]> www.ginac.de Git - ginac.git/blobdiff - ginac/mul.cpp
Happy New Year!
[ginac.git] / ginac / mul.cpp
index 63f6381d27c4e960500b0d3b7ab2770576d36aec..16bbc5b229ac9f21c26bcadbfacb1a26c5b6790f 100644 (file)
@@ -3,7 +3,7 @@
  *  Implementation of GiNaC's products of expressions. */
 
 /*
- *  GiNaC Copyright (C) 1999-2002 Johannes Gutenberg University Mainz, Germany
+ *  GiNaC Copyright (C) 1999-2019 Johannes Gutenberg University Mainz, Germany
  *
  *  This program is free software; you can redistribute it and/or modify
  *  it under the terms of the GNU General Public License as published by
  *
  *  You should have received a copy of the GNU General Public License
  *  along with this program; if not, write to the Free Software
- *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
+ *  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
  */
 
-#include <iostream>
-#include <vector>
-#include <stdexcept>
-
 #include "mul.h"
 #include "add.h"
 #include "power.h"
+#include "operators.h"
 #include "matrix.h"
+#include "indexed.h"
+#include "lst.h"
 #include "archive.h"
 #include "utils.h"
+#include "symbol.h"
+#include "compiler.h"
+
+#include <iostream>
+#include <limits>
+#include <stdexcept>
+#include <vector>
 
 namespace GiNaC {
 
-GINAC_IMPLEMENT_REGISTERED_CLASS(mul, expairseq)
+GINAC_IMPLEMENT_REGISTERED_CLASS_OPT(mul, expairseq,
+  print_func<print_context>(&mul::do_print).
+  print_func<print_latex>(&mul::do_print_latex).
+  print_func<print_csrc>(&mul::do_print_csrc).
+  print_func<print_tree>(&mul::do_print_tree).
+  print_func<print_python_repr>(&mul::do_print_python_repr))
+
 
 //////////
-// default ctor, dtor, copy ctor, assignment operator and helpers
+// default constructor
 //////////
 
 mul::mul()
 {
-       tinfo_key = TINFO_mul;
 }
 
-DEFAULT_COPY(mul)
-DEFAULT_DESTROY(mul)
-
 //////////
-// other ctors
+// other constructors
 //////////
 
 // public
 
 mul::mul(const ex & lh, const ex & rh)
 {
-       tinfo_key = TINFO_mul;
        overall_coeff = _ex1;
        construct_from_2_ex(lh,rh);
        GINAC_ASSERT(is_canonical());
@@ -63,7 +70,6 @@ mul::mul(const ex & lh, const ex & rh)
 
 mul::mul(const exvector & v)
 {
-       tinfo_key = TINFO_mul;
        overall_coeff = _ex1;
        construct_from_exvector(v);
        GINAC_ASSERT(is_canonical());
@@ -71,33 +77,34 @@ mul::mul(const exvector & v)
 
 mul::mul(const epvector & v)
 {
-       tinfo_key = TINFO_mul;
        overall_coeff = _ex1;
        construct_from_epvector(v);
        GINAC_ASSERT(is_canonical());
 }
 
-mul::mul(const epvector & v, const ex & oc)
+mul::mul(const epvector & v, const ex & oc, bool do_index_renaming)
 {
-       tinfo_key = TINFO_mul;
        overall_coeff = oc;
-       construct_from_epvector(v);
+       construct_from_epvector(v, do_index_renaming);
        GINAC_ASSERT(is_canonical());
 }
 
-mul::mul(epvector * vp, const ex & oc)
+mul::mul(epvector && vp)
+{
+       overall_coeff = _ex1;
+       construct_from_epvector(std::move(vp));
+       GINAC_ASSERT(is_canonical());
+}
+
+mul::mul(epvector && vp, const ex & oc, bool do_index_renaming)
 {
-       tinfo_key = TINFO_mul;
-       GINAC_ASSERT(vp!=0);
        overall_coeff = oc;
-       construct_from_epvector(*vp);
-       delete vp;
+       construct_from_epvector(std::move(vp), do_index_renaming);
        GINAC_ASSERT(is_canonical());
 }
 
 mul::mul(const ex & lh, const ex & mh, const ex & rh)
 {
-       tinfo_key = TINFO_mul;
        exvector factors;
        factors.reserve(3);
        factors.push_back(lh);
@@ -112,166 +119,154 @@ mul::mul(const ex & lh, const ex & mh, const ex & rh)
 // archiving
 //////////
 
-DEFAULT_ARCHIVING(mul)
-
 //////////
 // functions overriding virtual functions from base classes
 //////////
 
-// public
-
-void mul::print(const print_context & c, unsigned level) const
+void mul::print_overall_coeff(const print_context & c, const char *mul_sym) const
 {
-       if (is_a<print_tree>(c)) {
-
-               inherited::print(c, level);
-
-       } else if (is_a<print_csrc>(c)) {
-
-               if (precedence() <= level)
-                       c.s << "(";
-
-               if (!overall_coeff.is_equal(_ex1)) {
-                       overall_coeff.print(c, precedence());
-                       c.s << "*";
+       const numeric &coeff = ex_to<numeric>(overall_coeff);
+       if (coeff.csgn() == -1)
+               c.s << '-';
+       if (!coeff.is_equal(*_num1_p) &&
+               !coeff.is_equal(*_num_1_p)) {
+               if (coeff.is_rational()) {
+                       if (coeff.is_negative())
+                               (-coeff).print(c);
+                       else
+                               coeff.print(c);
+               } else {
+                       if (coeff.csgn() == -1)
+                               (-coeff).print(c, precedence());
+                       else
+                               coeff.print(c, precedence());
                }
+               c.s << mul_sym;
+       }
+}
 
-               // Print arguments, separated by "*" or "/"
-               epvector::const_iterator it = seq.begin(), itend = seq.end();
-               while (it != itend) {
-
-                       // If the first argument is a negative integer power, it gets printed as "1.0/<expr>"
-                       bool needclosingparenthesis = false;
-                       if (it == seq.begin() && it->coeff.info(info_flags::negint)) {
-                               if (is_a<print_csrc_cl_N>(c)) {
-                                       c.s << "recip(";
-                                       needclosingparenthesis = true;
-                               } else
-                                       c.s << "1.0/";
-                       }
+void mul::do_print(const print_context & c, unsigned level) const
+{
+       if (precedence() <= level)
+               c.s << '(';
+
+       print_overall_coeff(c, "*");
+
+       bool first = true;
+       for (auto & it : seq) {
+               if (!first)
+                       c.s << '*';
+               else
+                       first = false;
+               recombine_pair_to_ex(it).print(c, precedence());
+       }
 
