]> www.ginac.de Git - ginac.git/blobdiff - ginac/normal.cpp
subs() and normal() use maps instead of lists, resulting in a huge performance
[ginac.git] / ginac / normal.cpp
index 67091f5003aef503359fdee4814f3c4e07d504be..3a8a82fc358512ea89614af13046a421ca76473b 100644 (file)
@@ -6,7 +6,7 @@
  *  computation, square-free factorization and rational function normalization. */
 
 /*
- *  GiNaC Copyright (C) 1999-2002 Johannes Gutenberg University Mainz, Germany
+ *  GiNaC Copyright (C) 1999-2003 Johannes Gutenberg University Mainz, Germany
  *
  *  This program is free software; you can redistribute it and/or modify
  *  it under the terms of the GNU General Public License as published by
@@ -39,6 +39,7 @@
 #include "numeric.h"
 #include "power.h"
 #include "relational.h"
+#include "operators.h"
 #include "matrix.h"
 #include "pseries.h"
 #include "symbol.h"
@@ -92,14 +93,14 @@ static struct _stat_print {
  *  @return "false" if no symbol was found, "true" otherwise */
 static bool get_first_symbol(const ex &e, const symbol *&x)
 {
-       if (is_ex_exactly_of_type(e, symbol)) {
+       if (is_a<symbol>(e)) {
                x = &ex_to<symbol>(e);
                return true;
-       } else if (is_ex_exactly_of_type(e, add) || is_ex_exactly_of_type(e, mul)) {
-               for (unsigned i=0; i<e.nops(); i++)
+       } else if (is_exactly_a<add>(e) || is_exactly_a<mul>(e)) {
+               for (size_t i=0; i<e.nops(); i++)
                        if (get_first_symbol(e.op(i), x))
                                return true;
-       } else if (is_ex_exactly_of_type(e, power)) {
+       } else if (is_exactly_a<power>(e)) {
                if (get_first_symbol(e.op(0), x))
                        return true;
        }
@@ -137,7 +138,7 @@ struct sym_desc {
        int max_deg;
 
        /** Maximum number of terms of leading coefficient of symbol in both polynomials */
-       int max_lcnops;
+       size_t max_lcnops;
 
        /** Commparison operator for sorting */
        bool operator<(const sym_desc &x) const
@@ -169,12 +170,12 @@ static void add_symbol(const symbol *s, sym_desc_vec &v)
 // Collect all symbols of an expression (used internally by get_symbol_stats())
 static void collect_symbols(const ex &e, sym_desc_vec &v)
 {
-       if (is_ex_exactly_of_type(e, symbol)) {
+       if (is_a<symbol>(e)) {
                add_symbol(&ex_to<symbol>(e), v);
-       } else if (is_ex_exactly_of_type(e, add) || is_ex_exactly_of_type(e, mul)) {
-               for (unsigned i=0; i<e.nops(); i++)
+       } else if (is_exactly_a<add>(e) || is_exactly_a<mul>(e)) {
+               for (size_t i=0; i<e.nops(); i++)
                        collect_symbols(e.op(i), v);
-       } else if (is_ex_exactly_of_type(e, power)) {
+       } else if (is_exactly_a<power>(e)) {
                collect_symbols(e.op(0), v);
        }
 }
@@ -208,6 +209,7 @@ static void get_symbol_stats(const ex &a, const ex &b, sym_desc_vec &v)
                ++it;
        }
        std::sort(v.begin(), v.end());
+
 #if 0
        std::clog << "Symbols:\n";
        it = v.begin(); itend = v.end();
@@ -230,18 +232,18 @@ static numeric lcmcoeff(const ex &e, const numeric &l)
 {
        if (e.info(info_flags::rational))
                return lcm(ex_to<numeric>(e).denom(), l);
-       else if (is_ex_exactly_of_type(e, add)) {
+       else if (is_exactly_a<add>(e)) {
                numeric c = _num1;
-               for (unsigned i=0; i<e.nops(); i++)
+               for (size_t i=0; i<e.nops(); i++)
                        c = lcmcoeff(e.op(i), c);
                return lcm(c, l);
-       } else if (is_ex_exactly_of_type(e, mul)) {
+       } else if (is_exactly_a<mul>(e)) {
                numeric c = _num1;
-               for (unsigned i=0; i<e.nops(); i++)
+               for (size_t i=0; i<e.nops(); i++)
                        c *= lcmcoeff(e.op(i), _num1);
                return lcm(c, l);
-       } else if (is_ex_exactly_of_type(e, power)) {
-               if (is_ex_exactly_of_type(e.op(0), symbol))
+       } else if (is_exactly_a<power>(e)) {
+               if (is_a<symbol>(e.op(0)))
                        return l;
                else
                        return pow(lcmcoeff(e.op(0), l), ex_to<numeric>(e.op(1)));
@@ -268,25 +270,25 @@ static numeric lcm_of_coefficients_denominators(const ex &e)
  *  @param lcm  LCM to multiply in */
 static ex multiply_lcm(const ex &e, const numeric &lcm)
 {
-       if (is_ex_exactly_of_type(e, mul)) {
-               unsigned num = e.nops();
+       if (is_exactly_a<mul>(e)) {
+               size_t num = e.nops();
                exvector v; v.reserve(num + 1);
                numeric lcm_accum = _num1;
-               for (unsigned i=0; i<e.nops(); i++) {
+               for (size_t i=0; i<num; i++) {
                        numeric op_lcm = lcmcoeff(e.op(i), _num1);
                        v.push_back(multiply_lcm(e.op(i), op_lcm));
                        lcm_accum *= op_lcm;
                }
                v.push_back(lcm / lcm_accum);
                return (new mul(v))->setflag(status_flags::dynallocated);
-       } else if (is_ex_exactly_of_type(e, add)) {
-               unsigned num = e.nops();
+       } else if (is_exactly_a<add>(e)) {
+               size_t num = e.nops();
                exvector v; v.reserve(num);
-               for (unsigned i=0; i<num; i++)
+               for (size_t i=0; i<num; i++)
                        v.push_back(multiply_lcm(e.op(i), lcm));
                return (new add(v))->setflag(status_flags::dynallocated);
-       } else if (is_ex_exactly_of_type(e, power)) {
-               if (is_ex_exactly_of_type(e.op(0), symbol))
+       } else if (is_exactly_a<power>(e)) {
+               if (is_a<symbol>(e.op(0)))
                        return e * lcm;
                else
                        return pow(multiply_lcm(e.op(0), lcm.power(ex_to<numeric>(e.op(1)).inverse())), e.op(1));
@@ -300,23 +302,22 @@ static ex multiply_lcm(const ex &e, const numeric &lcm)
  *
  *  @param e  expanded polynomial
  *  @return integer content */
-numeric ex::integer_content(void) const
+numeric ex::integer_content() const
 {
-       GINAC_ASSERT(bp!=0);
        return bp->integer_content();
 }
 
-numeric basic::integer_content(void) const
+numeric basic::integer_content() const
 {
        return _num1;
 }
 
-numeric numeric::integer_content(void) const
+numeric numeric::integer_content() const
 {
        return abs(*this);
 }
 
-numeric add::integer_content(void) const
+numeric add::integer_content() const
 {
        epvector::const_iterator it = seq.begin();
        epvector::const_iterator itend = seq.end();
@@ -332,7 +333,7 @@ numeric add::integer_content(void) const
        return c;
 }
 
