]> www.ginac.de Git - ginac.git/blobdiff - ginac/normal.cpp
[PATCH 2/3] Make a stronger normalisation for expressions with exponents.
[ginac.git] / ginac / normal.cpp
index 81841e0f7f847de7d8e706d3a74deb1744ac3852..342ef06b411480e4efc42f269d280065d675922e 100644 (file)
@@ -6,7 +6,7 @@
  *  computation, square-free factorization and rational function normalization. */
 
 /*
- *  GiNaC Copyright (C) 1999-2016 Johannes Gutenberg University Mainz, Germany
+ *  GiNaC Copyright (C) 1999-2020 Johannes Gutenberg University Mainz, Germany
  *
  *  This program is free software; you can redistribute it and/or modify
  *  it under the terms of the GNU General Public License as published by
@@ -146,7 +146,7 @@ struct sym_desc {
        /** Maximum number of terms of leading coefficient of symbol in both polynomials */
        size_t max_lcnops;
 
-       /** Commparison operator for sorting */
+       /** Comparison operator for sorting */
        bool operator<(const sym_desc &x) const
        {
                if (max_deg == x.max_deg)
@@ -212,10 +212,10 @@ static void get_symbol_stats(const ex &a, const ex &b, sym_desc_vec &v)
 
 #if 0
        std::clog << "Symbols:\n";
-       it = v.begin(); itend = v.end();
+       auto it = v.begin(), itend = v.end();
        while (it != itend) {
-               std::clog << " " << it->sym << ": deg_a=" << it->deg_a << ", deg_b=" << it->deg_b << ", ldeg_a=" << it->ldeg_a << ", ldeg_b=" << it->ldeg_b << ", max_deg=" << it->max_deg << ", max_lcnops=" << it->max_lcnops << endl;
-               std::clog << "  lcoeff_a=" << a.lcoeff(it->sym) << ", lcoeff_b=" << b.lcoeff(it->sym) << endl;
+               std::clog << " " << it->sym << ": deg_a=" << it->deg_a << ", deg_b=" << it->deg_b << ", ldeg_a=" << it->ldeg_a << ", ldeg_b=" << it->ldeg_b << ", max_deg=" << it->max_deg << ", max_lcnops=" << it->max_lcnops << std::endl;
+               std::clog << "  lcoeff_a=" << a.lcoeff(it->sym) << ", lcoeff_b=" << b.lcoeff(it->sym) << std::endl;
                ++it;
        }
 #endif
@@ -1470,7 +1470,7 @@ ex gcd(const ex &a, const ex &b, ex *ca, ex *cb, bool check_args, unsigned optio
        }
 
        // Some trivial cases
-       ex aex = a.expand(), bex = b.expand();
+       ex aex = a.expand();
        if (aex.is_zero()) {
                if (ca)
                        *ca = _ex0;
@@ -1478,6 +1478,7 @@ ex gcd(const ex &a, const ex &b, ex *ca, ex *cb, bool check_args, unsigned optio
                        *cb = _ex1;
                return b;
        }
+       ex bex = b.expand();
        if (bex.is_zero()) {
                if (ca)
                        *ca = _ex1;
@@ -1548,7 +1549,7 @@ ex gcd(const ex &a, const ex &b, ex *ca, ex *cb, bool check_args, unsigned optio
 
        // The symbol with least degree which is contained in both polynomials
        // is our main variable
-       sym_desc_vec::iterator vari = sym_stats.begin();
+       auto vari = sym_stats.begin();
        while ((vari != sym_stats.end()) && 
               (((vari->ldeg_b == 0) && (vari->deg_b == 0)) ||
                ((vari->ldeg_a == 0) && (vari->deg_a == 0))))
@@ -1563,8 +1564,7 @@ ex gcd(const ex &a, const ex &b, ex *ca, ex *cb, bool check_args, unsigned optio
                        *cb = b;
                return _ex1;
        }
-       // move symbols which contained only in one of the polynomials
-       // to the end:
+       // move symbol contained only in one of the polynomials to the end:
        rotate(sym_stats.begin(), vari, sym_stats.end());
 
        sym_desc_vec::const_iterator var = sym_stats.begin();
@@ -1676,7 +1676,6 @@ static ex gcd_pf_pow_pow(const ex& a, const ex& b, ex* ca, ex* cb)
                        if (cb)
                                *cb = b;
                        return _ex1;
-                       // XXX: do I need to check for p_gcd = -1?
        }
 
