]> www.ginac.de Git - ginac.git/blobdiff - ginac/normal.cpp
GCD avoids to produce expanded expressions (Alexei's patch).
[ginac.git] / ginac / normal.cpp
index 9ff50b84f557d9ebb1d11a291b4956dc0d9da42c..1808bcb90bc9722d5f78121b9c1f613896355e51 100644 (file)
@@ -6,7 +6,7 @@
  *  computation, square-free factorization and rational function normalization. */
 
 /*
- *  GiNaC Copyright (C) 1999-2003 Johannes Gutenberg University Mainz, Germany
+ *  GiNaC Copyright (C) 1999-2005 Johannes Gutenberg University Mainz, Germany
  *
  *  This program is free software; you can redistribute it and/or modify
  *  it under the terms of the GNU General Public License as published by
@@ -20,7 +20,7 @@
  *
  *  You should have received a copy of the GNU General Public License
  *  along with this program; if not, write to the Free Software
- *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
+ *  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
  */
 
 #include <algorithm>
@@ -84,7 +84,7 @@ static struct _stat_print {
 #endif
 
 
-/** Return pointer to first symbol found in expression.  Due to GiNaC´s
+/** Return pointer to first symbol found in expression.  Due to GiNaC's
  *  internal ordering of terms, it may not be obvious which symbol this
  *  function returns for a given expression.
  *
@@ -298,7 +298,9 @@ static ex multiply_lcm(const ex &e, const numeric &lcm)
 
 
 /** Compute the integer content (= GCD of all numeric coefficients) of an
- *  expanded polynomial.
+ *  expanded polynomial. For a polynomial with rational coefficients, this
+ *  returns g/l where g is the GCD of the coefficients' numerators and l
+ *  is the LCM of the coefficients' denominators.
  *
  *  @return integer content */
 numeric ex::integer_content() const
@@ -320,16 +322,18 @@ numeric add::integer_content() const
 {
        epvector::const_iterator it = seq.begin();
        epvector::const_iterator itend = seq.end();
-       numeric c = _num0;
+       numeric c = _num0, l = _num1;
        while (it != itend) {
                GINAC_ASSERT(!is_exactly_a<numeric>(it->rest));
                GINAC_ASSERT(is_exactly_a<numeric>(it->coeff));
-               c = gcd(ex_to<numeric>(it->coeff), c);
+               c = gcd(ex_to<numeric>(it->coeff).numer(), c);
+               l = lcm(ex_to<numeric>(it->coeff).denom(), l);
                it++;
        }
        GINAC_ASSERT(is_exactly_a<numeric>(overall_coeff));
-       c = gcd(ex_to<numeric>(overall_coeff),c);
-       return c;
+       c = gcd(ex_to<numeric>(overall_coeff).numer(), c);
+       l = lcm(ex_to<numeric>(overall_coeff).denom(), l);
+       return c/l;
 }
 
 numeric mul::integer_content() const
@@ -812,17 +816,17 @@ static bool divide_in_z(const ex &a, const ex &b, ex &q, sym_desc_vec::const_ite
  */
 
 /** Compute unit part (= sign of leading coefficient) of a multivariate
- *  polynomial in Z[x]. The product of unit part, content part, and primitive
+ *  polynomial in Q[x]. The product of unit part, content part, and primitive
  *  part is the polynomial itself.
  *
- *  @param x  variable in which to compute the unit part
+ *  @param x  main variable
  *  @return unit part
- *  @see ex::content, ex::primpart */
+ *  @see ex::content, ex::primpart, ex::unitcontprim */
 ex ex::unit(const ex &x) const
 {
        ex c = expand().lcoeff(x);
        if (is_exactly_a<numeric>(c))
-               return c < _ex0 ? _ex_1 : _ex1;
+               return c.info(info_flags::negative) ?_ex_1 : _ex1;
        else {
                ex y;
                if (get_first_symbol(c, y))
@@ -834,82 +838,72 @@ ex ex::unit(const ex &x) const
 
 
 /** Compute content part (= unit normal GCD of all coefficients) of a
- *  multivariate polynomial in Z[x].  The product of unit part, content part,
+ *  multivariate polynomial in Q[x]. The product of unit part, content part,
  *  and primitive part is the polynomial itself.
  *
- *  @param x  variable in which to compute the content part
+ *  @param x  main variable
  *  @return content part
- *  @see ex::unit, ex::primpart */
+ *  @see ex::unit, ex::primpart, ex::unitcontprim */
 ex ex::content(const ex &x) const
 {
-       if (is_zero())
-               return _ex0;
        if (is_exactly_a<numeric>(*this))
                return info(info_flags::negative) ? -*this : *this;
+
        ex e = expand();
        if (e.is_zero())
                return _ex0;
 