-numeric mul::integer_content(void) const
+numeric mul::integer_content() const
 {
 #ifdef DO_GINAC_ASSERT
        epvector::const_iterator it = seq.begin();
@@ -364,7 +365,7 @@ ex quo(const ex &a, const ex &b, const symbol &x, bool check_args)
 {
        if (b.is_zero())
                throw(std::overflow_error("quo: division by zero"));
-       if (is_ex_exactly_of_type(a, numeric) && is_ex_exactly_of_type(b, numeric))
+       if (is_exactly_a<numeric>(a) && is_exactly_a<numeric>(b))
                return a / b;
 #if FAST_COMPARE
        if (a.is_equal(b))
@@ -380,7 +381,7 @@ ex quo(const ex &a, const ex &b, const symbol &x, bool check_args)
        int bdeg = b.degree(x);
        int rdeg = r.degree(x);
        ex blcoeff = b.expand().coeff(x, bdeg);
-       bool blcoeff_is_numeric = is_ex_exactly_of_type(blcoeff, numeric);
+       bool blcoeff_is_numeric = is_exactly_a<numeric>(blcoeff);
        exvector v; v.reserve(std::max(rdeg - bdeg + 1, 0));
        while (rdeg >= bdeg) {
                ex term, rcoeff = r.coeff(x, rdeg);
@@ -414,8 +415,8 @@ ex rem(const ex &a, const ex &b, const symbol &x, bool check_args)
 {
        if (b.is_zero())
                throw(std::overflow_error("rem: division by zero"));
-       if (is_ex_exactly_of_type(a, numeric)) {
-               if  (is_ex_exactly_of_type(b, numeric))
+       if (is_exactly_a<numeric>(a)) {
+               if  (is_exactly_a<numeric>(b))
                        return _ex0;
                else
                        return a;
@@ -434,7 +435,7 @@ ex rem(const ex &a, const ex &b, const symbol &x, bool check_args)
        int bdeg = b.degree(x);
        int rdeg = r.degree(x);
        ex blcoeff = b.expand().coeff(x, bdeg);
-       bool blcoeff_is_numeric = is_ex_exactly_of_type(blcoeff, numeric);
+       bool blcoeff_is_numeric = is_exactly_a<numeric>(blcoeff);
        while (rdeg >= bdeg) {
                ex term, rcoeff = r.coeff(x, rdeg);
                if (blcoeff_is_numeric)
@@ -464,7 +465,7 @@ ex decomp_rational(const ex &a, const symbol &x)
        ex nd = numer_denom(a);
        ex numer = nd.op(0), denom = nd.op(1);
        ex q = quo(numer, denom, x);
-       if (is_ex_exactly_of_type(q, fail))
+       if (is_exactly_a<fail>(q))
                return a;
        else
                return q + rem(numer, denom, x) / denom;
@@ -483,8 +484,8 @@ ex prem(const ex &a, const ex &b, const symbol &x, bool check_args)
 {
        if (b.is_zero())
                throw(std::overflow_error("prem: division by zero"));
-       if (is_ex_exactly_of_type(a, numeric)) {
-               if (is_ex_exactly_of_type(b, numeric))
+       if (is_exactly_a<numeric>(a)) {
+               if (is_exactly_a<numeric>(b))
                        return _ex0;
                else
                        return b;
@@ -535,8 +536,8 @@ ex sprem(const ex &a, const ex &b, const symbol &x, bool check_args)
 {
        if (b.is_zero())
                throw(std::overflow_error("prem: division by zero"));
-       if (is_ex_exactly_of_type(a, numeric)) {
-               if (is_ex_exactly_of_type(b, numeric))
+       if (is_exactly_a<numeric>(a)) {
+               if (is_exactly_a<numeric>(b))
                        return _ex0;
                else
                        return b;
@@ -590,10 +591,10 @@ bool divide(const ex &a, const ex &b, ex &q, bool check_args)
                q = _ex0;
                return true;
        }
-       if (is_ex_exactly_of_type(b, numeric)) {
+       if (is_exactly_a<numeric>(b)) {
                q = a / b;
                return true;
-       } else if (is_ex_exactly_of_type(a, numeric))
+       } else if (is_exactly_a<numeric>(a))
                return false;
 #if FAST_COMPARE
        if (a.is_equal(b)) {
@@ -619,7 +620,7 @@ bool divide(const ex &a, const ex &b, ex &q, bool check_args)
        int bdeg = b.degree(*x);
        int rdeg = r.degree(*x);
        ex blcoeff = b.expand().coeff(*x, bdeg);
-       bool blcoeff_is_numeric = is_ex_exactly_of_type(blcoeff, numeric);
+       bool blcoeff_is_numeric = is_exactly_a<numeric>(blcoeff);
        exvector v; v.reserve(std::max(rdeg - bdeg + 1, 0));
        while (rdeg >= bdeg) {
                ex term, rcoeff = r.coeff(*x, rdeg);
@@ -686,8 +687,8 @@ static bool divide_in_z(const ex &a, const ex &b, ex &q, sym_desc_vec::const_ite
                q = a;
                return true;
        }
-       if (is_ex_exactly_of_type(a, numeric)) {
-               if (is_ex_exactly_of_type(b, numeric)) {
+       if (is_exactly_a<numeric>(a)) {
+               if (is_exactly_a<numeric>(b)) {
                        q = a / b;
                        return q.info(info_flags::integer);
                } else
@@ -821,7 +822,7 @@ static bool divide_in_z(const ex &a, const ex &b, ex &q, sym_desc_vec::const_ite
 ex ex::unit(const symbol &x) const
 {
        ex c = expand().lcoeff(x);
-       if (is_ex_exactly_of_type(c, numeric))
+       if (is_exactly_a<numeric>(c))
                return c < _ex0 ? _ex_1 : _ex1;
        else {
                const symbol *y;
@@ -844,7 +845,7 @@ ex ex::content(const symbol &x) const
 {
        if (is_zero())
                return _ex0;
-       if (is_ex_exactly_of_type(*this, numeric))
+       if (is_exactly_a<numeric>(*this))
                return info(info_flags::negative) ? -*this : *this;
        ex e = expand();
        if (e.is_zero())
@@ -880,14 +881,14 @@ ex ex::primpart(const symbol &x) const
 {
        if (is_zero())
                return _ex0;
-       if (is_ex_exactly_of_type(*this, numeric))
+       if (is_exactly_a<numeric>(*this))
                return _ex1;
 
        ex c = content(x);
        if (c.is_zero())
                return _ex0;
        ex u = unit(x);
-       if (is_ex_exactly_of_type(c, numeric))
+       if (is_exactly_a<numeric>(c))
                return *this / (c * u);
        else
                return quo(*this, c * u, x, false);
@@ -907,11 +908,11 @@ ex ex::primpart(const symbol &x, const ex &c) const
                return _ex0;
        if (c.is_zero())
                return _ex0;
-       if (is_ex_exactly_of_type(*this, numeric))
+       if (is_exactly_a<numeric>(*this))
                return _ex1;
 
        ex u = unit(x);
-       if (is_ex_exactly_of_type(c, numeric))
+       if (is_exactly_a<numeric>(c))
                return *this / (c * u);
        else
                return quo(*this, c * u, x, false);
@@ -922,206 +923,6 @@ ex ex::primpart(const symbol &x, const ex &c) const
  *  GCD of multivariate polynomials
  */
 