-                       // If the exponent is 1 or -1, it is left out
-                       if (it->coeff.is_equal(_ex1) || it->coeff.is_equal(_ex_1))
-                               it->rest.print(c, precedence());
-                       else if (it->coeff.info(info_flags::negint))
-                               // Outer parens around ex needed for broken gcc-2.95 parser:
-                               (ex(power(it->rest, -ex_to<numeric>(it->coeff)))).print(c, level);
-                       else
-                               // Outer parens around ex needed for broken gcc-2.95 parser:
-                               (ex(power(it->rest, ex_to<numeric>(it->coeff)))).print(c, level);
+       if (precedence() <= level)
+               c.s << ')';
+}
 
-                       if (needclosingparenthesis)
-                               c.s << ")";
+void mul::do_print_latex(const print_latex & c, unsigned level) const
+{
+       if (precedence() <= level)
+               c.s << "{(";
+
+       print_overall_coeff(c, " ");
+
+       // Separate factors into those with negative numeric exponent
+       // and all others
+       exvector neg_powers, others;
+       for (auto & it : seq) {
+               GINAC_ASSERT(is_exactly_a<numeric>(it.coeff));
+               if (ex_to<numeric>(it.coeff).is_negative())
+                       neg_powers.push_back(recombine_pair_to_ex(expair(it.rest, -it.coeff)));
+               else
+                       others.push_back(recombine_pair_to_ex(it));
+       }
 
-                       // Separator is "/" for negative integer powers, "*" otherwise
-                       ++it;
-                       if (it != itend) {
-                               if (it->coeff.info(info_flags::negint))
-                                       c.s << "/";
-                               else
-                                       c.s << "*";
-                       }
-               }
+       if (!neg_powers.empty()) {
 
-               if (precedence() <= level)
-                       c.s << ")";
+               // Factors with negative exponent are printed as a fraction
+               c.s << "\\frac{";
+               mul(others).eval().print(c);
+               c.s << "}{";
+               mul(neg_powers).eval().print(c);
+               c.s << "}";
 
-       } else if (is_a<print_python_repr>(c)) {
-               c.s << class_name() << '(';
-               op(0).print(c);
-               for (unsigned i=1; i<nops(); ++i) {
-                       c.s << ',';
-                       op(i).print(c);
-               }
-               c.s << ')';
        } else {
 
-               if (precedence() <= level) {
-                       if (is_a<print_latex>(c))
-                               c.s << "{(";
-                       else
-                               c.s << "(";
-               }
-
-               // First print the overall numeric coefficient
-               numeric coeff = ex_to<numeric>(overall_coeff);
-               if (coeff.csgn() == -1)
-                       c.s << '-';
-               if (!coeff.is_equal(_num1) &&
-                       !coeff.is_equal(_num_1)) {
-                       if (coeff.is_rational()) {
-                               if (coeff.is_negative())
-                                       (-coeff).print(c);
-                               else
-                                       coeff.print(c);
-                       } else {
-                               if (coeff.csgn() == -1)
-                                       (-coeff).print(c, precedence());
-                               else
-                                       coeff.print(c, precedence());
-                       }
-                       if (is_a<print_latex>(c))
-                               c.s << ' ';
-                       else
-                               c.s << '*';
+               // All other factors are printed in the ordinary way
+               for (auto & vit : others) {
+                       c.s << ' ';
+                       vit.print(c, precedence());
                }
+       }
 
-               // Then proceed with the remaining factors
-               epvector::const_iterator it = seq.begin(), itend = seq.end();
-               if (is_a<print_latex>(c)) {
-
-                       // Separate factors into those with negative numeric exponent
-                       // and all others
-                       exvector neg_powers, others;
-                       while (it != itend) {
-                               GINAC_ASSERT(is_exactly_a<numeric>(it->coeff));
-                               if (ex_to<numeric>(it->coeff).is_negative())
-                                       neg_powers.push_back(recombine_pair_to_ex(expair(it->rest, -(it->coeff))));
-                               else
-                                       others.push_back(recombine_pair_to_ex(*it));
-                               ++it;
-                       }
-
-                       if (!neg_powers.empty()) {
+       if (precedence() <= level)
+               c.s << ")}";
+}
 
-                               // Factors with negative exponent are printed as a fraction
-                               c.s << "\\frac{";
-                               mul(others).eval().print(c);
-                               c.s << "}{";
-                               mul(neg_powers).eval().print(c);
-                               c.s << "}";
+void mul::do_print_csrc(const print_csrc & c, unsigned level) const
+{
+       if (precedence() <= level)
+               c.s << "(";
 
-                       } else {
+       if (!overall_coeff.is_equal(_ex1)) {
+               if (overall_coeff.is_equal(_ex_1))
+                       c.s << "-";
+               else {
+                       overall_coeff.print(c, precedence());
+                       c.s << "*";
+               }
+       }
 
-                               // All other factors are printed in the ordinary way
-                               exvector::const_iterator vit = others.begin(), vitend = others.end();
-                               while (vit != vitend) {
-                                       c.s << ' ';
-                                       vit->print(c, precedence());
-                                       ++vit;
-                               }
-                       }
+       // Print arguments, separated by "*" or "/"
+       auto it = seq.begin(), itend = seq.end();
+       while (it != itend) {
+
+               // If the first argument is a negative integer power, it gets printed as "1.0/<expr>"
+               bool needclosingparenthesis = false;
+               if (it == seq.begin() && it->coeff.info(info_flags::negint)) {
+                       if (is_a<print_csrc_cl_N>(c)) {
+                               c.s << "recip(";
+                               needclosingparenthesis = true;
+                       } else
+                               c.s << "1.0/";
+               }
 
-               } else {
+               // If the exponent is 1 or -1, it is left out
+               if (it->coeff.is_equal(_ex1) || it->coeff.is_equal(_ex_1))
+                       it->rest.print(c, precedence());
+               else if (it->coeff.info(info_flags::negint))
+                       ex(power(it->rest, -ex_to<numeric>(it->coeff))).print(c, level);
+               else
+                       ex(power(it->rest, ex_to<numeric>(it->coeff))).print(c, level);
 