-       // First, try the integer content
+       // First, divide out the integer content (which we can calculate very efficiently).
+       // If the leading coefficient of the quotient is an integer, we are done.
        ex c = e.integer_content();
        ex r = e / c;
-       ex lcoeff = r.lcoeff(x);
+       int deg = r.degree(x);
+       ex lcoeff = r.coeff(x, deg);
        if (lcoeff.info(info_flags::integer))
                return c;
 
        // GCD of all coefficients
-       int deg = e.degree(x);
-       int ldeg = e.ldegree(x);
+       int ldeg = r.ldegree(x);
        if (deg == ldeg)
-               return e.lcoeff(x) / e.unit(x);
-       c = _ex0;
+               return lcoeff * c / lcoeff.unit(x);
+       ex cont = _ex0;
        for (int i=ldeg; i<=deg; i++)
-               c = gcd(e.coeff(x, i), c, NULL, NULL, false);
-       return c;
+               cont = gcd(r.coeff(x, i), cont, NULL, NULL, false);
+       return cont * c;
 }
 
 
-/** Compute primitive part of a multivariate polynomial in Z[x].
- *  The product of unit part, content part, and primitive part is the
- *  polynomial itself.
+/** Compute primitive part of a multivariate polynomial in Q[x]. The result
+ *  will be a unit-normal polynomial with a content part of 1. The product
+ *  of unit part, content part, and primitive part is the polynomial itself.
  *
- *  @param x  variable in which to compute the primitive part
+ *  @param x  main variable
  *  @return primitive part
- *  @see ex::unit, ex::content */
+ *  @see ex::unit, ex::content, ex::unitcontprim */
 ex ex::primpart(const ex &x) const
 {
-       if (is_zero())
-               return _ex0;
-       if (is_exactly_a<numeric>(*this))
-               return _ex1;
-
-       ex c = content(x);
-       if (c.is_zero())
-               return _ex0;
-       ex u = unit(x);
-       if (is_exactly_a<numeric>(c))
-               return *this / (c * u);
-       else
-               return quo(*this, c * u, x, false);
+       // We need to compute the unit and content anyway, so call unitcontprim()
+       ex u, c, p;
+       unitcontprim(x, u, c, p);
+       return p;
 }
 
 
-/** Compute primitive part of a multivariate polynomial in Z[x] when the
+/** Compute primitive part of a multivariate polynomial in Q[x] when the
  *  content part is already known. This function is faster in computing the
  *  primitive part than the previous function.
  *
- *  @param x  variable in which to compute the primitive part
+ *  @param x  main variable
  *  @param c  previously computed content part
  *  @return primitive part */
 ex ex::primpart(const ex &x, const ex &c) const
 {
-       if (is_zero())
-               return _ex0;
-       if (c.is_zero())
+       if (is_zero() || c.is_zero())
                return _ex0;
        if (is_exactly_a<numeric>(*this))
                return _ex1;
 
+       // Divide by unit and content to get primitive part
        ex u = unit(x);
        if (is_exactly_a<numeric>(c))
                return *this / (c * u);
@@ -918,6 +912,61 @@ ex ex::primpart(const ex &x, const ex &c) const
 }
 
 
+/** Compute unit part, content part, and primitive part of a multivariate
+ *  polynomial in Q[x]. The product of the three parts is the polynomial
+ *  itself.
+ *
+ *  @param x  main variable
+ *  @param u  unit part (returned)
+ *  @param c  content part (returned)
+ *  @param p  primitive part (returned)
+ *  @see ex::unit, ex::content, ex::primpart */
+void ex::unitcontprim(const ex &x, ex &u, ex &c, ex &p) const
+{
+       // Quick check for zero (avoid expanding)
+       if (is_zero()) {
+               u = _ex1;
+               c = p = _ex0;
+               return;
+       }
+
+       // Special case: input is a number
+       if (is_exactly_a<numeric>(*this)) {
+               if (info(info_flags::negative)) {
+                       u = _ex_1;
+                       c = abs(ex_to<numeric>(*this));
+               } else {
+                       u = _ex1;
+                       c = *this;
+               }
+               p = _ex1;
+               return;
+       }
+
+       // Expand input polynomial
+       ex e = expand();
+       if (e.is_zero()) {
+               u = _ex1;
+               c = p = _ex0;
+               return;
+       }
+
+       // Compute unit and content
+       u = unit(x);
+       c = content(x);
+
+       // Divide by unit and content to get primitive part
+       if (c.is_zero()) {
+               p = _ex0;
+               return;
+       }
+       if (is_exactly_a<numeric>(c))
+               p = *this / (c * u);
+       else
+               p = quo(e, c * u, x, false);
+}
+
+
 /*
  *  GCD of multivariate polynomials
  */
@@ -1198,11 +1247,7 @@ static ex heur_gcd(const ex &a, const ex &b, ex *ca, ex *cb, sym_desc_vec::const
                        ex dummy;
                        if (divide_in_z(p, g, ca ? *ca : dummy, var) && divide_in_z(q, g, cb ? *cb : dummy, var)) {
                                g *= gc;
-                               ex lc = g.lcoeff(x);
-                               if (is_exactly_a<numeric>(lc) && ex_to<numeric>(lc).is_negative())
-                                       return -g;
-                               else
-                                       return g;
+                               return g;
                        }
                }
 