        // there are common factors:
@@ -1706,17 +1705,27 @@ static ex gcd_pf_pow(const ex& a, const ex& b, ex* ca, ex* cb)
        if (p.is_equal(b)) {
                // a = p^n, b = p, gcd = p
                if (ca)
-                       *ca = pow(p, a.op(1) - 1);
+                       *ca = pow(p, exp_a - 1);
                if (cb)
                        *cb = _ex1;
                return p;
-       } 
+       }
+       if (is_a<symbol>(p)) {
+               // Cancel trivial common factor
+               int ldeg_a = ex_to<numeric>(exp_a).to_int();
+               int ldeg_b = b.ldegree(p);
+               int min_ldeg = std::min(ldeg_a, ldeg_b);
+               if (min_ldeg > 0) {
+                       ex common = pow(p, min_ldeg);
+                       return gcd(pow(p, ldeg_a - min_ldeg), (b / common).expand(), ca, cb, false) * common;
+               }
+       }
 
        ex p_co, bpart_co;
        ex p_gcd = gcd(p, b, &p_co, &bpart_co, false);
 
-       // a(x) = p(x)^n, gcd(p, b) = 1 ==> gcd(a, b) = 1
        if (p_gcd.is_equal(_ex1)) {
+               // a(x) = p(x)^n, gcd(p, b) = 1 ==> gcd(a, b) = 1
                if (ca)
                        *ca = a;
                if (cb)
@@ -1785,32 +1794,59 @@ ex lcm(const ex &a, const ex &b, bool check_args)
  *  @param a  multivariate polynomial over Z[X], treated here as univariate
  *            polynomial in x (needs not be expanded).
  *  @param x  variable to factor in
- *  @return   vector of factors sorted in ascending degree */
-static exvector sqrfree_yun(const ex &a, const symbol &x)
+ *  @return   vector of expairs (factor, exponent), sorted by exponents */
+static epvector sqrfree_yun(const ex &a, const symbol &x)
 {
-       exvector res;
        ex w = a;
        ex z = w.diff(x);
        ex g = gcd(w, z);
        if (g.is_zero()) {
-               return res;
+               // manifest zero or hidden zero
+               return {};
        }
        if (g.is_equal(_ex1)) {
-               res.push_back(a);
-               return res;
+               // w(x) and w'(x) share no factors: w(x) is square-free
+               return {expair(a, _ex1)};
        }
-       ex y;
+
+       epvector factors;
+       ex i = 0;  // exponent
        do {
                w = quo(w, g, x);
                if (w.is_zero()) {
-                       return res;
+                       // hidden zero
+                       break;
+               }
+               z = quo(z, g, x) - w.diff(x);
+               i += 1;
+               if (w.is_equal(x)) {
+                       // shortcut for x^n with n ∈ ℕ
+                       i += quo(z, w.diff(x), x);
+                       factors.push_back(expair(w, i));
+                       break;
                }
-               y = quo(z, g, x);
-               z = y - w.diff(x);
                g = gcd(w, z);
-               res.push_back(g);
+               if (!g.is_equal(_ex1)) {
+                       factors.push_back(expair(g, i));
+               }
        } while (!z.is_zero());
-       return res;
+
+       // correct for lost factor
+       // (being based on GCDs, Yun's algorithm only finds factors up to a unit)
+       const ex lost_factor = quo(a, mul{factors}, x);
+       if (lost_factor.is_equal(_ex1)) {
+               // trivial lost factor
+               return factors;
+       }
+       if (!factors.empty() && factors[0].coeff.is_equal(1)) {
+               // multiply factor^1 with lost_factor
+               factors[0].rest *= lost_factor;
+               return factors;
+       }
+       // no factor^1: prepend lost_factor^1 to the results
+       epvector results = {expair(lost_factor, 1)};
+       std::move(factors.begin(), factors.end(), std::back_inserter(results));
+       return results;
 }
 
 
@@ -1875,38 +1911,29 @@ ex sqrfree(const ex &a, const lst &l)
 
        // convert the argument from something in Q[X] to something in Z[X]
        const numeric lcm = lcm_of_coefficients_denominators(a);
-       const ex tmp = multiply_lcm(a,lcm);
+       const ex tmp = multiply_lcm(a, lcm);
 
