]> www.ginac.de Git - ginac.git/blobdiff - ginac/normal.cpp
refactor gcd() a little bit (no functional changes).
[ginac.git] / ginac / normal.cpp
index 9ec7574ad665eb33775923238b132c84b29daf9b..0227f4e3fa0c08efd83ec491a9a3ed3189f7cf1f 100644 (file)
@@ -1415,6 +1415,14 @@ static bool heur_gcd(ex& res, const ex& a, const ex& b, ex *ca, ex *cb,
 }
 
 
+// gcd helper to handle partially factored polynomials (to avoid expanding
+// large expressions). At least one of the arguments should be a power.
+static ex gcd_pf_pow(const ex& a, const ex& b, ex* ca, ex* cb, bool check_args);
+
+// gcd helper to handle partially factored polynomials (to avoid expanding
+// large expressions). At least one of the arguments should be a product.
+static ex gcd_pf_mul(const ex& a, const ex& b, ex* ca, ex* cb, bool check_args);
+
 /** Compute GCD (Greatest Common Divisor) of multivariate polynomials a(X)
  *  and b(X) in Z[X]. Optionally also compute the cofactors of a and b,
  *  defined by a = ca * gcd(a, b) and b = cb * gcd(a, b).
@@ -1457,149 +1465,11 @@ ex gcd(const ex &a, const ex &b, ex *ca, ex *cb, bool check_args, unsigned optio
        }
 
        // Partially factored cases (to avoid expanding large expressions)
-       if (is_exactly_a<mul>(a)) {
-               if (is_exactly_a<mul>(b) && b.nops() > a.nops())
-                       goto factored_b;
-factored_a:
-               size_t num = a.nops();
-               exvector g; g.reserve(num);
-               exvector acc_ca; acc_ca.reserve(num);
-               ex part_b = b;
-               for (size_t i=0; i<num; i++) {
-                       ex part_ca, part_cb;
-                       g.push_back(gcd(a.op(i), part_b, &part_ca, &part_cb, check_args));
-                       acc_ca.push_back(part_ca);
-                       part_b = part_cb;
-               }
-               if (ca)
-                       *ca = (new mul(acc_ca))->setflag(status_flags::dynallocated);
-               if (cb)
-                       *cb = part_b;
-               return (new mul(g))->setflag(status_flags::dynallocated);
-       } else if (is_exactly_a<mul>(b)) {
-               if (is_exactly_a<mul>(a) && a.nops() > b.nops())
-                       goto factored_a;
-factored_b:
-               size_t num = b.nops();
-               exvector g; g.reserve(num);
-               exvector acc_cb; acc_cb.reserve(num);
-               ex part_a = a;
-               for (size_t i=0; i<num; i++) {
-                       ex part_ca, part_cb;
-                       g.push_back(gcd(part_a, b.op(i), &part_ca, &part_cb, check_args));
-                       acc_cb.push_back(part_cb);
-                       part_a = part_ca;
-               }
-               if (ca)
-                       *ca = part_a;
-               if (cb)
-                       *cb = (new mul(acc_cb))->setflag(status_flags::dynallocated);
-               return (new mul(g))->setflag(status_flags::dynallocated);
-       }
-
+       if (is_exactly_a<mul>(a) || is_exactly_a<mul>(b))
+               return gcd_pf_mul(a, b, ca, cb, check_args);
 #if FAST_COMPARE
-       // Input polynomials of the form poly^n are sometimes also trivial
-       if (is_exactly_a<power>(a)) {
-               ex p = a.op(0);
-               const ex& exp_a = a.op(1);
-               if (is_exactly_a<power>(b)) {
-                       ex pb = b.op(0);
-                       const ex& exp_b = b.op(1);
-                       if (p.is_equal(pb)) {
-                               // a = p^n, b = p^m, gcd = p^min(n, m)
-                               if (exp_a < exp_b) {
-                                       if (ca)
-                                               *ca = _ex1;
-                                       if (cb)
-                                               *cb = power(p, exp_b - exp_a);
-                                       return power(p, exp_a);
-                               } else {
-                                       if (ca)
-                                               *ca = power(p, exp_a - exp_b);
-                                       if (cb)
-                                               *cb = _ex1;
-                                       return power(p, exp_b);
-                               }
-                       } else {
-                               ex p_co, pb_co;
-                               ex p_gcd = gcd(p, pb, &p_co, &pb_co, check_args);
-                               if (p_gcd.is_equal(_ex1)) {
-                                       // a(x) = p(x)^n, b(x) = p_b(x)^m, gcd (p, p_b) = 1 ==>
-                                       // gcd(a,b) = 1
-                                       if (ca)
-                                               *ca = a;
-                                       if (cb)
-                                               *cb = b;
-                                       return _ex1;
-                                       // XXX: do I need to check for p_gcd = -1?
