]> www.ginac.de Git - ginac.git/blobdiff - ginac/normal.cpp
Fix the compliation error *for real* ... and restore performance
[ginac.git] / ginac / normal.cpp
index d5319b9b771895087a01973e9186100e195a9972..2a251a780704fdfb66ed96dc0befcf93567dc84b 100644 (file)
@@ -6,7 +6,7 @@
  *  computation, square-free factorization and rational function normalization. */
 
 /*
- *  GiNaC Copyright (C) 1999-2008 Johannes Gutenberg University Mainz, Germany
+ *  GiNaC Copyright (C) 1999-2009 Johannes Gutenberg University Mainz, Germany
  *
  *  This program is free software; you can redistribute it and/or modify
  *  it under the terms of the GNU General Public License as published by
@@ -23,9 +23,6 @@
  *  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
  */
 
-#include <algorithm>
-#include <map>
-
 #include "normal.h"
 #include "basic.h"
 #include "ex.h"
 #include "pseries.h"
 #include "symbol.h"
 #include "utils.h"
+#include "polynomial/chinrem_gcd.h"
+
+#include <algorithm>
+#include <map>
 
 namespace GiNaC {
 
@@ -672,12 +673,13 @@ bool divide(const ex &a, const ex &b, ex &q, bool check_args)
                        q = rem_i*power(ab, a_exp - 1);
                        return true;
                }
-               for (int i=2; i < a_exp; i++) {
-                       if (divide(power(ab, i), b, rem_i, false)) {
-                               q = rem_i*power(ab, a_exp - i);
-                               return true;
-                       }
-               } // ... so we *really* need to expand expression.
+// code below is commented-out because it leads to a significant slowdown
+//             for (int i=2; i < a_exp; i++) {
+//                     if (divide(power(ab, i), b, rem_i, false)) {
+//                             q = rem_i*power(ab, a_exp - i);
+//                             return true;
+//                     }
+//             } // ... so we *really* need to expand expression.
        }
        
        // Polynomial long division (recursive)
@@ -1622,8 +1624,15 @@ ex gcd(const ex &a, const ex &b, ex *ca, ex *cb, bool check_args, unsigned optio
                }
 #endif
        }
+       if (options & gcd_options::use_sr_gcd) {
+               g = sr_gcd(aex, bex, var);
+       } else {
+               exvector vars;
+               for (std::size_t n = sym_stats.size(); n-- != 0; )
+                       vars.push_back(sym_stats[n].sym);
+               g = chinrem_gcd(aex, bex, vars);
+       }
 
-       g = sr_gcd(aex, bex, var);
        if (g.is_equal(_ex1)) {
                // Keep cofactors factored if possible
                if (ca)
@@ -1647,8 +1656,9 @@ static ex gcd_pf_pow_pow(const ex& a, const ex& b, ex* ca, ex* cb)
        const ex& exp_a = a.op(1);
        ex pb = b.op(0);
        const ex& exp_b = b.op(1);
+
+       // a = p^n, b = p^m, gcd = p^min(n, m)
        if (p.is_equal(pb)) {
-               // a = p^n, b = p^m, gcd = p^min(n, m)
                if (exp_a < exp_b) {
                        if (ca)
                                *ca = _ex1;
@@ -1662,94 +1672,67 @@ static ex gcd_pf_pow_pow(const ex& a, const ex& b, ex* ca, ex* cb)
                                *cb = _ex1;
                        return power(p, exp_b);
                }
-       } else {
-               ex p_co, pb_co;
-               ex p_gcd = gcd(p, pb, &p_co, &pb_co, false);
-               if (p_gcd.is_equal(_ex1)) {
-                       // a(x) = p(x)^n, b(x) = p_b(x)^m, gcd (p, p_b) = 1 ==>
-                       // gcd(a,b) = 1
+       }
+
+       ex p_co, pb_co;
+       ex p_gcd = gcd(p, pb, &p_co, &pb_co, false);
+       // a(x) = p(x)^n, b(x) = p_b(x)^m, gcd (p, p_b) = 1 ==> gcd(a,b) = 1
+       if (p_gcd.is_equal(_ex1)) {
                        if (ca)
                                *ca = a;
                        if (cb)
                                *cb = b;
                        return _ex1;
                        // XXX: do I need to check for p_gcd = -1?
-               } else {
-                       // there are common factors:
-                       // a(x) = g(x)^n A(x)^n, b(x) = g(x)^m B(x)^m ==>
-                       // gcd(a, b) = g(x)^n gcd(A(x)^n, g(x)^(n-m) B(x)^m
-                       if (exp_a < exp_b) {
-                               return power(p_gcd, exp_a)*
-                                       gcd(power(p_co, exp_a), power(p_gcd, exp_b-exp_a)*power(pb_co, exp_b), ca, cb, false);
-                       } else {
-                               return power(p_gcd, exp_b)*
-                                       gcd(power(p_gcd, exp_a - exp_b)*power(p_co, exp_a), power(pb_co, exp_b), ca, cb, false);
-                       }
-               } // p_gcd.is_equal(_ex1)
-       } // p.is_equal(pb)
+       }
+
+       // there are common factors:
+       // a(x) = g(x)^n A(x)^n, b(x) = g(x)^m B(x)^m ==>
+       // gcd(a, b) = g(x)^n gcd(A(x)^n, g(x)^(n-m) B(x)^m
+       if (exp_a < exp_b) {
+               ex pg =  gcd(power(p_co, exp_a), power(p_gcd, exp_b-exp_a)*power(pb_co, exp_b), ca, cb, false);
+               return power(p_gcd, exp_a)*pg;
+       } else {
+               ex pg = gcd(power(p_gcd, exp_a - exp_b)*power(p_co, exp_a), power(pb_co, exp_b), ca, cb, false);
+               return power(p_gcd, exp_b)*pg;
+       }
 }
 