        // find the factors
-       exvector factors = sqrfree_yun(tmp, x);
+       epvector factors = sqrfree_yun(tmp, x);
+       if (factors.empty()) {
+               // the polynomial was a hidden zero
+               return _ex0;
+       }
 
-       // construct the next list of symbols with the first element popped
-       lst newargs = args;
-       newargs.remove_first();
+       // remove symbol x and proceed recursively with the remaining symbols
+       args.remove_first();
 
        // recurse down the factors in remaining variables
-       if (newargs.nops()>0) {
+       if (args.nops()>0) {
                for (auto & it : factors)
-                       it = sqrfree(it, newargs);
+                       it.rest = sqrfree(it.rest, args);
        }
 
        // Done with recursion, now construct the final result
-       ex result = _ex1;
-       int p = 1;
-       for (auto & it : factors)
-               result *= pow(it, p++);
-
-       // Yun's algorithm does not account for constant factors.  (For univariate
-       // polynomials it works only in the monic case.)  We can correct this by
-       // inserting what has been lost back into the result.  For completeness
-       // we'll also have to recurse down that factor in the remaining variables.
-       if (newargs.nops()>0)
-               result *= sqrfree(quo(tmp, result, x), newargs);
-       else
-               result *= quo(tmp, result, x);
+       ex result = mul(factors);
 
        // Put in the rational overall factor again and return
-       return result * lcm.inverse();
+       return result * lcm.inverse();
 }
 
 
@@ -1922,36 +1949,33 @@ ex sqrfree_parfrac(const ex & a, const symbol & x)
        // Find numerator and denominator
        ex nd = numer_denom(a);
        ex numer = nd.op(0), denom = nd.op(1);
-//clog << "numer = " << numer << ", denom = " << denom << endl;
+//std::clog << "numer = " << numer << ", denom = " << denom << std::endl;
 
        // Convert N(x)/D(x) -> Q(x) + R(x)/D(x), so degree(R) < degree(D)
        ex red_poly = quo(numer, denom, x), red_numer = rem(numer, denom, x).expand();
-//clog << "red_poly = " << red_poly << ", red_numer = " << red_numer << endl;
+//std::clog << "red_poly = " << red_poly << ", red_numer = " << red_numer << std::endl;
 
        // Factorize denominator and compute cofactors
-       exvector yun = sqrfree_yun(denom, x);
-//clog << "yun factors: " << exprseq(yun) << endl;
-       size_t num_yun = yun.size();
-       exvector factor; factor.reserve(num_yun);
-       exvector cofac; cofac.reserve(num_yun);
-       for (size_t i=0; i<num_yun; i++) {
-               if (!yun[i].is_equal(_ex1)) {
-                       for (size_t j=0; j<=i; j++) {
-                               factor.push_back(pow(yun[i], j+1));
-                               ex prod = _ex1;
-                               for (size_t k=0; k<num_yun; k++) {
-                                       if (k == i)
-                                               prod *= pow(yun[k], i-j);
-                                       else
-                                               prod *= pow(yun[k], k+1);
-                               }
-                               cofac.push_back(prod.expand());
+       epvector yun = sqrfree_yun(denom, x);
+       size_t yun_max_exponent = yun.empty() ? 0 : ex_to<numeric>(yun.back().coeff).to_int();
+       exvector factor, cofac;
+       for (size_t i=0; i<yun.size(); i++) {
+               numeric i_exponent = ex_to<numeric>(yun[i].coeff);
+               for (size_t j=0; j<i_exponent; j++) {
+                       factor.push_back(pow(yun[i].rest, j+1));
+                       ex prod = _ex1;
+                       for (size_t k=0; k<yun.size(); k++) {
+                               if (yun[k].coeff == i_exponent)
+                                       prod *= pow(yun[k].rest, i_exponent-1-j);
+                               else
+                                       prod *= pow(yun[k].rest, yun[k].coeff);
                        }
+                       cofac.push_back(prod.expand());
                }
        }
        size_t num_factors = factor.size();
-//clog << "factors  : " << exprseq(factor) << endl;
-//clog << "cofactors: " << exprseq(cofac) << endl;
+//std::clog << "factors  : " << exprseq(factor) << std::endl;
+//std::clog << "cofactors: " << exprseq(cofac) << std::endl;
 