-                       bool first = true;
-                       while (it != itend) {
-                               if (!first)
-                                       c.s << '*';
-                               else
-                                       first = false;
-                               recombine_pair_to_ex(*it).print(c, precedence());
-                               ++it;
-                       }
-               }
+               if (needclosingparenthesis)
+                       c.s << ")";
 
-               if (precedence() <= level) {
-                       if (is_a<print_latex>(c))
-                               c.s << ")}";
+               // Separator is "/" for negative integer powers, "*" otherwise
+               ++it;
+               if (it != itend) {
+                       if (it->coeff.info(info_flags::negint))
+                               c.s << "/";
                        else
-                               c.s << ")";
+                               c.s << "*";
                }
        }
+
+       if (precedence() <= level)
+               c.s << ")";
+}
+
+void mul::do_print_python_repr(const print_python_repr & c, unsigned level) const
+{
+       c.s << class_name() << '(';
+       op(0).print(c);
+       for (size_t i=1; i<nops(); ++i) {
+               c.s << ',';
+               op(i).print(c);
+       }
+       c.s << ')';
 }
 
 bool mul::info(unsigned inf) const
@@ -281,38 +276,135 @@ bool mul::info(unsigned inf) const
                case info_flags::integer_polynomial:
                case info_flags::cinteger_polynomial:
                case info_flags::rational_polynomial:
+               case info_flags::real:
+               case info_flags::rational:
+               case info_flags::integer:
+               case info_flags::crational:
+               case info_flags::cinteger:
+               case info_flags::even:
                case info_flags::crational_polynomial:
                case info_flags::rational_function: {
-                       epvector::const_iterator i = seq.begin(), end = seq.end();
-                       while (i != end) {
-                               if (!(recombine_pair_to_ex(*i).info(inf)))
+                       for (auto & it : seq) {
+                               if (!recombine_pair_to_ex(it).info(inf))
                                        return false;
-                               ++i;
                        }
+                       if (overall_coeff.is_equal(*_num1_p) && inf == info_flags::even)
+                               return true;
                        return overall_coeff.info(inf);
                }
-               case info_flags::algebraic: {
-                       epvector::const_iterator i = seq.begin(), end = seq.end();
-                       while (i != end) {
-                               if ((recombine_pair_to_ex(*i).info(inf)))
-                                       return true;
-                               ++i;
+               case info_flags::positive:
+               case info_flags::negative: {
+                       if ((inf==info_flags::positive) && (flags & status_flags::is_positive))
+                               return true;
+                       else if ((inf==info_flags::negative) && (flags & status_flags::is_negative))
+                               return true;
+                       if (flags & status_flags::purely_indefinite)
+                               return false;
+
+                       bool pos = true;
+                       for (auto & it : seq) {
+                               const ex& factor = recombine_pair_to_ex(it);
+                               if (factor.info(info_flags::positive))
+                                       continue;
+                               else if (factor.info(info_flags::negative))
+                                       pos = !pos;
+                               else
+                                       return false;
                        }
-                       return false;
+                       if (overall_coeff.info(info_flags::negative))
+                               pos = !pos;
+                       setflag(pos ? status_flags::is_positive : status_flags::is_negative);
+                       return (inf == info_flags::positive? pos : !pos);
+               }
+               case info_flags::nonnegative: {
+                       if  (flags & status_flags::is_positive)
+                               return true;
+                       bool pos = true;
+                       for (auto & it : seq) {
+                               const ex& factor = recombine_pair_to_ex(it);
+                               if (factor.info(info_flags::nonnegative) || factor.info(info_flags::positive))
+                                       continue;
+                               else if (factor.info(info_flags::negative))
+                                       pos = !pos;
+                               else
+                                       return false;
+                       }
+                       return (overall_coeff.info(info_flags::negative)? !pos : pos);
+               }
+               case info_flags::posint:
+               case info_flags::negint: {
+                       bool pos = true;
+                       for (auto & it : seq) {
+                               const ex& factor = recombine_pair_to_ex(it);
+                               if (factor.info(info_flags::posint))
+                                       continue;
+                               else if (factor.info(info_flags::negint))
+                                       pos = !pos;
+                               else
+                                       return false;
+                       }
+                       if (overall_coeff.info(info_flags::negint))
+                               pos = !pos;
+                       else if (!overall_coeff.info(info_flags::posint))
+                               return false;
+                       return (inf ==info_flags::posint? pos : !pos); 
+               }
+               case info_flags::nonnegint: {
+                       bool pos = true;
+                       for (auto & it : seq) {
+                               const ex& factor = recombine_pair_to_ex(it);
+                               if (factor.info(info_flags::nonnegint) || factor.info(info_flags::posint))
+                                       continue;
+                               else if (factor.info(info_flags::negint))
+                                       pos = !pos;
+                               else
+                                       return false;
+                       }
+                       if (overall_coeff.info(info_flags::negint))
+                               pos = !pos;
+                       else if (!overall_coeff.info(info_flags::posint))
+                               return false;
+                       return pos; 
+               }
+               case info_flags::indefinite: {
+                       if (flags & status_flags::purely_indefinite)
+                               return true;
+                       if (flags & (status_flags::is_positive | status_flags::is_negative))
+                               return false;
+                       for (auto & it : seq) {
+                               const ex& term = recombine_pair_to_ex(it);
+                               if (term.info(info_flags::positive) || term.info(info_flags::negative))
+                                       return false;
+                       }
+                       setflag(status_flags::purely_indefinite);
+                       return true;
                }
        }
        return inherited::info(inf);
 }
 