 static ex gcd_pf_pow(const ex& a, const ex& b, ex* ca, ex* cb)
 {
-       if (is_exactly_a<power>(a)) {
-               ex p = a.op(0);
-               const ex& exp_a = a.op(1);
-               if (is_exactly_a<power>(b))
-                       return gcd_pf_pow_pow(a, b, ca, cb);
-               else {
-                       if (p.is_equal(b)) {
-                               // a = p^n, b = p, gcd = p
-                               if (ca)
-                                       *ca = power(p, a.op(1) - 1);
-                               if (cb)
-                                       *cb = _ex1;
-                               return p;
-                       } 
+       if (is_exactly_a<power>(a) && is_exactly_a<power>(b))
+               return gcd_pf_pow_pow(a, b, ca, cb);
 
-                       ex p_co, bpart_co;
-                       ex p_gcd = gcd(p, b, &p_co, &bpart_co, false);
+       if (is_exactly_a<power>(b) && (! is_exactly_a<power>(a)))
+               return gcd_pf_pow(b, a, cb, ca);
 
-                       if (p_gcd.is_equal(_ex1)) {
-                               // a(x) = p(x)^n, gcd(p, b) = 1 ==> gcd(a, b) = 1
-                               if (ca)
-                                       *ca = a;
-                               if (cb)
-                                       *cb = b;
-                               return _ex1;
-                       } else {
-                               // a(x) = g(x)^n A(x)^n, b(x) = g(x) B(x) ==> gcd(a, b) = g(x) gcd(g(x)^(n-1) A(x)^n, B(x))
-                               return p_gcd*gcd(power(p_gcd, exp_a-1)*power(p_co, exp_a), bpart_co, ca, cb, false);
-                       }
-               } // is_exactly_a<power>(b)
+       GINAC_ASSERT(is_exactly_a<power>(a));
 
-       } else if (is_exactly_a<power>(b)) {
-               ex p = b.op(0);
-               if (p.is_equal(a)) {
-                       // a = p, b = p^n, gcd = p
-                       if (ca)
-                               *ca = _ex1;
-                       if (cb)
-                               *cb = power(p, b.op(1) - 1);
-                       return p;
-               }
+       ex p = a.op(0);
+       const ex& exp_a = a.op(1);
+       if (p.is_equal(b)) {
+               // a = p^n, b = p, gcd = p
+               if (ca)
+                       *ca = power(p, a.op(1) - 1);
+               if (cb)
+                       *cb = _ex1;
+               return p;
+       } 
 
-               ex p_co, apart_co;
-               const ex& exp_b(b.op(1));
-               ex p_gcd = gcd(a, p, &apart_co, &p_co, false);
-               if (p_gcd.is_equal(_ex1)) {
-                       // b=p(x)^n, gcd(a, p) = 1 ==> gcd(a, b) == 1
-                       if (ca)
-                               *ca = a;
-                       if (cb)
-                               *cb = b;
-                       return _ex1;
-               } else {
-                       // there are common factors:
-                       // a(x) = g(x) A(x), b(x) = g(x)^n B(x)^n ==> gcd = g(x) gcd(g(x)^(n-1) A(x)^n, B(x))
+       ex p_co, bpart_co;
+       ex p_gcd = gcd(p, b, &p_co, &bpart_co, false);
 
-                       return p_gcd*gcd(apart_co, power(p_gcd, exp_b-1)*power(p_co, exp_b), ca, cb, false);
-               } // p_gcd.is_equal(_ex1)
+       // a(x) = p(x)^n, gcd(p, b) = 1 ==> gcd(a, b) = 1
+       if (p_gcd.is_equal(_ex1)) {
+               if (ca)
+                       *ca = a;
+               if (cb)
+                       *cb = b;
+               return _ex1;
        }
+       // a(x) = g(x)^n A(x)^n, b(x) = g(x) B(x) ==> gcd(a, b) = g(x) gcd(g(x)^(n-1) A(x)^n, B(x))
+       ex rg = gcd(power(p_gcd, exp_a-1)*power(p_co, exp_a), bpart_co, ca, cb, false);
+       return p_gcd*rg;
 }
 
 static ex gcd_pf_mul(const ex& a, const ex& b, ex* ca, ex* cb)