        // Construct coefficient matrix for decomposition
        int max_denom_deg = denom.degree(x);
@@ -1962,8 +1986,8 @@ ex sqrfree_parfrac(const ex & a, const symbol & x)
                        sys(i, j) = cofac[j].coeff(x, i);
                rhs(i, 0) = red_numer.coeff(x, i);
        }
-//clog << "coeffs: " << sys << endl;
-//clog << "rhs   : " << rhs << endl;
+//std::clog << "coeffs: " << sys << std::endl;
+//std::clog << "rhs   : " << rhs << std::endl;
 
        // Solve resulting linear system
        matrix vars(num_factors, 1);
@@ -1996,8 +2020,36 @@ ex sqrfree_parfrac(const ex & a, const symbol & x)
 /** Create a symbol for replacing the expression "e" (or return a previously
  *  assigned symbol). The symbol and expression are appended to repl, for
  *  a later application of subs().
+ *  An entry in the replacement table repl can be changed in some cases.
+ *  If it was altered, we need to provide the modifier for the previously build expressions.
+ *  The modifier is an (ordered) list, because those substitutions need to be done in the
+ *  incremental order.
+ *  As an example let us consider a rationalisation of the expression
+ *      e = exp(2*x)*cos(exp(2*x)+1)*exp(x)
+ *  The first factor GiNaC denotes by something like symbol1 and will record:
+ *      e =symbol1*cos(symbol1 + 1)*exp(x)
+ *      repl = {symbol1 : exp(2*x)}
+ *  Similarly, the second factor would be denoted as symbol2 and we will have
+ *      e =symbol1*symbol2*exp(x)
+ *      repl = {symbol1 : exp(2*x), symbol2 : cos(symbol1 + 1)}
+ *  Denoting the third term as symbol3 GiNaC is willing to re-think exp(2*x) as
+ *  symbol3^2 rather than just symbol1. Here are two issues:
+ *  1) The replacement "symbol1 -> symbol3^2" in the previous part of the expression
+ *      needs to be done outside of the present routine;
+ *  2) The pair "symbol1 : exp(2*x)" shall be deleted from the replacement table repl.
+ *      However, this will create illegal substitution "symbol2 : cos(symbol1 + 1)" with
+ *      undefined symbol1.
+ *  These both problems are mitigated through the additions of the record
+ *  "symbol1==symbol3^2" to the list modifier. Changed length of the modifier signals
+ *  to the calling code that the previous portion of the expression needs to be
+ *  altered (it solves 1). Thus GiNaC can record now
+ *      e =symbol3^2*symbol2*symbol3
+ *      repl = {symbol2 : cos(symbol1 + 1), symbol3 : exp(x)}
+ *      modifier = {symbol1==symbol3^2}
+ *  Then, doing the backward substitutions the list modifier will be used to restore
+ *  such iterative substitutions in the right way (this solves 2).
  *  @see ex::normal */
-static ex replace_with_symbol(const ex & e, exmap & repl, exmap & rev_lookup)
+static ex replace_with_symbol(const ex & e, exmap & repl, exmap & rev_lookup, lst & modifier)
 {
        // Since the repl contains replaced expressions we should search for them
        ex e_replaced = e.subs(repl, subs_options::no_pattern);
@@ -2007,6 +2059,39 @@ static ex replace_with_symbol(const ex & e, exmap & repl, exmap & rev_lookup)
        if (it != rev_lookup.end())
                return it->second;
 