+bool mul::is_polynomial(const ex & var) const
+{
+       for (auto & it : seq) {
+               if (!it.rest.is_polynomial(var) ||
+                   (it.rest.has(var) && !it.coeff.info(info_flags::nonnegint))) {
+                       return false;
+               }
+       }
+       return true;
+}
+
 int mul::degree(const ex & s) const
 {
        // Sum up degrees of factors
        int deg_sum = 0;
-       epvector::const_iterator i = seq.begin(), end = seq.end();
-       while (i != end) {
-               if (ex_to<numeric>(i->coeff).is_integer())
-                       deg_sum += i->rest.degree(s) * ex_to<numeric>(i->coeff).to_int();
-               ++i;
+       for (auto & it : seq) {
+               if (ex_to<numeric>(it.coeff).is_integer())
+                       deg_sum += recombine_pair_to_ex(it).degree(s);
+               else {
+                       if (it.rest.has(s))
+                               throw std::runtime_error("mul::degree() undefined degree because of non-integer exponent");
+               }
        }
        return deg_sum;
 }
@@ -321,11 +413,13 @@ int mul::ldegree(const ex & s) const
 {
        // Sum up degrees of factors
        int deg_sum = 0;
-       epvector::const_iterator i = seq.begin(), end = seq.end();
-       while (i != end) {
-               if (ex_to<numeric>(i->coeff).is_integer())
-                       deg_sum += i->rest.ldegree(s) * ex_to<numeric>(i->coeff).to_int();
-               ++i;
+       for (auto & it : seq) {
+               if (ex_to<numeric>(it.coeff).is_integer())
+                       deg_sum += recombine_pair_to_ex(it).ldegree(s);
+               else {
+                       if (it.rest.has(s))
+                               throw std::runtime_error("mul::ldegree() undefined degree because of non-integer exponent");
+               }
        }
        return deg_sum;
 }
@@ -338,19 +432,15 @@ ex mul::coeff(const ex & s, int n) const
        if (n==0) {
                // product of individual coeffs
                // if a non-zero power of s is found, the resulting product will be 0
-               epvector::const_iterator i = seq.begin(), end = seq.end();
-               while (i != end) {
-                       coeffseq.push_back(recombine_pair_to_ex(*i).coeff(s,n));
-                       ++i;
-               }
+               for (auto & it : seq)
+                       coeffseq.push_back(recombine_pair_to_ex(it).coeff(s,n));
                coeffseq.push_back(overall_coeff);
-               return (new mul(coeffseq))->setflag(status_flags::dynallocated);
+               return dynallocate<mul>(coeffseq);
        }
        
-       epvector::const_iterator i = seq.begin(), end = seq.end();
        bool coeff_found = false;
-       while (i != end) {
-               ex t = recombine_pair_to_ex(*i);
+       for (auto & it : seq) {
+               ex t = recombine_pair_to_ex(it);
                ex c = t.coeff(s, n);
                if (!c.is_zero()) {
                        coeffseq.push_back(c);
@@ -358,11 +448,10 @@ ex mul::coeff(const ex & s, int n) const
                } else {
                        coeffseq.push_back(t);
                }
-               ++i;
        }
        if (coeff_found) {
                coeffseq.push_back(overall_coeff);
-               return (new mul(coeffseq))->setflag(status_flags::dynallocated);
+               return dynallocate<mul>(coeffseq);
        }
        
        return _ex0;
@@ -375,42 +464,22 @@ ex mul::coeff(const ex & s, int n) const
  *  - *(+(x1,x2,...);c) -> *(+(*(x1,c),*(x2,c),...))
  *  - *(x;1) -> x
  *  - *(;c) -> c
- *
- *  @param level cut-off in recursive evaluation */
-ex mul::eval(int level) const
+ */
+ex mul::eval() const
 {
-       epvector *evaled_seqp = evalchildren(level);
-       if (evaled_seqp) {
-               // do more evaluation later
-               return (new mul(evaled_seqp,overall_coeff))->
-                          setflag(status_flags::dynallocated);
-       }
-       
-#ifdef DO_GINAC_ASSERT
-       epvector::const_iterator i = seq.begin(), end = seq.end();
-       while (i != end) {
-               GINAC_ASSERT((!is_exactly_a<mul>(i->rest)) ||
-                            (!(ex_to<numeric>(i->coeff).is_integer())));
-               GINAC_ASSERT(!(i->is_canonical_numeric()));
-               if (is_ex_exactly_of_type(recombine_pair_to_ex(*i), numeric))
-                   print(print_tree(std::cerr));
-               GINAC_ASSERT(!is_exactly_a<numeric>(recombine_pair_to_ex(*i)));
-               /* for paranoia */
-               expair p = split_ex_to_pair(recombine_pair_to_ex(*i));
-               GINAC_ASSERT(p.rest.is_equal(i->rest));
-               GINAC_ASSERT(p.coeff.is_equal(i->coeff));
-               /* end paranoia */
-               ++i;
-       }
-#endif // def DO_GINAC_ASSERT
-       
        if (flags & status_flags::evaluated) {
                GINAC_ASSERT(seq.size()>0);
                GINAC_ASSERT(seq.size()>1 || !overall_coeff.is_equal(_ex1));
                return *this;
        }
-       
-       int seq_size = seq.size();
+
+       const epvector evaled = evalchildren();
+       if (unlikely(!evaled.empty())) {
+               // start over evaluating a new object
+               return dynallocate<mul>(std::move(evaled), overall_coeff);
+       }
+
+       size_t seq_size = seq.size();
        if (overall_coeff.is_zero()) {
                // *(...,x;0) -> 0
                return _ex0;
@@ -421,71 +490,158 @@ ex mul::eval(int level) const
                // *(x;1) -> x
                return recombine_pair_to_ex(*(seq.begin()));
        } else if ((seq_size==1) &&
-                  is_ex_exactly_of_type((*seq.begin()).rest,add) &&
-                  ex_to<numeric>((*seq.begin()).coeff).is_equal(_num1)) {
+                  is_exactly_a<add>((*seq.begin()).rest) &&
+                  ex_to<numeric>((*seq.begin()).coeff).is_equal(*_num1_p)) {
                // *(+(x,y,...);c) -> +(*(x,c),*(y,c),...) (c numeric(), no powers of +())
                const add & addref = ex_to<add>((*seq.begin()).rest);
-               epvector *distrseq = new epvector();
-               distrseq->reserve(addref.seq.size());
-               epvector::const_iterator i = addref.seq.begin(), end = addref.seq.end();
-               while (i != end) {
-                       distrseq->push_back(addref.combine_pair_with_coeff_to_pair(*i, overall_coeff));
+               epvector distrseq;
+               distrseq.reserve(addref.seq.size());
+               for (auto & it : addref.seq) {
+                       distrseq.push_back(addref.combine_pair_with_coeff_to_pair(it, overall_coeff));
+               }
+               return dynallocate<add>(std::move(distrseq),
+                                       ex_to<numeric>(addref.overall_coeff).mul_dyn(ex_to<numeric>(overall_coeff)))
+                       .setflag(status_flags::evaluated);
+       } else if ((seq_size >= 2) && (! (flags & status_flags::expanded))) {
+               // Strip the content and the unit part from each term. Thus
+               // things like (-x+a)*(3*x-3*a) automagically turn into - 3*(x-a)^2
+
+               auto i = seq.begin(), last = seq.end();
+               auto j = seq.begin();
+               epvector s;
+               numeric oc = *_num1_p;
+               bool something_changed = false;
+               while (i!=last) {
+                       if (likely(! (is_a<add>(i->rest) && i->coeff.is_equal(_ex1)))) {
+                               // power::eval has such a rule, no need to handle powers here
+                               ++i;
+                               continue;
+                       }
+
+                       // XXX: What is the best way to check if the polynomial is a primitive? 
+                       numeric c = i->rest.integer_content();
+                       const numeric lead_coeff =
+                               ex_to<numeric>(ex_to<add>(i->rest).seq.begin()->coeff).div(c);
+                       const bool canonicalizable = lead_coeff.is_integer();
+
+                       // XXX: The main variable is chosen in a random way, so this code 
+                       // does NOT transform the term into the canonical form (thus, in some
+                       // very unlucky event it can even loop forever). Hopefully the main
+                       // variable will be the same for all terms in *this
+                       const bool unit_normal = lead_coeff.is_pos_integer();
+                       if (likely((c == *_num1_p) && ((! canonicalizable) || unit_normal))) {
+                               ++i;
+                               continue;
+                       }
+
+                       if (! something_changed) {
+                               s.reserve(seq_size);
+                               something_changed = true;
+                       }
+
+                       while ((j!=i) && (j!=last)) {
+                               s.push_back(*j);
+                               ++j;
+                       }
+
+                       if (! unit_normal)
+                               c = c.mul(*_num_1_p);
+
+                       oc = oc.mul(c);
+
+                       // divide add by the number in place to save at least 2 .eval() calls
+                       const add& addref = ex_to<add>(i->rest);
+                       add & primitive = dynallocate<add>(addref);
+                       primitive.clearflag(status_flags::hash_calculated);
+                       primitive.overall_coeff = ex_to<numeric>(primitive.overall_coeff).div_dyn(c);
+                       for (auto & ai : primitive.seq)
+                               ai.coeff = ex_to<numeric>(ai.coeff).div_dyn(c);
+
+                       s.push_back(expair(primitive, _ex1));
+
                        ++i;
+                       ++j;
+               }
+               if (something_changed) {
+                       while (j!=last) {
+                               s.push_back(*j);
+                               ++j;
+                       }
+                       return dynallocate<mul>(std::move(s), ex_to<numeric>(overall_coeff).mul_dyn(oc));
                }
-               return (new add(distrseq,
-                               ex_to<numeric>(addref.overall_coeff).
-                               mul_dyn(ex_to<numeric>(overall_coeff))))
-                     ->setflag(status_flags::dynallocated | status_flags::evaluated);
        }
+
        return this->hold();
 }
 