-/** Compute GCD of polynomials in Q[X] using the Euclidean algorithm (not
- *  really suited for multivariate GCDs). This function is only provided for
- *  testing purposes.
- *
- *  @param a  first multivariate polynomial
- *  @param b  second multivariate polynomial
- *  @param x  pointer to symbol (main variable) in which to compute the GCD in
- *  @return the GCD as a new expression
- *  @see gcd */
-
-static ex eu_gcd(const ex &a, const ex &b, const symbol *x)
-{
-//std::clog << "eu_gcd(" << a << "," << b << ")\n";
-
-       // Sort c and d so that c has higher degree
-       ex c, d;
-       int adeg = a.degree(*x), bdeg = b.degree(*x);
-       if (adeg >= bdeg) {
-               c = a;
-               d = b;
-       } else {
-               c = b;
-               d = a;
-       }
-
-       // Normalize in Q[x]
-       c = c / c.lcoeff(*x);
-       d = d / d.lcoeff(*x);
-
-       // Euclidean algorithm
-       ex r;
-       for (;;) {
-//std::clog << " d = " << d << endl;
-               r = rem(c, d, *x, false);
-               if (r.is_zero())
-                       return d / d.lcoeff(*x);
-               c = d;
-               d = r;
-       }
-}
-
-
-/** Compute GCD of multivariate polynomials using the Euclidean PRS algorithm
- *  with pseudo-remainders ("World's Worst GCD Algorithm", staying in Z[X]).
- *  This function is only provided for testing purposes.
- *
- *  @param a  first multivariate polynomial
- *  @param b  second multivariate polynomial
- *  @param x  pointer to symbol (main variable) in which to compute the GCD in
- *  @return the GCD as a new expression
- *  @see gcd */
-
-static ex euprem_gcd(const ex &a, const ex &b, const symbol *x)
-{
-//std::clog << "euprem_gcd(" << a << "," << b << ")\n";
-
-       // Sort c and d so that c has higher degree
-       ex c, d;
-       int adeg = a.degree(*x), bdeg = b.degree(*x);
-       if (adeg >= bdeg) {
-               c = a;
-               d = b;
-       } else {
-               c = b;
-               d = a;
-       }
-
-       // Calculate GCD of contents
-       ex gamma = gcd(c.content(*x), d.content(*x), NULL, NULL, false);
-
-       // Euclidean algorithm with pseudo-remainders
-       ex r;
-       for (;;) {
-//std::clog << " d = " << d << endl;
-               r = prem(c, d, *x, false);
-               if (r.is_zero())
-                       return d.primpart(*x) * gamma;
-               c = d;
-               d = r;
-       }
-}
-
-
-/** Compute GCD of multivariate polynomials using the primitive Euclidean
- *  PRS algorithm (complete content removal at each step). This function is
- *  only provided for testing purposes.
- *
- *  @param a  first multivariate polynomial
- *  @param b  second multivariate polynomial
- *  @param x  pointer to symbol (main variable) in which to compute the GCD in
- *  @return the GCD as a new expression
- *  @see gcd */
-
-static ex peu_gcd(const ex &a, const ex &b, const symbol *x)
-{
-//std::clog << "peu_gcd(" << a << "," << b << ")\n";
-
-       // Sort c and d so that c has higher degree
-       ex c, d;
-       int adeg = a.degree(*x), bdeg = b.degree(*x);
-       int ddeg;
-       if (adeg >= bdeg) {
-               c = a;
-               d = b;
-               ddeg = bdeg;
-       } else {
-               c = b;
-               d = a;
-               ddeg = adeg;
-       }
-
-       // Remove content from c and d, to be attached to GCD later
-       ex cont_c = c.content(*x);
-       ex cont_d = d.content(*x);
-       ex gamma = gcd(cont_c, cont_d, NULL, NULL, false);
-       if (ddeg == 0)
-               return gamma;
-       c = c.primpart(*x, cont_c);
-       d = d.primpart(*x, cont_d);
-
-       // Euclidean algorithm with content removal
-       ex r;
-       for (;;) {
-//std::clog << " d = " << d << endl;
-               r = prem(c, d, *x, false);
-               if (r.is_zero())
-                       return gamma * d;
-               c = d;
-               d = r.primpart(*x);
-       }
-}
-
-
-/** Compute GCD of multivariate polynomials using the reduced PRS algorithm.
- *  This function is only provided for testing purposes.
- *
- *  @param a  first multivariate polynomial
- *  @param b  second multivariate polynomial
- *  @param x  pointer to symbol (main variable) in which to compute the GCD in
- *  @return the GCD as a new expression
- *  @see gcd */
-
-static ex red_gcd(const ex &a, const ex &b, const symbol *x)
-{
-//std::clog << "red_gcd(" << a << "," << b << ")\n";
-
-       // Sort c and d so that c has higher degree
-       ex c, d;
-       int adeg = a.degree(*x), bdeg = b.degree(*x);
-       int cdeg, ddeg;
-       if (adeg >= bdeg) {
-               c = a;
-               d = b;
-               cdeg = adeg;
-               ddeg = bdeg;
-       } else {
-               c = b;
-               d = a;
-               cdeg = bdeg;
-               ddeg = adeg;
-       }
-
-       // Remove content from c and d, to be attached to GCD later
-       ex cont_c = c.content(*x);
-       ex cont_d = d.content(*x);
-       ex gamma = gcd(cont_c, cont_d, NULL, NULL, false);
-       if (ddeg == 0)
-               return gamma;
-       c = c.primpart(*x, cont_c);
-       d = d.primpart(*x, cont_d);
-
-       // First element of divisor sequence
-       ex r, ri = _ex1;
-       int delta = cdeg - ddeg;
-
-       for (;;) {
-               // Calculate polynomial pseudo-remainder
-//std::clog << " d = " << d << endl;
-               r = prem(c, d, *x, false);
-               if (r.is_zero())
-                       return gamma * d.primpart(*x);
-               c = d;
-               cdeg = ddeg;
-
-               if (!divide(r, pow(ri, delta), d, false))
-                       throw(std::runtime_error("invalid expression in red_gcd(), division failed"));
-               ddeg = d.degree(*x);
-               if (ddeg == 0) {
-                       if (is_ex_exactly_of_type(r, numeric))
-                               return gamma;
-                       else
-                               return gamma * r.primpart(*x);
-               }
-
-               ri = c.expand().lcoeff(*x);
-               delta = cdeg - ddeg;
-       }
-}
-
-
 /** Compute GCD of multivariate polynomials using the subresultant PRS
  *  algorithm. This function is used internally by gcd().
  *
@@ -1133,7 +934,6 @@ static ex red_gcd(const ex &a, const ex &b, const symbol *x)
 
 static ex sr_gcd(const ex &a, const ex &b, sym_desc_vec::const_iterator var)
 {
-//std::clog << "sr_gcd(" << a << "," << b << ")\n";
 #if STATISTICS
        sr_gcd_called++;
 #endif
@@ -1165,34 +965,31 @@ static ex sr_gcd(const ex &a, const ex &b, sym_desc_vec::const_iterator var)
                return gamma;
        c = c.primpart(x, cont_c);
        d = d.primpart(x, cont_d);
-//std::clog << " content " << gamma << " removed, continuing with sr_gcd(" << c << "," << d << ")\n";
 
        // First element of subresultant sequence
        ex r = _ex0, ri = _ex1, psi = _ex1;
        int delta = cdeg - ddeg;
 
        for (;;) {
+
                // Calculate polynomial pseudo-remainder
-//std::clog << " start of loop, psi = " << psi << ", calculating pseudo-remainder...\n";
-//std::clog << " d = " << d << endl;
                r = prem(c, d, x, false);
                if (r.is_zero())
                        return gamma * d.primpart(x);
+
                c = d;
                cdeg = ddeg;
-//std::clog << " dividing...\n";
                if (!divide_in_z(r, ri * pow(psi, delta), d, var))
                        throw(std::runtime_error("invalid expression in sr_gcd(), division failed"));
                ddeg = d.degree(x);
                if (ddeg == 0) {
-                       if (is_ex_exactly_of_type(r, numeric))
+                       if (is_exactly_a<numeric>(r))
                                return gamma;
                        else
                                return gamma * r.primpart(x);
                }
 
                // Next element of subresultant sequence
-//std::clog << " calculating next subresultant...\n";
                ri = c.expand().lcoeff(x);
                if (delta == 1)
                        psi = ri;
@@ -1209,25 +1006,24 @@ static ex sr_gcd(const ex &a, const ex &b, sym_desc_vec::const_iterator var)
  *  @param e  expanded multivariate polynomial
  *  @return maximum coefficient
  *  @see heur_gcd */
-numeric ex::max_coefficient(void) const
+numeric ex::max_coefficient() const
 {
-       GINAC_ASSERT(bp!=0);
        return bp->max_coefficient();
 }
 
 /** Implementation ex::max_coefficient().
  *  @see heur_gcd */
-numeric basic::max_coefficient(void) const
+numeric basic::max_coefficient() const
 {
        return _num1;
 }
 
-numeric numeric::max_coefficient(void) const
+numeric numeric::max_coefficient() const
 {
        return abs(*this);
 }
 
-numeric add::max_coefficient(void) const
+numeric add::max_coefficient() const
 {
        epvector::const_iterator it = seq.begin();
        epvector::const_iterator itend = seq.end();
@@ -1244,7 +1040,7 @@ numeric add::max_coefficient(void) const
        return cur_max;
 }
 
-numeric mul::max_coefficient(void) const
+numeric mul::max_coefficient() const
 {
 #ifdef DO_GINAC_ASSERT
        epvector::const_iterator it = seq.begin();
@@ -1346,7 +1142,6 @@ class gcdheu_failed {};
  *  @exception gcdheu_failed() */
 static ex heur_gcd(const ex &a, const ex &b, ex *ca, ex *cb, sym_desc_vec::const_iterator var)
 {
-//std::clog << "heur_gcd(" << a << "," << b << ")\n";
 #if STATISTICS
        heur_gcd_called++;
 #endif
@@ -1356,7 +1151,7 @@ static ex heur_gcd(const ex &a, const ex &b, ex *ca, ex *cb, sym_desc_vec::const
                return (new fail())->setflag(status_flags::dynallocated);
 