-                               } else {
-                                       // there are common factors:
-                                       // a(x) = g(x)^n A(x)^n, b(x) = g(x)^m B(x)^m ==>
-                                       // gcd(a, b) = g(x)^n gcd(A(x)^n, g(x)^(n-m) B(x)^m
-                                       if (exp_a < exp_b) {
-                                               return power(p_gcd, exp_a)*
-                                                       gcd(power(p_co, exp_a), power(p_gcd, exp_b-exp_a)*power(pb_co, exp_b), ca, cb, false);
-                                       } else {
-                                               return power(p_gcd, exp_b)*
-                                                       gcd(power(p_gcd, exp_a - exp_b)*power(p_co, exp_a), power(pb_co, exp_b), ca, cb, false);
-                                       }
-                               } // p_gcd.is_equal(_ex1)
-                       } // p.is_equal(pb)
-
-               } else {
-                       if (p.is_equal(b)) {
-                               // a = p^n, b = p, gcd = p
-                               if (ca)
-                                       *ca = power(p, a.op(1) - 1);
-                               if (cb)
-                                       *cb = _ex1;
-                               return p;
-                       } 
-
-                       ex p_co, bpart_co;
-                       ex p_gcd = gcd(p, b, &p_co, &bpart_co, false);
-
-                       if (p_gcd.is_equal(_ex1)) {
-                               // a(x) = p(x)^n, gcd(p, b) = 1 ==> gcd(a, b) = 1
-                               if (ca)
-                                       *ca = a;
-                               if (cb)
-                                       *cb = b;
-                               return _ex1;
-                       } else {
-                               // a(x) = g(x)^n A(x)^n, b(x) = g(x) B(x) ==> gcd(a, b) = g(x) gcd(g(x)^(n-1) A(x)^n, B(x))
-                               return p_gcd*gcd(power(p_gcd, exp_a-1)*power(p_co, exp_a), bpart_co, ca, cb, false);
-                       }
-               } // is_exactly_a<power>(b)
-
-       } else if (is_exactly_a<power>(b)) {
-               ex p = b.op(0);
-               if (p.is_equal(a)) {
-                       // a = p, b = p^n, gcd = p
-                       if (ca)
-                               *ca = _ex1;
-                       if (cb)
-                               *cb = power(p, b.op(1) - 1);
-                       return p;
-               }
-
-               ex p_co, apart_co;
-               const ex& exp_b(b.op(1));
-               ex p_gcd = gcd(a, p, &apart_co, &p_co, false);
-               if (p_gcd.is_equal(_ex1)) {
-                       // b=p(x)^n, gcd(a, p) = 1 ==> gcd(a, b) == 1
-                       if (ca)
-                               *ca = a;
-                       if (cb)
-                               *cb = b;
-                       return _ex1;
-               } else {
-                       // there are common factors:
-                       // a(x) = g(x) A(x), b(x) = g(x)^n B(x)^n ==> gcd = g(x) gcd(g(x)^(n-1) A(x)^n, B(x))
-
-                       return p_gcd*gcd(apart_co, power(p_gcd, exp_b-1)*power(p_co, exp_b), ca, cb, false);
-               } // p_gcd.is_equal(_ex1)
-       }
+       if (is_exactly_a<power>(a) || is_exactly_a<power>(b))
+               return gcd_pf_pow(a, b, ca, cb, check_args);
 #endif
 
        // Some trivial cases
@@ -1732,36 +1602,186 @@ factored_b:
        // Try heuristic algorithm first, fall back to PRS if that failed
        ex g;
        bool found = heur_gcd(g, aex, bex, ca, cb, var);
-       if (!found) {
-#if STATISTICS
-               heur_gcd_failed++;
-#endif
-               g = sr_gcd(aex, bex, var);
+       if (found) {
+               // heur_gcd have already computed cofactors...