-ex mul::evalf(int level) const
+ex mul::evalf() const
 {
-       if (level==1)
-               return mul(seq,overall_coeff);
-       
-       if (level==-max_recursion_level)
-               throw(std::runtime_error("max recursion level reached"));
-       
-       epvector *s = new epvector();
-       s->reserve(seq.size());
+       epvector s;
+       s.reserve(seq.size());
 
-       --level;
-       epvector::const_iterator i = seq.begin(), end = seq.end();
-       while (i != end) {
-               s->push_back(combine_ex_with_coeff_to_pair(i->rest.evalf(level),
-                                                          i->coeff));
-               ++i;
+       for (auto & it : seq)
+               s.push_back(expair(it.rest.evalf(), it.coeff));
+       return dynallocate<mul>(std::move(s), overall_coeff.evalf());
+}
+
+void mul::find_real_imag(ex & rp, ex & ip) const
+{
+       rp = overall_coeff.real_part();
+       ip = overall_coeff.imag_part();
+       for (auto & it : seq) {
+               ex factor = recombine_pair_to_ex(it);
+               ex new_rp = factor.real_part();
+               ex new_ip = factor.imag_part();
+               if (new_ip.is_zero()) {
+                       rp *= new_rp;
+                       ip *= new_rp;
+               } else {
+                       ex temp = rp*new_rp - ip*new_ip;
+                       ip = ip*new_rp + rp*new_ip;
+                       rp = temp;
+               }
        }
-       return mul(s, overall_coeff.evalf(level));
+       rp = rp.expand();
+       ip = ip.expand();
 }
 
-ex mul::evalm(void) const
+ex mul::real_part() const
+{
+       ex rp, ip;
+       find_real_imag(rp, ip);
+       return rp;
+}
+
+ex mul::imag_part() const
+{
+       ex rp, ip;
+       find_real_imag(rp, ip);
+       return ip;
+}
+
+ex mul::evalm() const
 {
        // numeric*matrix
        if (seq.size() == 1 && seq[0].coeff.is_equal(_ex1)
-        && is_ex_of_type(seq[0].rest, matrix))
+        && is_a<matrix>(seq[0].rest))
                return ex_to<matrix>(seq[0].rest).mul(ex_to<numeric>(overall_coeff));
 
        // Evaluate children first, look whether there are any matrices at all
        // (there can be either no matrices or one matrix; if there were more
        // than one matrix, it would be a non-commutative product)
-       epvector *s = new epvector;
-       s->reserve(seq.size());
+       epvector s;
+       s.reserve(seq.size());
 
        bool have_matrix = false;
        epvector::iterator the_matrix;
 
-       epvector::const_iterator i = seq.begin(), end = seq.end();
-       while (i != end) {
-               const ex &m = recombine_pair_to_ex(*i).evalm();
-               s->push_back(split_ex_to_pair(m));
-               if (is_ex_of_type(m, matrix)) {
+       for (auto & it : seq) {
+               const ex &m = recombine_pair_to_ex(it).evalm();
+               s.push_back(split_ex_to_pair(m));
+               if (is_a<matrix>(m)) {
                        have_matrix = true;
-                       the_matrix = s->end() - 1;
+                       the_matrix = s.end() - 1;
                }
-               ++i;
        }
 
        if (have_matrix) {
@@ -493,52 +649,236 @@ ex mul::evalm(void) const
                // The product contained a matrix. We will multiply all other factors
                // into that matrix.
                matrix m = ex_to<matrix>(the_matrix->rest);
-               s->erase(the_matrix);
-               ex scalar = (new mul(s, overall_coeff))->setflag(status_flags::dynallocated);
+               s.erase(the_matrix);
+               ex scalar = dynallocate<mul>(std::move(s), overall_coeff);
                return m.mul_scalar(scalar);
 