        // GCD of two numeric values -> CLN
-       if (is_ex_exactly_of_type(a, numeric) && is_ex_exactly_of_type(b, numeric)) {
+       if (is_exactly_a<numeric>(a) && is_exactly_a<numeric>(b)) {
                numeric g = gcd(ex_to<numeric>(a), ex_to<numeric>(b));
                if (ca)
                        *ca = ex_to<numeric>(a) / g;
@@ -1387,14 +1182,13 @@ static ex heur_gcd(const ex &a, const ex &b, ex *ca, ex *cb, sym_desc_vec::const
        // 6 tries maximum
        for (int t=0; t<6; t++) {
                if (xi.int_length() * maxdeg > 100000) {
-//std::clog << "giving up heur_gcd, xi.int_length = " << xi.int_length() << ", maxdeg = " << maxdeg << std::endl;
                        throw gcdheu_failed();
                }
 
                // Apply evaluation homomorphism and calculate GCD
                ex cp, cq;
                ex gamma = heur_gcd(p.subs(x == xi), q.subs(x == xi), &cp, &cq, var+1).expand();
-               if (!is_ex_exactly_of_type(gamma, fail)) {
+               if (!is_exactly_a<fail>(gamma)) {
 
                        // Reconstruct polynomial from GCD of mapped polynomials
                        ex g = interpolate(gamma, xi, x, maxdeg);
@@ -1407,39 +1201,11 @@ static ex heur_gcd(const ex &a, const ex &b, ex *ca, ex *cb, sym_desc_vec::const
                        if (divide_in_z(p, g, ca ? *ca : dummy, var) && divide_in_z(q, g, cb ? *cb : dummy, var)) {
                                g *= gc;
                                ex lc = g.lcoeff(x);
-                               if (is_ex_exactly_of_type(lc, numeric) && ex_to<numeric>(lc).is_negative())
+                               if (is_exactly_a<numeric>(lc) && ex_to<numeric>(lc).is_negative())
                                        return -g;
                                else
                                        return g;
                        }
-#if 0
-                       cp = interpolate(cp, xi, x);
-                       if (divide_in_z(cp, p, g, var)) {
-                               if (divide_in_z(g, q, cb ? *cb : dummy, var)) {
-                                       g *= gc;
-                                       if (ca)
-                                               *ca = cp;
-                                       ex lc = g.lcoeff(x);
-                                       if (is_ex_exactly_of_type(lc, numeric) && ex_to<numeric>(lc).is_negative())
-                                               return -g;
-                                       else
-                                               return g;
-                               }
-                       }
-                       cq = interpolate(cq, xi, x);
-                       if (divide_in_z(cq, q, g, var)) {
-                               if (divide_in_z(g, p, ca ? *ca : dummy, var)) {
-                                       g *= gc;
-                                       if (cb)
-                                               *cb = cq;
-                                       ex lc = g.lcoeff(x);
-                                       if (is_ex_exactly_of_type(lc, numeric) && ex_to<numeric>(lc).is_negative())
-                                               return -g;
-                                       else
-                                               return g;
-                               }
-                       }
-#endif
                }
 
                // Next evaluation point
@@ -1459,13 +1225,12 @@ static ex heur_gcd(const ex &a, const ex &b, ex *ca, ex *cb, sym_desc_vec::const
  *  @return the GCD as a new expression */
 ex gcd(const ex &a, const ex &b, ex *ca, ex *cb, bool check_args)
 {
-//std::clog << "gcd(" << a << "," << b << ")\n";
 #if STATISTICS
        gcd_called++;
 #endif
 
        // GCD of numerics -> CLN
-       if (is_ex_exactly_of_type(a, numeric) && is_ex_exactly_of_type(b, numeric)) {
+       if (is_exactly_a<numeric>(a) && is_exactly_a<numeric>(b)) {
                numeric g = gcd(ex_to<numeric>(a), ex_to<numeric>(b));
                if (ca || cb) {
                        if (g.is_zero()) {
@@ -1489,15 +1254,15 @@ ex gcd(const ex &a, const ex &b, ex *ca, ex *cb, bool check_args)
        }
 
        // Partially factored cases (to avoid expanding large expressions)
-       if (is_ex_exactly_of_type(a, mul)) {
-               if (is_ex_exactly_of_type(b, mul) && b.nops() > a.nops())
+       if (is_exactly_a<mul>(a)) {
+               if (is_exactly_a<mul>(b) && b.nops() > a.nops())
                        goto factored_b;
 factored_a:
-               unsigned num = a.nops();
+               size_t num = a.nops();
                exvector g; g.reserve(num);
                exvector acc_ca; acc_ca.reserve(num);
                ex part_b = b;
-               for (unsigned i=0; i<num; i++) {
+               for (size_t i=0; i<num; i++) {
                        ex part_ca, part_cb;
                        g.push_back(gcd(a.op(i), part_b, &part_ca, &part_cb, check_args));
                        acc_ca.push_back(part_ca);
@@ -1508,15 +1273,15 @@ factored_a:
                if (cb)
                        *cb = part_b;
                return (new mul(g))->setflag(status_flags::dynallocated);
-       } else if (is_ex_exactly_of_type(b, mul)) {
-               if (is_ex_exactly_of_type(a, mul) && a.nops() > b.nops())
+       } else if (is_exactly_a<mul>(b)) {
+               if (is_exactly_a<mul>(a) && a.nops() > b.nops())
                        goto factored_a;
 factored_b:
-               unsigned num = b.nops();
+               size_t num = b.nops();
                exvector g; g.reserve(num);
                exvector acc_cb; acc_cb.reserve(num);
                ex part_a = a;
-               for (unsigned i=0; i<num; i++) {
+               for (size_t i=0; i<num; i++) {
                        ex part_ca, part_cb;
                        g.push_back(gcd(part_a, b.op(i), &part_ca, &part_cb, check_args));
                        acc_cb.push_back(part_cb);
@@ -1531,9 +1296,9 @@ factored_b:
 
 #if FAST_COMPARE
        // Input polynomials of the form poly^n are sometimes also trivial
-       if (is_ex_exactly_of_type(a, power)) {
+       if (is_exactly_a<power>(a)) {
                ex p = a.op(0);
-               if (is_ex_exactly_of_type(b, power)) {
+               if (is_exactly_a<power>(b)) {
                        if (p.is_equal(b.op(0))) {
                                // a = p^n, b = p^m, gcd = p^min(n, m)
                                ex exp_a = a.op(1), exp_b = b.op(1);
@@ -1561,7 +1326,7 @@ factored_b:
                                return p;
                        }
                }
-       } else if (is_ex_exactly_of_type(b, power)) {
+       } else if (is_exactly_a<power>(b)) {
                ex p = b.op(0);
                if (p.is_equal(a)) {
                        // a = p, b = p^n, gcd = p
@@ -1621,20 +1386,17 @@ factored_b:
        int min_ldeg = std::min(ldeg_a,ldeg_b);
        if (min_ldeg > 0) {
                ex common = power(x, min_ldeg);
-//std::clog << "trivial common factor " << common << std::endl;
                return gcd((aex / common).expand(), (bex / common).expand(), ca, cb, false) * common;
        }
 
        // Try to eliminate variables
        if (var->deg_a == 0) {
-//std::clog << "eliminating variable " << x << " from b" << std::endl;
                ex c = bex.content(x);
                ex g = gcd(aex, c, ca, cb, false);
                if (cb)
                        *cb *= bex.unit(x) * bex.primpart(x, c);
                return g;
        } else if (var->deg_b == 0) {
-//std::clog << "eliminating variable " << x << " from a" << std::endl;
                ex c = aex.content(x);
                ex g = gcd(c, bex, ca, cb, false);
                if (ca)
@@ -1642,25 +1404,17 @@ factored_b:
                return g;
        }
 