                if (g.is_equal(_ex1)) {
-                       // Keep cofactors factored if possible
+                       // ... but we want to keep them factored if possible.
                        if (ca)
                                *ca = a;
                        if (cb)
                                *cb = b;
+               }
+               return g;
+       }
+#if STATISTICS
+       else {
+               heur_gcd_failed++;
+       }
+#endif
+
+       g = sr_gcd(aex, bex, var);
+       if (g.is_equal(_ex1)) {
+               // Keep cofactors factored if possible
+               if (ca)
+                       *ca = a;
+               if (cb)
+                       *cb = b;
+       } else {
+               if (ca)
+                       divide(aex, g, *ca, false);
+               if (cb)
+                       divide(bex, g, *cb, false);
+       }
+       return g;
+}
+
+static ex gcd_pf_pow(const ex& a, const ex& b, ex* ca, ex* cb, bool check_args)
+{
+       if (is_exactly_a<power>(a)) {
+               ex p = a.op(0);
+               const ex& exp_a = a.op(1);
+               if (is_exactly_a<power>(b)) {
+                       ex pb = b.op(0);
+                       const ex& exp_b = b.op(1);
+                       if (p.is_equal(pb)) {
+                               // a = p^n, b = p^m, gcd = p^min(n, m)
+                               if (exp_a < exp_b) {
+                                       if (ca)
+                                               *ca = _ex1;
+                                       if (cb)
+                                               *cb = power(p, exp_b - exp_a);
+                                       return power(p, exp_a);
+                               } else {
+                                       if (ca)
+                                               *ca = power(p, exp_a - exp_b);
+                                       if (cb)
+                                               *cb = _ex1;
+                                       return power(p, exp_b);
+                               }
+                       } else {
+                               ex p_co, pb_co;
+                               ex p_gcd = gcd(p, pb, &p_co, &pb_co, check_args);
+                               if (p_gcd.is_equal(_ex1)) {
+                                       // a(x) = p(x)^n, b(x) = p_b(x)^m, gcd (p, p_b) = 1 ==>
+                                       // gcd(a,b) = 1
+                                       if (ca)
+                                               *ca = a;
+                                       if (cb)
+                                               *cb = b;
+                                       return _ex1;
+                                       // XXX: do I need to check for p_gcd = -1?
+                               } else {
+                                       // there are common factors:
+                                       // a(x) = g(x)^n A(x)^n, b(x) = g(x)^m B(x)^m ==>
+                                       // gcd(a, b) = g(x)^n gcd(A(x)^n, g(x)^(n-m) B(x)^m
+                                       if (exp_a < exp_b) {
+                                               return power(p_gcd, exp_a)*
+                                                       gcd(power(p_co, exp_a), power(p_gcd, exp_b-exp_a)*power(pb_co, exp_b), ca, cb, false);
+                                       } else {
+                                               return power(p_gcd, exp_b)*
+                                                       gcd(power(p_gcd, exp_a - exp_b)*power(p_co, exp_a), power(pb_co, exp_b), ca, cb, false);
+                                       }
+                               } // p_gcd.is_equal(_ex1)
+                       } // p.is_equal(pb)
+
                } else {
+                       if (p.is_equal(b)) {
+                               // a = p^n, b = p, gcd = p
+                               if (ca)
+                                       *ca = power(p, a.op(1) - 1);
+                               if (cb)
+                                       *cb = _ex1;
+                               return p;
+                       } 
+