        } else
-               return (new mul(s, overall_coeff))->setflag(status_flags::dynallocated);
+               return dynallocate<mul>(std::move(s), overall_coeff);
 }
 
-ex mul::simplify_ncmul(const exvector & v) const
+ex mul::eval_ncmul(const exvector & v) const
 {
        if (seq.empty())
-               return inherited::simplify_ncmul(v);
+               return inherited::eval_ncmul(v);
 
-       // Find first noncommutative element and call its simplify_ncmul()
-       epvector::const_iterator i = seq.begin(), end = seq.end();
-       while (i != end) {
-               if (i->rest.return_type() == return_types::noncommutative)
-                       return i->rest.simplify_ncmul(v);
-               ++i;
+       // Find first noncommutative element and call its eval_ncmul()
+       for (auto & it : seq)
+               if (it.rest.return_type() == return_types::noncommutative)
+                       return it.rest.eval_ncmul(v);
+       return inherited::eval_ncmul(v);
+}
+
+bool tryfactsubs(const ex & origfactor, const ex & patternfactor, int & nummatches, exmap& repls)
+{      
+       ex origbase;
+       int origexponent;
+       int origexpsign;
+
+       if (is_exactly_a<power>(origfactor) && origfactor.op(1).info(info_flags::integer)) {
+               origbase = origfactor.op(0);
+               int expon = ex_to<numeric>(origfactor.op(1)).to_int();
+               origexponent = expon > 0 ? expon : -expon;
+               origexpsign = expon > 0 ? 1 : -1;
+       } else {
+               origbase = origfactor;
+               origexponent = 1;
+               origexpsign = 1;
+       }
+
+       ex patternbase;
+       int patternexponent;
+       int patternexpsign;
+
+       if (is_exactly_a<power>(patternfactor) && patternfactor.op(1).info(info_flags::integer)) {
+               patternbase = patternfactor.op(0);
+               int expon = ex_to<numeric>(patternfactor.op(1)).to_int();
+               patternexponent = expon > 0 ? expon : -expon;
+               patternexpsign = expon > 0 ? 1 : -1;
+       } else {
+               patternbase = patternfactor;
+               patternexponent = 1;
+               patternexpsign = 1;
+       }
+
+       exmap saverepls = repls;
+       if (origexponent < patternexponent || origexpsign != patternexpsign || !origbase.match(patternbase,saverepls))
+               return false;
+       repls = saverepls;
+
+       int newnummatches = origexponent / patternexponent;
+       if (newnummatches < nummatches)
+               nummatches = newnummatches;
+       return true;
+}
+
+/** Checks whether e matches to the pattern pat and the (possibly to be updated)
+  * list of replacements repls. This matching is in the sense of algebraic
+  * substitutions. Matching starts with pat.op(factor) of the pattern because
+  * the factors before this one have already been matched. The (possibly
+  * updated) number of matches is in nummatches. subsed[i] is true for factors
+  * that already have been replaced by previous substitutions and matched[i]
+  * is true for factors that have been matched by the current match.
+  */
+bool algebraic_match_mul_with_mul(const mul &e, const ex &pat, exmap& repls,
+                                  int factor, int &nummatches, const std::vector<bool> &subsed,
+                                  std::vector<bool> &matched)
+{
+       GINAC_ASSERT(subsed.size() == e.nops());
+       GINAC_ASSERT(matched.size() == e.nops());
+
+       if (factor == (int)pat.nops())
+               return true;
+
+       for (size_t i=0; i<e.nops(); ++i) {
+               if(subsed[i] || matched[i])
+                       continue;
+               exmap newrepls = repls;
+               int newnummatches = nummatches;
+               if (tryfactsubs(e.op(i), pat.op(factor), newnummatches, newrepls)) {
+                       matched[i] = true;
+                       if (algebraic_match_mul_with_mul(e, pat, newrepls, factor+1,
+                                       newnummatches, subsed, matched)) {
+                               repls = newrepls;
+                               nummatches = newnummatches;
+                               return true;
+                       }
+                       else
+                               matched[i] = false;
+               }
+       }
+
+       return false;
+}
+
+bool mul::has(const ex & pattern, unsigned options) const
+{
+       if(!(options & has_options::algebraic))
+               return basic::has(pattern,options);
+       if(is_a<mul>(pattern)) {
+               exmap repls;
+               int nummatches = std::numeric_limits<int>::max();
+               std::vector<bool> subsed(nops(), false);
+               std::vector<bool> matched(nops(), false);
+               if(algebraic_match_mul_with_mul(*this, pattern, repls, 0, nummatches,
+                               subsed, matched))
+                       return true;
+       }
+       return basic::has(pattern, options);
+}
+
+ex mul::algebraic_subs_mul(const exmap & m, unsigned options) const
+{      
+       std::vector<bool> subsed(nops(), false);
+       ex divide_by = 1;
+       ex multiply_by = 1;
+
+       for (auto & it : m) {
+
+               if (is_exactly_a<mul>(it.first)) {
+retry1:
+                       int nummatches = std::numeric_limits<int>::max();
+                       std::vector<bool> currsubsed(nops(), false);
+                       exmap repls;
+                       
+                       if (!algebraic_match_mul_with_mul(*this, it.first, repls, 0, nummatches, subsed, currsubsed))
+                               continue;
+
+                       for (size_t j=0; j<subsed.size(); j++)
+                               if (currsubsed[j])
+                                       subsed[j] = true;
+                       ex subsed_pattern
+                               = it.first.subs(repls, subs_options::no_pattern);
+                       divide_by *= pow(subsed_pattern, nummatches);
+                       ex subsed_result
+                               = it.second.subs(repls, subs_options::no_pattern);
+                       multiply_by *= pow(subsed_result, nummatches);
+                       goto retry1;
+
+               } else {
+
+                       for (size_t j=0; j<this->nops(); j++) {
+                               int nummatches = std::numeric_limits<int>::max();
+                               exmap repls;
+                               if (!subsed[j] && tryfactsubs(op(j), it.first, nummatches, repls)){
+                                       subsed[j] = true;
+                                       ex subsed_pattern
+                                               = it.first.subs(repls, subs_options::no_pattern);
+                                       divide_by *= pow(subsed_pattern, nummatches);
+                                       ex subsed_result
+                                               = it.second.subs(repls, subs_options::no_pattern);
+                                       multiply_by *= pow(subsed_result, nummatches);
+                               }
+                       }
+               }
+       }
+
+       bool subsfound = false;
+       for (size_t i=0; i<subsed.size(); i++) {
+               if (subsed[i]) {
+                       subsfound = true;
+                       break;
+               }
        }
-       return inherited::simplify_ncmul(v);
+       if (!subsfound)
+               return subs_one_level(m, options | subs_options::algebraic);
+
+       return ((*this)/divide_by)*multiply_by;
 }
 