-       ex g;
-#if 1
        // Try heuristic algorithm first, fall back to PRS if that failed
+       ex g;
        try {
                g = heur_gcd(aex, bex, ca, cb, var);
        } catch (gcdheu_failed) {
                g = fail();
        }
-       if (is_ex_exactly_of_type(g, fail)) {
-//std::clog << "heuristics failed" << std::endl;
+       if (is_exactly_a<fail>(g)) {
 #if STATISTICS
                heur_gcd_failed++;
 #endif
-#endif
-//             g = heur_gcd(aex, bex, ca, cb, var);
-//             g = eu_gcd(aex, bex, &x);
-//             g = euprem_gcd(aex, bex, &x);
-//             g = peu_gcd(aex, bex, &x);
-//             g = red_gcd(aex, bex, &x);
                g = sr_gcd(aex, bex, var);
                if (g.is_equal(_ex1)) {
                        // Keep cofactors factored if possible
@@ -1674,7 +1428,6 @@ factored_b:
                        if (cb)
                                divide(bex, g, *cb, false);
                }
-#if 1
        } else {
                if (g.is_equal(_ex1)) {
                        // Keep cofactors factored if possible
@@ -1684,7 +1437,7 @@ factored_b:
                                *cb = b;
                }
        }
-#endif
+
        return g;
 }
 
@@ -1698,7 +1451,7 @@ factored_b:
  *  @return the LCM as a new expression */
 ex lcm(const ex &a, const ex &b, bool check_args)
 {
-       if (is_ex_exactly_of_type(a, numeric) && is_ex_exactly_of_type(b, numeric))
+       if (is_exactly_a<numeric>(a) && is_exactly_a<numeric>(b))
                return lcm(ex_to<numeric>(a), ex_to<numeric>(b));
        if (check_args && (!a.info(info_flags::rational_polynomial) || !b.info(info_flags::rational_polynomial)))
                throw(std::invalid_argument("lcm: arguments must be polynomials over the rationals"));
@@ -1741,6 +1494,7 @@ static exvector sqrfree_yun(const ex &a, const symbol &x)
        return res;
 }
 
+
 /** Compute a square-free factorization of a multivariate polynomial in Q[X].
  *
  *  @param a  multivariate polynomial over Q[X]
@@ -1778,7 +1532,7 @@ static exvector sqrfree_yun(const ex &a, const symbol &x)
  */
 ex sqrfree(const ex &a, const lst &l)
 {
-       if (is_a<numeric>(a) ||     // algorithm does not trap a==0
+       if (is_exactly_a<numeric>(a) ||     // algorithm does not trap a==0
            is_a<symbol>(a))        // shortcut
                return a;
 
@@ -1799,7 +1553,7 @@ ex sqrfree(const ex &a, const lst &l)
        }
 
        // Find the symbol to factor in at this stage
-       if (!is_ex_of_type(args.op(0), symbol))
+       if (!is_a<symbol>(args.op(0)))
                throw (std::runtime_error("sqrfree(): invalid factorization variable"));
        const symbol &x = ex_to<symbol>(args.op(0));
 
@@ -1842,6 +1596,7 @@ ex sqrfree(const ex &a, const lst &l)
        return result * lcm.inverse();
 }
 
+
 /** Compute square-free partial fraction decomposition of rational function
  *  a(x).
  *
@@ -1863,15 +1618,15 @@ ex sqrfree_parfrac(const ex & a, const symbol & x)
        // Factorize denominator and compute cofactors
        exvector yun = sqrfree_yun(denom, x);
 //clog << "yun factors: " << exprseq(yun) << endl;
-       unsigned num_yun = yun.size();
+       size_t num_yun = yun.size();
        exvector factor; factor.reserve(num_yun);
        exvector cofac; cofac.reserve(num_yun);
-       for (unsigned i=0; i<num_yun; i++) {
+       for (size_t i=0; i<num_yun; i++) {
                if (!yun[i].is_equal(_ex1)) {
-                       for (unsigned j=0; j<=i; j++) {
+                       for (size_t j=0; j<=i; j++) {
                                factor.push_back(pow(yun[i], j+1));
                                ex prod = _ex1;
-                               for (unsigned k=0; k<num_yun; k++) {
+                               for (size_t k=0; k<num_yun; k++) {
                                        if (k == i)
                                                prod *= pow(yun[k], i-j);
                                        else
@@ -1881,7 +1636,7 @@ ex sqrfree_parfrac(const ex & a, const symbol & x)
                        }
                }
        }
-       unsigned num_factors = factor.size();
+       size_t num_factors = factor.size();
 //clog << "factors  : " << exprseq(factor) << endl;
 //clog << "cofactors: " << exprseq(cofac) << endl;
 
@@ -1890,7 +1645,7 @@ ex sqrfree_parfrac(const ex & a, const symbol & x)
        matrix sys(max_denom_deg + 1, num_factors);
        matrix rhs(max_denom_deg + 1, 1);
        for (int i=0; i<=max_denom_deg; i++) {
-               for (unsigned j=0; j<num_factors; j++)
+               for (size_t j=0; j<num_factors; j++)
                        sys(i, j) = cofac[j].coeff(x, i);
                rhs(i, 0) = red_numer.coeff(x, i);
        }
@@ -1899,109 +1654,19 @@ ex sqrfree_parfrac(const ex & a, const symbol & x)
 
        // Solve resulting linear system
        matrix vars(num_factors, 1);
-       for (unsigned i=0; i<num_factors; i++)
+       for (size_t i=0; i<num_factors; i++)
                vars(i, 0) = symbol();
        matrix sol = sys.solve(vars, rhs);
 
        // Sum up decomposed fractions
        ex sum = 0;
-       for (unsigned i=0; i<num_factors; i++)
+       for (size_t i=0; i<num_factors; i++)
                sum += sol(i, 0) / factor[i];
 
        return red_poly + sum;
 }
 
 
-/** Remove the common factor in the terms of a sum 'e' by calculating the GCD,
- *  and multiply it into the expression 'factor' (which needs to be initialized
- *  to 1, unless you're accumulating factors). */
-static ex find_common_factor(const ex & e, ex & factor)
-{
-       if (is_a<add>(e)) {
-
-               unsigned num = e.nops();
-               exvector terms; terms.reserve(num);
-               lst repl;
-               ex gc;
-
-               // Find the common GCD
-               for (unsigned i=0; i<num; i++) {
-                       ex x = e.op(i).to_rational(repl);
-                       if (is_a<add>(x) || is_a<mul>(x)) {
-                               ex f = 1;
-                               x = find_common_factor(x, f);
-                               x *= f;
-                       }
-
-                       if (i == 0)
-                               gc = x;
-                       else
-                               gc = gcd(gc, x);
-
-                       terms.push_back(x);
-               }
-
-               if (gc.is_equal(_ex1))
-                       return e;
-
-               // The GCD is the factor we pull out
-               factor *= gc.subs(repl);
-
-               // Now divide all terms by the GCD
-               for (unsigned i=0; i<num; i++) {
-                       ex x;
-
-                       // Try to avoid divide() because it expands the polynomial
-                       ex &t = terms[i];
-                       if (is_a<mul>(t)) {
-                               for (unsigned j=0; j<t.nops(); j++) {
-                                       if (t.op(j).is_equal(gc)) {
-                                               exvector v; v.reserve(t.nops());
-                                               for (unsigned k=0; k<t.nops(); k++) {
-                                                       if (k == j)
-                                                               v.push_back(_ex1);
-                                                       else
-                                                               v.push_back(t.op(k));
-                                               }
-                                               t = (new mul(v))->setflag(status_flags::dynallocated).subs(repl);
-                                               goto term_done;
-                                       }
-                               }
-                       }
-
-                       divide(t, gc, x);
-                       t = x.subs(repl);
-term_done:     ;
-               }
-               return (new add(terms))->setflag(status_flags::dynallocated);
-
-       } else if (is_a<mul>(e)) {
-
-               exvector v;
-               for (unsigned i=0; i<e.nops(); i++)
-                       v.push_back(find_common_factor(e.op(i), factor));
-               return (new mul(v))->setflag(status_flags::dynallocated);
-
-       } else
-               return e;
-}
-
-
-/** Collect common factors in sums. This converts expressions like
- *  'a*(b*x+b*y)' to 'a*b*(x+y)'. */
-ex collect_common_factors(const ex & e)
-{
-       if (is_a<add>(e) || is_a<mul>(e)) {
-
-               ex factor = 1;
-               ex r = find_common_factor(e, factor);
-               return factor * r;
-
-       } else
-               return e;
-}
-
-
 /*
  *  Normal form of rational functions
  */
@@ -2016,43 +1681,41 @@ ex collect_common_factors(const ex & e)
 