@@ -1214,7 +1259,8 @@ static ex heur_gcd(const ex &a, const ex &b, ex *ca, ex *cb, sym_desc_vec::const
 
 
 /** Compute GCD (Greatest Common Divisor) of multivariate polynomials a(X)
- *  and b(X) in Z[X].
+ *  and b(X) in Z[X]. Optionally also compute the cofactors of a and b,
+ *  defined by a = ca * gcd(a, b) and b = cb * gcd(a, b).
  *
  *  @param a  first multivariate polynomial
  *  @param b  second multivariate polynomial
@@ -1298,10 +1344,12 @@ factored_b:
        // Input polynomials of the form poly^n are sometimes also trivial
        if (is_exactly_a<power>(a)) {
                ex p = a.op(0);
+               const ex& exp_a = a.op(1);
                if (is_exactly_a<power>(b)) {
-                       if (p.is_equal(b.op(0))) {
+                       ex pb = b.op(0);
+                       const ex& exp_b = b.op(1);
+                       if (p.is_equal(pb)) {
                                // a = p^n, b = p^m, gcd = p^min(n, m)
-                               ex exp_a = a.op(1), exp_b = b.op(1);
                                if (exp_a < exp_b) {
                                        if (ca)
                                                *ca = _ex1;
@@ -1315,7 +1363,32 @@ factored_b:
                                                *cb = _ex1;
                                        return power(p, exp_b);
                                }
-                       }
+                       } else {
+                               ex p_co, pb_co;
+                               ex p_gcd = gcd(p, pb, &p_co, &pb_co, check_args);
+                               if (p_gcd.is_equal(_ex1)) {
+                                       // a(x) = p(x)^n, b(x) = p_b(x)^m, gcd (p, p_b) = 1 ==>
+                                       // gcd(a,b) = 1
+                                       if (ca)
+                                               *ca = a;
+                                       if (cb)
+                                               *cb = b;
+                                       return _ex1;
+                                       // XXX: do I need to check for p_gcd = -1?
+                               } else {
+                                       // there are common factors:
+                                       // a(x) = g(x)^n A(x)^n, b(x) = g(x)^m B(x)^m ==>
+                                       // gcd(a, b) = g(x)^n gcd(A(x)^n, g(x)^(n-m) B(x)^m
+                                       if (exp_a < exp_b) {
+                                               return power(p_gcd, exp_a)*
+                                                       gcd(power(p_co, exp_a), power(p_gcd, exp_b-exp_a)*power(pb_co, exp_b), ca, cb, false);
+                                       } else {
+                                               return power(p_gcd, exp_b)*
+                                                       gcd(power(p_gcd, exp_a - exp_b)*power(p_co, exp_a), power(pb_co, exp_b), ca, cb, false);
+                                       }
+                               } // p_gcd.is_equal(_ex1)
+                       } // p.is_equal(pb)
+
                } else {
                        if (p.is_equal(b)) {
                                // a = p^n, b = p, gcd = p
@@ -1324,8 +1397,24 @@ factored_b:
                                if (cb)
                                        *cb = _ex1;
                                return p;
+                       } 
+
+                       ex p_co, bpart_co;
+                       ex p_gcd = gcd(p, b, &p_co, &bpart_co, false);
+
+                       if (p_gcd.is_equal(_ex1)) {
+                               // a(x) = p(x)^n, gcd(p, b) = 1 ==> gcd(a, b) = 1
+                               if (ca)
+                                       *ca = a;
+                               if (cb)
+                                       *cb = b;
+                               return _ex1;
+                       } else {
+                               // a(x) = g(x)^n A(x)^n, b(x) = g(x) B(x) ==> gcd(a, b) = g(x) gcd(g(x)^(n-1) A(x)^n, B(x))
+                               return p_gcd*gcd(power(p_gcd, exp_a-1)*power(p_co, exp_a), bpart_co, ca, cb, false);
                        }
-               }
+               } // is_exactly_a<power>(b)
+
        } else if (is_exactly_a<power>(b)) {
                ex p = b.op(0);
                if (p.is_equal(a)) {
@@ -1336,6 +1425,23 @@ factored_b:
                                *cb = power(p, b.op(1) - 1);
                        return p;
                }
+
+               ex p_co, apart_co;
+               const ex& exp_b(b.op(1));
+               ex p_gcd = gcd(a, p, &apart_co, &p_co, false);
+               if (p_gcd.is_equal(_ex1)) {
+                       // b=p(x)^n, gcd(a, p) = 1 ==> gcd(a, b) == 1
+                       if (ca)
+                               *ca = a;
+                       if (cb)
+                               *cb = b;
+                       return _ex1;
+               } else {
+                       // there are common factors:
+                       // a(x) = g(x) A(x), b(x) = g(x)^n B(x)^n ==> gcd = g(x) gcd(g(x)^(n-1) A(x)^n, B(x))
+
+                       return p_gcd*gcd(apart_co, power(p_gcd, exp_b-1)*power(p_co, exp_b), ca, cb, false);
+               } // p_gcd.is_equal(_ex1)
        }
 #endif
 