+       // We treat powers and the exponent functions differently because
+       // they can be rationalised more efficiently
+       if (is_a<function>(e_replaced) && is_ex_the_function(e_replaced, exp)) {
+               for (auto & it : repl) {
+                       if (is_a<function>(it.second) && is_ex_the_function(e_replaced, exp)) {
+                               ex ratio = normal(e_replaced.op(0) / it.second.op(0));
+                               if (is_a<numeric>(ratio) && ex_to<numeric>(ratio).is_rational()) {
+                                       // Different exponents can be treated as powers of the same basic equation
+                                       if (ex_to<numeric>(ratio).is_integer()) {
+                                               // If ratio is an integer then this is simply the power of the existing symbol.
+                                               // std::clog << e_replaced << " is a " << ratio << " power of " << it.first << std::endl;
+                                               return dynallocate<power>(it.first, ratio);
+                                       } else {
+                                               // otherwise we need to give the replacement pattern to change
+                                               // the previous expression...
+                                               ex es = dynallocate<symbol>();
+                                               ex Num = numer(ratio);
+                                               modifier.append(it.first == power(es, denom(ratio)));
+                                               // std::clog << e_replaced << " is power " << Num << " and "
+                                               //                << it.first << " is power " << denom(ratio) << " of the common base "
+                                               //                << exp(e_replaced.op(0)/Num) << std::endl;
+                                               // ... and  modify the replacement tables
+                                               rev_lookup.erase(it.second);
+                                               rev_lookup.insert({exp(e_replaced.op(0)/Num), es});
+                                               repl.erase(it.first);
+                                               repl.insert({es, exp(e_replaced.op(0)/Num)});
+                                               return dynallocate<power>(es, Num);
+                                       }
+                               }
+                       }
+               }
+       }
+
        // Otherwise create new symbol and add to list, taking care that the
        // replacement expression doesn't itself contain symbols from repl,
        // because subs() is not recursive
@@ -2048,19 +2133,27 @@ struct normal_map_function : public map_function {
 /** Default implementation of ex::normal(). It normalizes the children and
  *  replaces the object with a temporary symbol.
  *  @see ex::normal */
-ex basic::normal(exmap & repl, exmap & rev_lookup) const
+ex basic::normal(exmap & repl, exmap & rev_lookup, lst & modifier) const
 {
        if (nops() == 0)
-               return dynallocate<lst>({replace_with_symbol(*this, repl, rev_lookup), _ex1});
+               return dynallocate<lst>({replace_with_symbol(*this, repl, rev_lookup, modifier), _ex1});
 
        normal_map_function map_normal;
-       return dynallocate<lst>({replace_with_symbol(map(map_normal), repl, rev_lookup), _ex1});
+       int nmod = modifier.nops(); // To watch new modifiers to the replacement list
+       lst result = dynallocate<lst>({replace_with_symbol(map(map_normal), repl, rev_lookup, modifier), _ex1});
+       for (int imod = nmod; imod < modifier.nops(); ++imod) {
+               exmap this_repl;
+               this_repl.insert(std::make_pair(modifier.op(imod).op(0), modifier.op(imod).op(1)));
+               result = ex_to<lst>(result.subs(this_repl, subs_options::no_pattern));
+       }
+
+       return result;
 }
 
 
 /** Implementation of ex::normal() for symbols. This returns the unmodified symbol.
  *  @see ex::normal */
-ex symbol::normal(exmap & repl, exmap & rev_lookup) const
+ex symbol::normal(exmap & repl, exmap & rev_lookup, lst & modifier) const
 {
        return dynallocate<lst>({*this, _ex1});
 }
@@ -2070,19 +2163,19 @@ ex symbol::normal(exmap & repl, exmap & rev_lookup) const
  *  into re+I*im and replaces I and non-rational real numbers with a temporary
  *  symbol.
  *  @see ex::normal */
-ex numeric::normal(exmap & repl, exmap & rev_lookup) const
+ex numeric::normal(exmap & repl, exmap & rev_lookup, lst & modifier) const
 {
        numeric num = numer();
        ex numex = num;
 
        if (num.is_real()) {
                if (!num.is_integer())
-                       numex = replace_with_symbol(numex, repl, rev_lookup);
+                       numex = replace_with_symbol(numex, repl, rev_lookup, modifier);
        } else { // complex
                numeric re = num.real(), im = num.imag();
-               ex re_ex = re.is_rational() ? re : replace_with_symbol(re, repl, rev_lookup);
-               ex im_ex = im.is_rational() ? im : replace_with_symbol(im, repl, rev_lookup);
-               numex = re_ex + im_ex * replace_with_symbol(I, repl, rev_lookup);
+               ex re_ex = re.is_rational() ? re : replace_with_symbol(re, repl, rev_lookup, modifier);
+               ex im_ex = im.is_rational() ? im : replace_with_symbol(im, repl, rev_lookup, modifier);
+               numex = re_ex + im_ex * replace_with_symbol(I, repl, rev_lookup, modifier);
        }
 