 
 /** Create a symbol for replacing the expression "e" (or return a previously
- *  assigned symbol). The symbol is appended to sym_lst and returned, the
- *  expression is appended to repl_lst.
+ *  assigned symbol). The symbol and expression are appended to repl, for
+ *  a later application of subs().
  *  @see ex::normal */
-static ex replace_with_symbol(const ex &e, lst &sym_lst, lst &repl_lst)
+static ex replace_with_symbol(const ex & e, exmap & repl)
 {
-       // Expression already in repl_lst? Then return the assigned symbol
-       for (unsigned i=0; i<repl_lst.nops(); i++)
-               if (repl_lst.op(i).is_equal(e))
-                       return sym_lst.op(i);
+       // Expression already in repl? Then return the assigned symbol
+       for (exmap::const_iterator it = repl.begin(); it != repl.end(); ++it)
+               if (it->second.is_equal(e))
+                       return it->first;
        
        // Otherwise create new symbol and add to list, taking care that the
-       // replacement expression doesn't contain symbols from the sym_lst
+       // replacement expression doesn't itself contain symbols from repl,
        // because subs() is not recursive
-       symbol s;
-       ex es(s);
-       ex e_replaced = e.subs(sym_lst, repl_lst);
-       sym_lst.append(es);
-       repl_lst.append(e_replaced);
+       ex es = (new symbol)->setflag(status_flags::dynallocated);
+       ex e_replaced = e.subs(repl);
+       repl[es] = e_replaced;
        return es;
 }
 
 /** Create a symbol for replacing the expression "e" (or return a previously
  *  assigned symbol). An expression of the form "symbol == expression" is added
  *  to repl_lst and the symbol is returned.
- *  @see basic::to_rational */
-static ex replace_with_symbol(const ex &e, lst &repl_lst)
+ *  @see basic::to_rational
+ *  @see basic::to_polynomial */
+static ex replace_with_symbol(const ex & e, lst & repl_lst)
 {
        // Expression already in repl_lst? Then return the assigned symbol
-       for (unsigned i=0; i<repl_lst.nops(); i++)
-               if (repl_lst.op(i).op(1).is_equal(e))
-                       return repl_lst.op(i).op(0);
+       for (lst::const_iterator it = repl_lst.begin(); it != repl_lst.end(); ++it)
+               if (it->op(1).is_equal(e))
+                       return it->op(0);
        
        // Otherwise create new symbol and add to list, taking care that the
-       // replacement expression doesn't contain symbols from the sym_lst
+       // replacement expression doesn't itself contain symbols from the repl_lst,
        // because subs() is not recursive
-       symbol s;
-       ex es(s);
+       ex es = (new symbol)->setflag(status_flags::dynallocated);
        ex e_replaced = e.subs(repl_lst);
        repl_lst.append(es == e_replaced);
        return es;
@@ -2069,18 +1732,18 @@ struct normal_map_function : public map_function {
 /** Default implementation of ex::normal(). It normalizes the children and
  *  replaces the object with a temporary symbol.
  *  @see ex::normal */
-ex basic::normal(lst &sym_lst, lst &repl_lst, int level) const
+ex basic::normal(exmap & repl, int level) const
 {
        if (nops() == 0)
-               return (new lst(replace_with_symbol(*this, sym_lst, repl_lst), _ex1))->setflag(status_flags::dynallocated);
+               return (new lst(replace_with_symbol(*this, repl), _ex1))->setflag(status_flags::dynallocated);
        else {
                if (level == 1)
-                       return (new lst(replace_with_symbol(*this, sym_lst, repl_lst), _ex1))->setflag(status_flags::dynallocated);
+                       return (new lst(replace_with_symbol(*this, repl), _ex1))->setflag(status_flags::dynallocated);
                else if (level == -max_recursion_level)
                        throw(std::runtime_error("max recursion level reached"));
                else {
                        normal_map_function map_normal(level - 1);
-                       return (new lst(replace_with_symbol(map(map_normal), sym_lst, repl_lst), _ex1))->setflag(status_flags::dynallocated);
+                       return (new lst(replace_with_symbol(map(map_normal), repl), _ex1))->setflag(status_flags::dynallocated);
                }
        }
 }
@@ -2088,7 +1751,7 @@ ex basic::normal(lst &sym_lst, lst &repl_lst, int level) const
 
 /** Implementation of ex::normal() for symbols. This returns the unmodified symbol.
  *  @see ex::normal */
-ex symbol::normal(lst &sym_lst, lst &repl_lst, int level) const
+ex symbol::normal(exmap & repl, int level) const
 {
        return (new lst(*this, _ex1))->setflag(status_flags::dynallocated);
 }
@@ -2098,19 +1761,19 @@ ex symbol::normal(lst &sym_lst, lst &repl_lst, int level) const
  *  into re+I*im and replaces I and non-rational real numbers with a temporary
  *  symbol.
  *  @see ex::normal */
-ex numeric::normal(lst &sym_lst, lst &repl_lst, int level) const
+ex numeric::normal(exmap & repl, int level) const
 {
        numeric num = numer();
        ex numex = num;
 
        if (num.is_real()) {
                if (!num.is_integer())
-                       numex = replace_with_symbol(numex, sym_lst, repl_lst);
+                       numex = replace_with_symbol(numex, repl);
        } else { // complex
                numeric re = num.real(), im = num.imag();
-               ex re_ex = re.is_rational() ? re : replace_with_symbol(re, sym_lst, repl_lst);
-               ex im_ex = im.is_rational() ? im : replace_with_symbol(im, sym_lst, repl_lst);
-               numex = re_ex + im_ex * replace_with_symbol(I, sym_lst, repl_lst);
+               ex re_ex = re.is_rational() ? re : replace_with_symbol(re, repl);
+               ex im_ex = im.is_rational() ? im : replace_with_symbol(im, repl);
+               numex = re_ex + im_ex * replace_with_symbol(I, repl);
        }
 
        // Denominator is always a real integer (see numeric::denom())
@@ -2157,13 +1820,20 @@ static ex frac_cancel(const ex &n, const ex &d)
 
        // Make denominator unit normal (i.e. coefficient of first symbol
        // as defined by get_first_symbol() is made positive)
-       const symbol *x;
-       if (get_first_symbol(den, x)) {
-               GINAC_ASSERT(is_exactly_a<numeric>(den.unit(*x)));
-               if (ex_to<numeric>(den.unit(*x)).is_negative()) {
+       if (is_exactly_a<numeric>(den)) {
+               if (ex_to<numeric>(den).is_negative()) {
                        num *= _ex_1;
                        den *= _ex_1;
                }
+       } else {
+               const symbol *x;
+               if (get_first_symbol(den, x)) {
+                       GINAC_ASSERT(is_exactly_a<numeric>(den.unit(*x)));
+                       if (ex_to<numeric>(den.unit(*x)).is_negative()) {
+                               num *= _ex_1;
+                               den *= _ex_1;
+                       }
+               }
        }
 
        // Return result as list
@@ -2175,10 +1845,10 @@ static ex frac_cancel(const ex &n, const ex &d)
 /** Implementation of ex::normal() for a sum. It expands terms and performs
  *  fractional addition.
  *  @see ex::normal */
-ex add::normal(lst &sym_lst, lst &repl_lst, int level) const
+ex add::normal(exmap & repl, int level) const
 {
        if (level == 1)
-               return (new lst(replace_with_symbol(*this, sym_lst, repl_lst), _ex1))->setflag(status_flags::dynallocated);
+               return (new lst(replace_with_symbol(*this, repl), _ex1))->setflag(status_flags::dynallocated);
        else if (level == -max_recursion_level)
                throw(std::runtime_error("max recursion level reached"));
 