+ex mul::conjugate() const
+{
+       // The base class' method is wrong here because we have to be careful at
+       // branch cuts. power::conjugate takes care of that already, so use it.
+       std::unique_ptr<epvector> newepv(nullptr);
+       for (auto i=seq.begin(); i!=seq.end(); ++i) {
+               if (newepv) {
+                       newepv->push_back(split_ex_to_pair(recombine_pair_to_ex(*i).conjugate()));
+                       continue;
+               }
+               ex x = recombine_pair_to_ex(*i);
+               ex c = x.conjugate();
+               if (c.is_equal(x)) {
+                       continue;
+               }
+               newepv.reset(new epvector);
+               newepv->reserve(seq.size());
+               for (auto j=seq.begin(); j!=i; ++j) {
+                       newepv->push_back(*j);
+               }
+               newepv->push_back(split_ex_to_pair(c));
+       }
+       ex x = overall_coeff.conjugate();
+       if (!newepv && are_ex_trivially_equal(x, overall_coeff)) {
+               return *this;
+       }
+       return thisexpairseq(newepv ? std::move(*newepv) : seq, x);
+}
+
+
 // protected
 
 /** Implementation of ex::diff() for a product.  It applies the product rule.
  *  @see ex::diff */
 ex mul::derivative(const symbol & s) const
 {
-       unsigned num = seq.size();
+       size_t num = seq.size();
        exvector addseq;
        addseq.reserve(num);
        
        // D(a*b*c) = D(a)*b*c + a*D(b)*c + a*b*D(c)
        epvector mulseq = seq;
-       epvector::const_iterator i = seq.begin(), end = seq.end();
-       epvector::iterator i2 = mulseq.begin();
+       auto i = seq.begin(), end = seq.end();
+       auto i2 = mulseq.begin();
        while (i != end) {
-               expair ep = split_ex_to_pair(power(i->rest, i->coeff - _ex1) *
+               expair ep = split_ex_to_pair(pow(i->rest, i->coeff - _ex1) *
                                             i->rest.diff(s));
                ep.swap(*i2);
-               addseq.push_back((new mul(mulseq, overall_coeff * i->coeff))->setflag(status_flags::dynallocated));
+               addseq.push_back(dynallocate<mul>(mulseq, overall_coeff * i->coeff));
                ep.swap(*i2);
                ++i; ++i2;
        }
-       return (new add(addseq))->setflag(status_flags::dynallocated);
+       return dynallocate<add>(addseq);
 }
 
 int mul::compare_same_type(const basic & other) const
@@ -546,15 +886,10 @@ int mul::compare_same_type(const basic & other) const
        return inherited::compare_same_type(other);
 }
 
-bool mul::is_equal_same_type(const basic & other) const
-{
-       return inherited::is_equal_same_type(other);
-}
-
-unsigned mul::return_type(void) const
+unsigned mul::return_type() const
 {
        if (seq.empty()) {
-               // mul without factors: should not happen, but commutes
+               // mul without factors: should not happen, but commutates
                return return_types::commutative;
        }
        
@@ -574,8 +909,8 @@ unsigned mul::return_type(void) const
                if ((rt == return_types::noncommutative) && (!all_commutative)) {
                        // another nc element found, compare type_infos
                        if (noncommutative_element->rest.return_type_tinfo() != i->rest.return_type_tinfo()) {
-                               // diffent types -> mul is ncc
-                               return return_types::noncommutative_composite;
+                                       // different types -> mul is ncc
+                                       return return_types::noncommutative_composite;
                        }
                }
                ++i;
@@ -583,101 +918,116 @@ unsigned mul::return_type(void) const
        // all factors checked
        return all_commutative ? return_types::commutative : return_types::noncommutative;
 }
-   
-unsigned mul::return_type_tinfo(void) const
+
+return_type_t mul::return_type_tinfo() const
 {
        if (seq.empty())
-               return tinfo_key;  // mul without factors: should not happen
+               return make_return_type_t<mul>(); // mul without factors: should not happen
        
        // return type_info of first noncommutative element
-       epvector::const_iterator i = seq.begin(), end = seq.end();
-       while (i != end) {
-               if (i->rest.return_type() == return_types::noncommutative)
-                       return i->rest.return_type_tinfo();
-               ++i;
-       }
+       for (auto & it : seq)
+               if (it.rest.return_type() == return_types::noncommutative)
+                       return it.rest.return_type_tinfo();
+
        // no noncommutative element found, should not happen
-       return tinfo_key;
+       return make_return_type_t<mul>();
 }
 
-ex mul::thisexpairseq(const epvector & v, const ex & oc) const
+ex mul::thisexpairseq(const epvector & v, const ex & oc, bool do_index_renaming) const
 {
-       return (new mul(v, oc))->setflag(status_flags::dynallocated);
+       return dynallocate<mul>(v, oc, do_index_renaming);
 }
 