        // Denominator is always a real integer (see numeric::denom())
@@ -2154,18 +2247,19 @@ static ex frac_cancel(const ex &n, const ex &d)
 /** Implementation of ex::normal() for a sum. It expands terms and performs
  *  fractional addition.
  *  @see ex::normal */
-ex add::normal(exmap & repl, exmap & rev_lookup) const
+ex add::normal(exmap & repl, exmap & rev_lookup, lst & modifier) const
 {
        // Normalize children and split each one into numerator and denominator
        exvector nums, dens;
        nums.reserve(seq.size()+1);
        dens.reserve(seq.size()+1);
+       int nmod = modifier.nops(); // To watch new modifiers to the replacement list
        for (auto & it : seq) {
-               ex n = ex_to<basic>(recombine_pair_to_ex(it)).normal(repl, rev_lookup);
+               ex n = ex_to<basic>(recombine_pair_to_ex(it)).normal(repl, rev_lookup, modifier);
                nums.push_back(n.op(0));
                dens.push_back(n.op(1));
        }
-       ex n = ex_to<numeric>(overall_coeff).normal(repl, rev_lookup);
+       ex n = ex_to<numeric>(overall_coeff).normal(repl, rev_lookup, modifier);
        nums.push_back(n.op(0));
        dens.push_back(n.op(1));
        GINAC_ASSERT(nums.size() == dens.size());
@@ -2178,6 +2272,18 @@ ex add::normal(exmap & repl, exmap & rev_lookup) const
        auto num_it = nums.begin(), num_itend = nums.end();
        auto den_it = dens.begin(), den_itend = dens.end();
 //std::clog << " num = " << *num_it << ", den = " << *den_it << std::endl;
+       for (int imod = nmod; imod < modifier.nops(); ++imod) {
+               while (num_it != num_itend) {
+                       *num_it = num_it->subs(modifier.op(imod), subs_options::no_pattern);
+                       ++num_it;
+                       *den_it = den_it->subs(modifier.op(imod), subs_options::no_pattern);
+                       ++den_it;
+               }
+               // Reset iterators for the next round
+               num_it = nums.begin();
+               den_it = dens.begin();
+       }
+
        ex num = *num_it++, den = *den_it++;
        while (num_it != num_itend) {
 //std::clog << " num = " << *num_it << ", den = " << *den_it << std::endl;
@@ -2206,35 +2312,48 @@ ex add::normal(exmap & repl, exmap & rev_lookup) const
 /** Implementation of ex::normal() for a product. It cancels common factors
  *  from fractions.
  *  @see ex::normal() */
-ex mul::normal(exmap & repl, exmap & rev_lookup) const
+ex mul::normal(exmap & repl, exmap & rev_lookup, lst & modifier) const
 {
        // Normalize children, separate into numerator and denominator
        exvector num; num.reserve(seq.size());
        exvector den; den.reserve(seq.size());
        ex n;
+       int nmod = modifier.nops(); // To watch new modifiers to the replacement list
        for (auto & it : seq) {
-               n = ex_to<basic>(recombine_pair_to_ex(it)).normal(repl, rev_lookup);
+               n = ex_to<basic>(recombine_pair_to_ex(it)).normal(repl, rev_lookup, modifier);
                num.push_back(n.op(0));
                den.push_back(n.op(1));
        }
-       n = ex_to<numeric>(overall_coeff).normal(repl, rev_lookup);
+       n = ex_to<numeric>(overall_coeff).normal(repl, rev_lookup, modifier);
        num.push_back(n.op(0));
        den.push_back(n.op(1));
+       auto num_it = num.begin(), num_itend = num.end();
+       auto den_it = den.begin(), den_itend = den.end();
+       for (int imod = nmod; imod < modifier.nops(); ++imod) {
+               while (num_it != num_itend) {
+                       *num_it = num_it->subs(modifier.op(imod), subs_options::no_pattern);
+                       ++num_it;
+                       *den_it = den_it->subs(modifier.op(imod), subs_options::no_pattern);
+                       ++den_it;
+               }
+               num_it = num.begin();
+               den_it = den.begin();
+       }
 
        // Perform fraction cancellation
        return frac_cancel(dynallocate<mul>(num), dynallocate<mul>(den));
 }
 
