @see ex::to_rational */
+ex power::to_rational(lst &repl_lst) const
+{
+       if (exponent.info(info_flags::integer))
+               return power(basis.to_rational(repl_lst), exponent);
+       else
+               return replace_with_symbol(*this, repl_lst);
+}
+
+
+/** Implementation of ex::to_rational() for expairseqs.
+ *  @see ex::to_rational */
+ex expairseq::to_rational(lst &repl_lst) const
+{
+    epvector s;
+    s.reserve(seq.size());
+    for (epvector::const_iterator it=seq.begin(); it!=seq.end(); ++it) {
+        s.push_back(split_ex_to_pair(recombine_pair_to_ex(*it).to_rational(repl_lst)));
+        // s.push_back(combine_ex_with_coeff_to_pair((*it).rest.to_rational(repl_lst),
+    }
+    ex oc = overall_coeff.to_rational(repl_lst);
+    if (oc.info(info_flags::numeric))
+        return thisexpairseq(s, overall_coeff);
+    else s.push_back(combine_ex_with_coeff_to_pair(oc,_ex1()));
+    return thisexpairseq(s, default_overall_coeff());
+}
+
+
+/** Rationalization of non-rational functions.
+ *  This function converts a general expression to a rational polynomial
+ *  by replacing all non-rational subexpressions (like non-rational numbers,
+ *  non-integer powers or functions like sin(), cos() etc.) to temporary
+ *  symbols. This makes it possible to use functions like gcd() and divide()
+ *  on non-rational functions by applying to_rational() on the arguments,
+ *  calling the desired function and re-substituting the temporary symbols
+ *  in the result. To make the last step possible, all temporary symbols and
+ *  their associated expressions are collected in the list specified by the
+ *  repl_lst parameter in the form {symbol == expression}, ready to be passed
+ *  as an argument to ex::subs().
+ *
+ *  @param repl_lst collects a list of all temporary symbols and their replacements
+ *  @return rationalized expression */
+ex ex::to_rational(lst &repl_lst) const
+{
+       return bp->to_rational(repl_lst);
+}
+
+
+#ifndef NO_NAMESPACE_GINAC
+} // namespace GiNaC
+#endif // ndef NO_NAMESPACE_GINAC