+                       ex p_co, bpart_co;
+                       ex p_gcd = gcd(p, b, &p_co, &bpart_co, false);
+
+                       if (p_gcd.is_equal(_ex1)) {
+                               // a(x) = p(x)^n, gcd(p, b) = 1 ==> gcd(a, b) = 1
+                               if (ca)
+                                       *ca = a;
+                               if (cb)
+                                       *cb = b;
+                               return _ex1;
+                       } else {
+                               // a(x) = g(x)^n A(x)^n, b(x) = g(x) B(x) ==> gcd(a, b) = g(x) gcd(g(x)^(n-1) A(x)^n, B(x))
+                               return p_gcd*gcd(power(p_gcd, exp_a-1)*power(p_co, exp_a), bpart_co, ca, cb, false);
+                       }
+               } // is_exactly_a<power>(b)
+
+       } else if (is_exactly_a<power>(b)) {
+               ex p = b.op(0);
+               if (p.is_equal(a)) {
+                       // a = p, b = p^n, gcd = p
                        if (ca)
-                               divide(aex, g, *ca, false);
+                               *ca = _ex1;
                        if (cb)
-                               divide(bex, g, *cb, false);
+                               *cb = power(p, b.op(1) - 1);
+                       return p;
                }
-       } else {
-               if (g.is_equal(_ex1)) {
-                       // Keep cofactors factored if possible
+
+               ex p_co, apart_co;
+               const ex& exp_b(b.op(1));
+               ex p_gcd = gcd(a, p, &apart_co, &p_co, false);
+               if (p_gcd.is_equal(_ex1)) {
+                       // b=p(x)^n, gcd(a, p) = 1 ==> gcd(a, b) == 1
                        if (ca)
                                *ca = a;
                        if (cb)
                                *cb = b;
-               }
-       }
+                       return _ex1;
+               } else {
+                       // there are common factors:
+                       // a(x) = g(x) A(x), b(x) = g(x)^n B(x)^n ==> gcd = g(x) gcd(g(x)^(n-1) A(x)^n, B(x))
 
-       return g;
+                       return p_gcd*gcd(apart_co, power(p_gcd, exp_b-1)*power(p_co, exp_b), ca, cb, false);
+               } // p_gcd.is_equal(_ex1)
+       }
 }
 
+static ex gcd_pf_mul(const ex& a, const ex& b, ex* ca, ex* cb, bool check_args)
+{
+       if (is_exactly_a<mul>(a)) {
+               if (is_exactly_a<mul>(b) && b.nops() > a.nops())
+                       goto factored_b;
+factored_a:
+               size_t num = a.nops();
+               exvector g; g.reserve(num);
+               exvector acc_ca; acc_ca.reserve(num);
+               ex part_b = b;
+               for (size_t i=0; i<num; i++) {
+                       ex part_ca, part_cb;
+                       g.push_back(gcd(a.op(i), part_b, &part_ca, &part_cb, check_args));
+                       acc_ca.push_back(part_ca);
+                       part_b = part_cb;
+               }
+               if (ca)
+                       *ca = (new mul(acc_ca))->setflag(status_flags::dynallocated);
+               if (cb)
+                       *cb = part_b;
+               return (new mul(g))->setflag(status_flags::dynallocated);
+       } else if (is_exactly_a<mul>(b)) {
+               if (is_exactly_a<mul>(a) && a.nops() > b.nops())
+                       goto factored_a;
+factored_b:
+               size_t num = b.nops();
+               exvector g; g.reserve(num);
+               exvector acc_cb; acc_cb.reserve(num);
+               ex part_a = a;
+               for (size_t i=0; i<num; i++) {
+                       ex part_ca, part_cb;
+                       g.push_back(gcd(part_a, b.op(i), &part_ca, &part_cb, check_args));
+                       acc_cb.push_back(part_cb);
+                       part_a = part_ca;
+               }
+               if (ca)
+                       *ca = part_a;
+               if (cb)
+                       *cb = (new mul(acc_cb))->setflag(status_flags::dynallocated);
+               return (new mul(g))->setflag(status_flags::dynallocated);
+       }
+}
 
 /** Compute LCM (Least Common Multiple) of multivariate polynomials in Z[X].
  *