 
-/** Implementation of ex::normal([B) for powers. It normalizes the basis,
+/** Implementation of ex::normal() for powers. It normalizes the basis,
  *  distributes integer exponents to numerator and denominator, and replaces
  *  non-integer powers by temporary symbols.
  *  @see ex::normal */
-ex power::normal(exmap & repl, exmap & rev_lookup) const
+ex power::normal(exmap & repl, exmap & rev_lookup, lst & modifier) const
 {
        // Normalize basis and exponent (exponent gets reassembled)
-       ex n_basis = ex_to<basic>(basis).normal(repl, rev_lookup);
-       ex n_exponent = ex_to<basic>(exponent).normal(repl, rev_lookup);
+       ex n_basis = ex_to<basic>(basis).normal(repl, rev_lookup, modifier);
+       ex n_exponent = ex_to<basic>(exponent).normal(repl, rev_lookup, modifier);
        n_exponent = n_exponent.op(0) / n_exponent.op(1);
 
        if (n_exponent.info(info_flags::integer)) {
@@ -2255,32 +2374,32 @@ ex power::normal(exmap & repl, exmap & rev_lookup) const
                if (n_exponent.info(info_flags::positive)) {
 
                        // (a/b)^x -> {sym((a/b)^x), 1}
-                       return dynallocate<lst>({replace_with_symbol(pow(n_basis.op(0) / n_basis.op(1), n_exponent), repl, rev_lookup), _ex1});
+                       return dynallocate<lst>({replace_with_symbol(pow(n_basis.op(0) / n_basis.op(1), n_exponent), repl, rev_lookup, modifier), _ex1});
 
                } else if (n_exponent.info(info_flags::negative)) {
 
                        if (n_basis.op(1).is_equal(_ex1)) {
 
                                // a^-x -> {1, sym(a^x)}
-                               return dynallocate<lst>({_ex1, replace_with_symbol(pow(n_basis.op(0), -n_exponent), repl, rev_lookup)});
+                               return dynallocate<lst>({_ex1, replace_with_symbol(pow(n_basis.op(0), -n_exponent), repl, rev_lookup, modifier)});
 
                        } else {
 
                                // (a/b)^-x -> {sym((b/a)^x), 1}
-                               return dynallocate<lst>({replace_with_symbol(pow(n_basis.op(1) / n_basis.op(0), -n_exponent), repl, rev_lookup), _ex1});
+                               return dynallocate<lst>({replace_with_symbol(pow(n_basis.op(1) / n_basis.op(0), -n_exponent), repl, rev_lookup, modifier), _ex1});
                        }
                }
        }
 
        // (a/b)^x -> {sym((a/b)^x, 1}
-       return dynallocate<lst>({replace_with_symbol(pow(n_basis.op(0) / n_basis.op(1), n_exponent), repl, rev_lookup), _ex1});
+       return dynallocate<lst>({replace_with_symbol(pow(n_basis.op(0) / n_basis.op(1), n_exponent), repl, rev_lookup, modifier), _ex1});
 }
 
 
 /** Implementation of ex::normal() for pseries. It normalizes each coefficient
  *  and replaces the series by a temporary symbol.
  *  @see ex::normal */
-ex pseries::normal(exmap & repl, exmap & rev_lookup) const
+ex pseries::normal(exmap & repl, exmap & rev_lookup, lst & modifier) const
 {
        epvector newseq;
        for (auto & it : seq) {
@@ -2289,7 +2408,7 @@ ex pseries::normal(exmap & repl, exmap & rev_lookup) const
                        newseq.push_back(expair(restexp, it.coeff));
        }
        ex n = pseries(relational(var,point), std::move(newseq));
-       return dynallocate<lst>({replace_with_symbol(n, repl, rev_lookup), _ex1});
+       return dynallocate<lst>({replace_with_symbol(n, repl, rev_lookup, modifier), _ex1});
 }
 
 
@@ -2307,13 +2426,17 @@ ex pseries::normal(exmap & repl, exmap & rev_lookup) const
 ex ex::normal() const
 {
        exmap repl, rev_lookup;
+       lst modifier;
 
-       ex e = bp->normal(repl, rev_lookup);
+       ex e = bp->normal(repl, rev_lookup, modifier);
        GINAC_ASSERT(is_a<lst>(e));
 
        // Re-insert replaced symbols
-       if (!repl.empty())
+       if (!repl.empty()) {
+               for(int i=0; i < modifier.nops(); ++i)
+                       e = e.subs(modifier.op(i), subs_options::no_pattern);
                e = e.subs(repl, subs_options::no_pattern);
+       }
 