@@ -1391,16 +1497,18 @@ factored_b:
 
        // Try to eliminate variables
        if (var->deg_a == 0) {
-               ex c = bex.content(x);
-               ex g = gcd(aex, c, ca, cb, false);
+               ex bex_u, bex_c, bex_p;
+               bex.unitcontprim(x, bex_u, bex_c, bex_p);
+               ex g = gcd(aex, bex_c, ca, cb, false);
                if (cb)
-                       *cb *= bex.unit(x) * bex.primpart(x, c);
+                       *cb *= bex_u * bex_p;
                return g;
        } else if (var->deg_b == 0) {
-               ex c = aex.content(x);
-               ex g = gcd(c, bex, ca, cb, false);
+               ex aex_u, aex_c, aex_p;
+               aex.unitcontprim(x, aex_u, aex_c, aex_p);
+               ex g = gcd(aex_c, bex, ca, cb, false);
                if (ca)
-                       *ca *= aex.unit(x) * aex.primpart(x, c);
+                       *ca *= aex_u * aex_p;
                return g;
        }
 
@@ -1467,7 +1575,7 @@ ex lcm(const ex &a, const ex &b, bool check_args)
  */
 
 /** Compute square-free factorization of multivariate polynomial a(x) using
- *  Yun´s algorithm.  Used internally by sqrfree().
+ *  Yun's algorithm.  Used internally by sqrfree().
  *
  *  @param a  multivariate polynomial over Z[X], treated here as univariate
  *            polynomial in x.
@@ -2375,4 +2483,37 @@ ex collect_common_factors(const ex & e)
 }
 
 
+/** Resultant of two expressions e1,e2 with respect to symbol s.
+ *  Method: Compute determinant of Sylvester matrix of e1,e2,s.  */
+ex resultant(const ex & e1, const ex & e2, const ex & s)
+{
+       const ex ee1 = e1.expand();
+       const ex ee2 = e2.expand();
+       if (!ee1.info(info_flags::polynomial) ||
+           !ee2.info(info_flags::polynomial))
+               throw(std::runtime_error("resultant(): arguments must be polynomials"));
+
+       const int h1 = ee1.degree(s);
+       const int l1 = ee1.ldegree(s);
+       const int h2 = ee2.degree(s);
+       const int l2 = ee2.ldegree(s);
+
+       const int msize = h1 + h2;
+       matrix m(msize, msize);
+
+       for (int l = h1; l >= l1; --l) {
+               const ex e = ee1.coeff(s, l);
+               for (int k = 0; k < h2; ++k)
+                       m(k, k+h1-l) = e;
+       }
+       for (int l = h2; l >= l2; --l) {
+               const ex e = ee2.coeff(s, l);
+               for (int k = 0; k < h1; ++k)
+                       m(k+h2, k+h2-l) = e;
+       }
+
+       return m.determinant();
+}
+
+
 } // namespace GiNaC