@@ -2188,12 +1858,12 @@ ex add::normal(lst &sym_lst, lst &repl_lst, int level) const
        dens.reserve(seq.size()+1);
        epvector::const_iterator it = seq.begin(), itend = seq.end();
        while (it != itend) {
-               ex n = ex_to<basic>(recombine_pair_to_ex(*it)).normal(sym_lst, repl_lst, level-1);
+               ex n = ex_to<basic>(recombine_pair_to_ex(*it)).normal(repl, level-1);
                nums.push_back(n.op(0));
                dens.push_back(n.op(1));
                it++;
        }
-       ex n = ex_to<numeric>(overall_coeff).normal(sym_lst, repl_lst, level-1);
+       ex n = ex_to<numeric>(overall_coeff).normal(repl, level-1);
        nums.push_back(n.op(0));
        dens.push_back(n.op(1));
        GINAC_ASSERT(nums.size() == dens.size());
@@ -2234,10 +1904,10 @@ ex add::normal(lst &sym_lst, lst &repl_lst, int level) const
 /** Implementation of ex::normal() for a product. It cancels common factors
  *  from fractions.
  *  @see ex::normal() */
-ex mul::normal(lst &sym_lst, lst &repl_lst, int level) const
+ex mul::normal(exmap & repl, int level) const
 {
        if (level == 1)
-               return (new lst(replace_with_symbol(*this, sym_lst, repl_lst), _ex1))->setflag(status_flags::dynallocated);
+               return (new lst(replace_with_symbol(*this, repl), _ex1))->setflag(status_flags::dynallocated);
        else if (level == -max_recursion_level)
                throw(std::runtime_error("max recursion level reached"));
 
@@ -2247,12 +1917,12 @@ ex mul::normal(lst &sym_lst, lst &repl_lst, int level) const
        ex n;
        epvector::const_iterator it = seq.begin(), itend = seq.end();
        while (it != itend) {
-               n = ex_to<basic>(recombine_pair_to_ex(*it)).normal(sym_lst, repl_lst, level-1);
+               n = ex_to<basic>(recombine_pair_to_ex(*it)).normal(repl, level-1);
                num.push_back(n.op(0));
                den.push_back(n.op(1));
                it++;
        }
-       n = ex_to<numeric>(overall_coeff).normal(sym_lst, repl_lst, level-1);
+       n = ex_to<numeric>(overall_coeff).normal(repl, level-1);
        num.push_back(n.op(0));
        den.push_back(n.op(1));
 
@@ -2266,16 +1936,16 @@ ex mul::normal(lst &sym_lst, lst &repl_lst, int level) const
  *  distributes integer exponents to numerator and denominator, and replaces
  *  non-integer powers by temporary symbols.
  *  @see ex::normal */
-ex power::normal(lst &sym_lst, lst &repl_lst, int level) const
+ex power::normal(exmap & repl, int level) const
 {
        if (level == 1)
-               return (new lst(replace_with_symbol(*this, sym_lst, repl_lst), _ex1))->setflag(status_flags::dynallocated);
+               return (new lst(replace_with_symbol(*this, repl), _ex1))->setflag(status_flags::dynallocated);
        else if (level == -max_recursion_level)
                throw(std::runtime_error("max recursion level reached"));
 
        // Normalize basis and exponent (exponent gets reassembled)
-       ex n_basis = ex_to<basic>(basis).normal(sym_lst, repl_lst, level-1);
-       ex n_exponent = ex_to<basic>(exponent).normal(sym_lst, repl_lst, level-1);
+       ex n_basis = ex_to<basic>(basis).normal(repl, level-1);
+       ex n_exponent = ex_to<basic>(exponent).normal(repl, level-1);
        n_exponent = n_exponent.op(0) / n_exponent.op(1);
 
        if (n_exponent.info(info_flags::integer)) {
@@ -2296,34 +1966,32 @@ ex power::normal(lst &sym_lst, lst &repl_lst, int level) const
                if (n_exponent.info(info_flags::positive)) {
 
                        // (a/b)^x -> {sym((a/b)^x), 1}
-                       return (new lst(replace_with_symbol(power(n_basis.op(0) / n_basis.op(1), n_exponent), sym_lst, repl_lst), _ex1))->setflag(status_flags::dynallocated);
+                       return (new lst(replace_with_symbol(power(n_basis.op(0) / n_basis.op(1), n_exponent), repl), _ex1))->setflag(status_flags::dynallocated);
 
                } else if (n_exponent.info(info_flags::negative)) {
 
                        if (n_basis.op(1).is_equal(_ex1)) {
 
                                // a^-x -> {1, sym(a^x)}
-                               return (new lst(_ex1, replace_with_symbol(power(n_basis.op(0), -n_exponent), sym_lst, repl_lst)))->setflag(status_flags::dynallocated);
+                               return (new lst(_ex1, replace_with_symbol(power(n_basis.op(0), -n_exponent), repl)))->setflag(status_flags::dynallocated);
 
                        } else {
 
                                // (a/b)^-x -> {sym((b/a)^x), 1}
-                               return (new lst(replace_with_symbol(power(n_basis.op(1) / n_basis.op(0), -n_exponent), sym_lst, repl_lst), _ex1))->setflag(status_flags::dynallocated);
+                               return (new lst(replace_with_symbol(power(n_basis.op(1) / n_basis.op(0), -n_exponent), repl), _ex1))->setflag(status_flags::dynallocated);
                        }
-
-               } else {        // n_exponent not numeric
-
-                       // (a/b)^x -> {sym((a/b)^x, 1}
-                       return (new lst(replace_with_symbol(power(n_basis.op(0) / n_basis.op(1), n_exponent), sym_lst, repl_lst), _ex1))->setflag(status_flags::dynallocated);
                }
        }
+
+       // (a/b)^x -> {sym((a/b)^x, 1}
+       return (new lst(replace_with_symbol(power(n_basis.op(0) / n_basis.op(1), n_exponent), repl), _ex1))->setflag(status_flags::dynallocated);
 }
 
 
 /** Implementation of ex::normal() for pseries. It normalizes each coefficient
  *  and replaces the series by a temporary symbol.
  *  @see ex::normal */
-ex pseries::normal(lst &sym_lst, lst &repl_lst, int level) const
+ex pseries::normal(exmap & repl, int level) const
 {
        epvector newseq;
        epvector::const_iterator i = seq.begin(), end = seq.end();
@@ -2334,7 +2002,7 @@ ex pseries::normal(lst &sym_lst, lst &repl_lst, int level) const
                ++i;
        }
        ex n = pseries(relational(var,point), newseq);
-       return (new lst(replace_with_symbol(n, sym_lst, repl_lst), _ex1))->setflag(status_flags::dynallocated);
+       return (new lst(replace_with_symbol(n, repl), _ex1))->setflag(status_flags::dynallocated);
 }
 
 
@@ -2352,14 +2020,14 @@ ex pseries::normal(lst &sym_lst, lst &repl_lst, int level) const
  *  @return normalized expression */
 ex ex::normal(int level) const
 {
-       lst sym_lst, repl_lst;
+       exmap repl;
 
-       ex e = bp->normal(sym_lst, repl_lst, level);
+       ex e = bp->normal(repl, level);
        GINAC_ASSERT(is_a<lst>(e));
 
        // Re-insert replaced symbols
-       if (sym_lst.nops() > 0)
-               e = e.subs(sym_lst, repl_lst);
+       if (!repl.empty())
+               e = e.subs(repl);
 
        // Convert {numerator, denominator} form back to fraction
        return e.op(0) / e.op(1);
@@ -2371,18 +2039,18 @@ ex ex::normal(int level) const
  *
  *  @see ex::normal
  *  @return numerator */
-ex ex::numer(void) const
+ex ex::numer() const
 {
-       lst sym_lst, repl_lst;
+       exmap repl;
 
-       ex e = bp->normal(sym_lst, repl_lst, 0);
+       ex e = bp->normal(repl, 0);
        GINAC_ASSERT(is_a<lst>(e));
 
        // Re-insert replaced symbols
-       if (sym_lst.nops() > 0)
-               return e.op(0).subs(sym_lst, repl_lst);
-       else
+       if (repl.empty())
                return e.op(0);
+       else
+               return e.op(0).subs(repl);
 }
 
 /** Get denominator of an expression. If the expression is not of the normal
@@ -2391,18 +2059,18 @@ ex ex::numer(void) const
  *
  *  @see ex::normal
  *  @return denominator */
-ex ex::denom(void) const
+ex ex::denom() const
 {
-       lst sym_lst, repl_lst;
+       exmap repl;
 
-       ex e = bp->normal(sym_lst, repl_lst, 0);
+       ex e = bp->normal(repl, 0);
        GINAC_ASSERT(is_a<lst>(e));
 