        // Convert {numerator, denominator} form back to fraction
        return e.op(0) / e.op(1);
@@ -2328,15 +2451,20 @@ ex ex::normal() const
 ex ex::numer() const
 {
        exmap repl, rev_lookup;
+       lst modifier;
 
-       ex e = bp->normal(repl, rev_lookup);
+       ex e = bp->normal(repl, rev_lookup, modifier);
        GINAC_ASSERT(is_a<lst>(e));
 
        // Re-insert replaced symbols
        if (repl.empty())
                return e.op(0);
-       else
+       else {
+               for(int i=0; i < modifier.nops(); ++i)
+                       e = e.subs(modifier.op(i), subs_options::no_pattern);
+
                return e.op(0).subs(repl, subs_options::no_pattern);
+       }
 }
 
 /** Get denominator of an expression. If the expression is not of the normal
@@ -2348,15 +2476,20 @@ ex ex::numer() const
 ex ex::denom() const
 {
        exmap repl, rev_lookup;
+       lst modifier;
 
-       ex e = bp->normal(repl, rev_lookup);
+       ex e = bp->normal(repl, rev_lookup, modifier);
        GINAC_ASSERT(is_a<lst>(e));
 
        // Re-insert replaced symbols
        if (repl.empty())
                return e.op(1);
-       else
+       else {
+               for(int i=0; i < modifier.nops(); ++i)
+                       e = e.subs(modifier.op(i), subs_options::no_pattern);
+
                return e.op(1).subs(repl, subs_options::no_pattern);
+       }
 }
 
 /** Get numerator and denominator of an expression. If the expression is not
@@ -2368,15 +2501,20 @@ ex ex::denom() const
 ex ex::numer_denom() const
 {
        exmap repl, rev_lookup;
+       lst modifier;
 
-       ex e = bp->normal(repl, rev_lookup);
+       ex e = bp->normal(repl, rev_lookup, modifier);
        GINAC_ASSERT(is_a<lst>(e));
 
        // Re-insert replaced symbols
        if (repl.empty())
                return e;
-       else
+       else {
+               for(int i=0; i < modifier.nops(); ++i)
+                       e = e.subs(modifier.op(i), subs_options::no_pattern);
+
                return e.subs(repl, subs_options::no_pattern);
+       }
 }
 
 
@@ -2398,47 +2536,11 @@ ex ex::to_rational(exmap & repl) const
        return bp->to_rational(repl);
 }
 
-// GiNaC 1.1 compatibility function
-ex ex::to_rational(lst & repl_lst) const
-{
-       // Convert lst to exmap
-       exmap m;
-       for (auto & it : repl_lst)
-               m.insert(std::make_pair(it.op(0), it.op(1)));
-
-       ex ret = bp->to_rational(m);
-
-       // Convert exmap back to lst
-       repl_lst.remove_all();
-       for (auto & it : m)
-               repl_lst.append(it.first == it.second);
-
-       return ret;
-}
-
 ex ex::to_polynomial(exmap & repl) const
 {
        return bp->to_polynomial(repl);
 }
 
-// GiNaC 1.1 compatibility function
-ex ex::to_polynomial(lst & repl_lst) const
-{
-       // Convert lst to exmap
-       exmap m;
-       for (auto & it : repl_lst)
-               m.insert(std::make_pair(it.op(0), it.op(1)));
-
-       ex ret = bp->to_polynomial(m);
-
-       // Convert exmap back to lst
-       repl_lst.remove_all();
-       for (auto & it : m)
-               repl_lst.append(it.first == it.second);
-
-       return ret;
-}
-
 /** Default implementation of ex::to_rational(). This replaces the object with
  *  a temporary symbol. */
 ex basic::to_rational(exmap & repl) const
@@ -2590,7 +2692,7 @@ static ex find_common_factor(const ex & e, ex & factor, exmap & repl)
                                x *= f;
                        }
 
-                       if (i == 0)
+                       if (gc.is_zero())
                                gc = x;
                        else
                                gc = gcd(gc, x);
@@ -2601,6 +2703,9 @@ static ex find_common_factor(const ex & e, ex & factor, exmap & repl)
                if (gc.is_equal(_ex1))
                        return e;
 
+               if (gc.is_zero())
+                       return _ex0;
+
                // The GCD is the factor we pull out
                factor *= gc;