        // Re-insert replaced symbols
-       if (sym_lst.nops() > 0)
-               return e.op(1).subs(sym_lst, repl_lst);
-       else
+       if (repl.empty())
                return e.op(1);
+       else
+               return e.op(1).subs(repl);
 }
 
 /** Get numerator and denominator of an expression. If the expresison is not
@@ -2411,23 +2079,23 @@ ex ex::denom(void) const
  *
  *  @see ex::normal
  *  @return a list [numerator, denominator] */
-ex ex::numer_denom(void) const
+ex ex::numer_denom() const
 {
-       lst sym_lst, repl_lst;
+       exmap repl;
 
-       ex e = bp->normal(sym_lst, repl_lst, 0);
+       ex e = bp->normal(repl, 0);
        GINAC_ASSERT(is_a<lst>(e));
 
        // Re-insert replaced symbols
-       if (sym_lst.nops() > 0)
-               return e.subs(sym_lst, repl_lst);
-       else
+       if (repl.empty())
                return e;
+       else
+               return e.subs(repl);
 }
 
 
 /** Rationalization of non-rational functions.
- *  This function converts a general expression to a rational polynomial
+ *  This function converts a general expression to a rational function
  *  by replacing all non-rational subexpressions (like non-rational numbers,
  *  non-integer powers or functions like sin(), cos() etc.) to temporary
  *  symbols. This makes it possible to use functions like gcd() and divide()
@@ -2440,11 +2108,29 @@ ex ex::numer_denom(void) const
  *
  *  @param repl_lst collects a list of all temporary symbols and their replacements
  *  @return rationalized expression */
+ex ex::to_rational(lst &repl_lst) const
+{
+       return bp->to_rational(repl_lst);
+}
+
+ex ex::to_polynomial(lst &repl_lst) const
+{
+       return bp->to_polynomial(repl_lst);
+}
+
+
+/** Default implementation of ex::to_rational(). This replaces the object with
+ *  a temporary symbol. */
 ex basic::to_rational(lst &repl_lst) const
 {
        return replace_with_symbol(*this, repl_lst);
 }
 
+ex basic::to_polynomial(lst &repl_lst) const
+{
+       return replace_with_symbol(*this, repl_lst);
+}
+
 
 /** Implementation of ex::to_rational() for symbols. This returns the
  *  unmodified symbol. */
@@ -2453,6 +2139,13 @@ ex symbol::to_rational(lst &repl_lst) const
        return *this;
 }
 
+/** Implementation of ex::to_polynomial() for symbols. This returns the
+ *  unmodified symbol. */
+ex symbol::to_polynomial(lst &repl_lst) const
+{
+       return *this;
+}
+
 
 /** Implementation of ex::to_rational() for a numeric. It splits complex
  *  numbers into re+I*im and replaces I and non-rational real numbers with a
@@ -2472,6 +2165,24 @@ ex numeric::to_rational(lst &repl_lst) const
        return *this;
 }
 
+/** Implementation of ex::to_polynomial() for a numeric. It splits complex
+ *  numbers into re+I*im and replaces I and non-integer real numbers with a
+ *  temporary symbol. */
+ex numeric::to_polynomial(lst &repl_lst) const
+{
+       if (is_real()) {
+               if (!is_integer())
+                       return replace_with_symbol(*this, repl_lst);
+       } else { // complex
+               numeric re = real();
+               numeric im = imag();
+               ex re_ex = re.is_integer() ? re : replace_with_symbol(re, repl_lst);
+               ex im_ex = im.is_integer() ? im : replace_with_symbol(im, repl_lst);
+               return re_ex + im_ex * replace_with_symbol(I, repl_lst);
+       }
+       return *this;
+}
+
 
 /** Implementation of ex::to_rational() for powers. It replaces non-integer
  *  powers by temporary symbols. */
@@ -2483,6 +2194,16 @@ ex power::to_rational(lst &repl_lst) const
                return replace_with_symbol(*this, repl_lst);
 }
 
+/** Implementation of ex::to_polynomial() for powers. It replaces non-posint
+ *  powers by temporary symbols. */
+ex power::to_polynomial(lst &repl_lst) const
+{
+       if (exponent.info(info_flags::posint))
+               return power(basis.to_rational(repl_lst), exponent);
+       else
+               return replace_with_symbol(*this, repl_lst);
+}
+
 
 /** Implementation of ex::to_rational() for expairseqs. */
 ex expairseq::to_rational(lst &repl_lst) const
@@ -2502,5 +2223,121 @@ ex expairseq::to_rational(lst &repl_lst) const
        return thisexpairseq(s, default_overall_coeff());
 }
 
+/** Implementation of ex::to_polynomial() for expairseqs. */
+ex expairseq::to_polynomial(lst &repl_lst) const
+{
+       epvector s;
+       s.reserve(seq.size());
+       epvector::const_iterator i = seq.begin(), end = seq.end();
+       while (i != end) {
+               s.push_back(split_ex_to_pair(recombine_pair_to_ex(*i).to_polynomial(repl_lst)));
+               ++i;
+       }
+       ex oc = overall_coeff.to_polynomial(repl_lst);
+       if (oc.info(info_flags::numeric))
+               return thisexpairseq(s, overall_coeff);
+       else
+               s.push_back(combine_ex_with_coeff_to_pair(oc, _ex1));
+       return thisexpairseq(s, default_overall_coeff());
+}
+
+
+/** Remove the common factor in the terms of a sum 'e' by calculating the GCD,
+ *  and multiply it into the expression 'factor' (which needs to be initialized
+ *  to 1, unless you're accumulating factors). */
+static ex find_common_factor(const ex & e, ex & factor, lst & repl)
+{
+       if (is_exactly_a<add>(e)) {
+
+               size_t num = e.nops();
+               exvector terms; terms.reserve(num);
+               ex gc;
+
+               // Find the common GCD
+               for (size_t i=0; i<num; i++) {
+                       ex x = e.op(i).to_polynomial(repl);
+
+                       if (is_exactly_a<add>(x) || is_exactly_a<mul>(x)) {
+                               ex f = 1;
+                               x = find_common_factor(x, f, repl);
+                               x *= f;
+                       }
+
+                       if (i == 0)
+                               gc = x;
+                       else
+                               gc = gcd(gc, x);
+
+                       terms.push_back(x);
+               }
+
+               if (gc.is_equal(_ex1))
+                       return e;
+
+               // The GCD is the factor we pull out
+               factor *= gc;
+
+               // Now divide all terms by the GCD
+               for (size_t i=0; i<num; i++) {
+                       ex x;
+
+                       // Try to avoid divide() because it expands the polynomial
+                       ex &t = terms[i];
+                       if (is_exactly_a<mul>(t)) {
+                               for (size_t j=0; j<t.nops(); j++) {
+                                       if (t.op(j).is_equal(gc)) {
+                                               exvector v; v.reserve(t.nops());
+                                               for (size_t k=0; k<t.nops(); k++) {
+                                                       if (k == j)
+                                                               v.push_back(_ex1);
+                                                       else
+                                                               v.push_back(t.op(k));
+                                               }
+                                               t = (new mul(v))->setflag(status_flags::dynallocated);
+                                               goto term_done;
+                                       }
+                               }
+                       }
+
+                       divide(t, gc, x);
+                       t = x;
+term_done:     ;
+               }
+               return (new add(terms))->setflag(status_flags::dynallocated);
+
+       } else if (is_exactly_a<mul>(e)) {
+
+               size_t num = e.nops();
+               exvector v; v.reserve(num);
+
+               for (size_t i=0; i<num; i++)
+                       v.push_back(find_common_factor(e.op(i), factor, repl));
+
+               return (new mul(v))->setflag(status_flags::dynallocated);
+
+       } else if (is_exactly_a<power>(e)) {
+
+               return e.to_polynomial(repl);
+
+       } else
+               return e;
+}
+
+
+/** Collect common factors in sums. This converts expressions like
+ *  'a*(b*x+b*y)' to 'a*b*(x+y)'. */
+ex collect_common_factors(const ex & e)
+{
+       if (is_exactly_a<add>(e) || is_exactly_a<mul>(e)) {
+
+               lst repl;
+               ex factor = 1;
+               ex r = find_common_factor(e, factor, repl);
+               return factor.subs(repl) * r.subs(repl);
+
+       } else
+               return e;
+}
+
 
 } // namespace GiNaC