-ex mul::thisexpairseq(epvector * vp, const ex & oc) const
+ex mul::thisexpairseq(epvector && vp, const ex & oc, bool do_index_renaming) const
 {
-       return (new mul(vp, oc))->setflag(status_flags::dynallocated);
+       return dynallocate<mul>(std::move(vp), oc, do_index_renaming);
 }
 
 expair mul::split_ex_to_pair(const ex & e) const
 {
-       if (is_ex_exactly_of_type(e,power)) {
+       if (is_exactly_a<power>(e)) {
                const power & powerref = ex_to<power>(e);
-               if (is_ex_exactly_of_type(powerref.exponent,numeric))
+               if (is_exactly_a<numeric>(powerref.exponent))
                        return expair(powerref.basis,powerref.exponent);
        }
        return expair(e,_ex1);
 }
-       
+
 expair mul::combine_ex_with_coeff_to_pair(const ex & e,
                                           const ex & c) const
 {
+       GINAC_ASSERT(is_exactly_a<numeric>(c));
+
+       // First, try a common shortcut:
+       if (is_exactly_a<symbol>(e))
+               return expair(e, c);
+
+       // trivial case: exponent 1
+       if (c.is_equal(_ex1))
+               return split_ex_to_pair(e);
+
        // to avoid duplication of power simplification rules,
        // we create a temporary power object
-       // otherwise it would be hard to correctly simplify
+       // otherwise it would be hard to correctly evaluate
        // expression like (4^(1/3))^(3/2)
-       if (are_ex_trivially_equal(c,_ex1))
-               return split_ex_to_pair(e);
-       
-       return split_ex_to_pair(power(e,c));
+       return split_ex_to_pair(pow(e,c));
 }
-       
+
 expair mul::combine_pair_with_coeff_to_pair(const expair & p,
                                             const ex & c) const
 {
+       GINAC_ASSERT(is_exactly_a<numeric>(p.coeff));
+       GINAC_ASSERT(is_exactly_a<numeric>(c));
+
+       // First, try a common shortcut:
+       if (is_exactly_a<symbol>(p.rest))
+               return expair(p.rest, p.coeff * c);
+
+       // trivial case: exponent 1
+       if (c.is_equal(_ex1))
+               return p;
+       if (p.coeff.is_equal(_ex1))
+               return expair(p.rest, c);
+
        // to avoid duplication of power simplification rules,
        // we create a temporary power object
-       // otherwise it would be hard to correctly simplify
+       // otherwise it would be hard to correctly evaluate
        // expression like (4^(1/3))^(3/2)
-       if (are_ex_trivially_equal(c,_ex1))
-               return p;
-       
-       return split_ex_to_pair(power(recombine_pair_to_ex(p),c));
+       return split_ex_to_pair(pow(recombine_pair_to_ex(p),c));
 }
-       
+
 ex mul::recombine_pair_to_ex(const expair & p) const
 {
-       if (ex_to<numeric>(p.coeff).is_equal(_num1)) 
+       if (p.coeff.is_equal(_ex1))
                return p.rest;
        else
-               return power(p.rest,p.coeff);
+               return dynallocate<power>(p.rest, p.coeff);
 }
 
 bool mul::expair_needs_further_processing(epp it)
 {
-       if (is_ex_exactly_of_type((*it).rest,mul) &&
-               ex_to<numeric>((*it).coeff).is_integer()) {
+       if (is_exactly_a<mul>(it->rest) &&
+           ex_to<numeric>(it->coeff).is_integer()) {
                // combined pair is product with integer power -> expand it
                *it = split_ex_to_pair(recombine_pair_to_ex(*it));
                return true;
        }
-       if (is_ex_exactly_of_type((*it).rest,numeric)) {
-               expair ep=split_ex_to_pair(recombine_pair_to_ex(*it));
+       if (is_exactly_a<numeric>(it->rest)) {
+               if (it->coeff.is_equal(_ex1)) {
+                       // pair has coeff 1 and must be moved to the end
+                       return true;
+               }
+               expair ep = split_ex_to_pair(recombine_pair_to_ex(*it));
                if (!ep.is_equal(*it)) {
                        // combined pair is a numeric power which can be simplified
                        *it = ep;
                        return true;
                }
-               if (ex_to<numeric>((*it).coeff).is_equal(_num1)) {
-                       // combined pair has coeff 1 and must be moved to the end
-                       return true;
-               }
        }
        return false;
 }       
 
-ex mul::default_overall_coeff(void) const
+ex mul::default_overall_coeff() const
 {
        return _ex1;
 }
@@ -700,134 +1050,190 @@ void mul::combine_overall_coeff(const ex & c1, const ex & c2)
 bool mul::can_make_flat(const expair & p) const
 {
        GINAC_ASSERT(is_exactly_a<numeric>(p.coeff));
-       // this assertion will probably fail somewhere
-       // it would require a more careful make_flat, obeying the power laws
-       // probably should return true only if p.coeff is integer
-       return ex_to<numeric>(p.coeff).is_equal(_num1);
+
+       // (x*y)^c == x^c*y^c  if c âˆˆ â„¤
+       return p.coeff.info(info_flags::integer);
+}
+
+bool mul::can_be_further_expanded(const ex & e)
+{
+       if (is_exactly_a<mul>(e)) {
+               for (auto & it : ex_to<mul>(e).seq) {
+                       if (is_exactly_a<add>(it.rest) && it.coeff.info(info_flags::posint))
+                               return true;
+               }
+       } else if (is_exactly_a<power>(e)) {
+               if (is_exactly_a<add>(e.op(0)) && e.op(1).info(info_flags::posint))
+                       return true;
+       }
+       return false;
 }
 
 ex mul::expand(unsigned options) const
 {
+       // Check for trivial case: expanding the monomial (~ 30% of all calls)
+       bool monomial_case = true;
+       for (const auto & i : seq) {
+               if (!is_a<symbol>(i.rest) || !i.coeff.info(info_flags::integer)) {
+                       monomial_case = false;
+                       break;
+               }
+       }
+       if (monomial_case) {
+               setflag(status_flags::expanded);
+               return *this;
+       }
+
+       // do not rename indices if the object has no indices at all
+       if ((!(options & expand_options::expand_rename_idx)) && 
+           this->info(info_flags::has_indices))
+               options |= expand_options::expand_rename_idx;
+
+       const bool skip_idx_rename = !(options & expand_options::expand_rename_idx);
+
        // First, expand the children
-       epvector * expanded_seqp = expandchildren(options);
-       const epvector & expanded_seq = (expanded_seqp == NULL) ? seq : *expanded_seqp;
+       epvector expanded = expandchildren(options);
+       const epvector & expanded_seq = (expanded.empty() ? seq : expanded);
 
        // Now, look for all the factors that are sums and multiply each one out
        // with the next one that is found while collecting the factors which are
        // not sums
-       int number_of_adds = 0;
        ex last_expanded = _ex1;
+
        epvector non_adds;
        non_adds.reserve(expanded_seq.size());
-       epvector::const_iterator cit = expanded_seq.begin(), last = expanded_seq.end();
-       while (cit != last) {
-               if (is_ex_exactly_of_type(cit->rest, add) &&
-                       (cit->coeff.is_equal(_ex1))) {
-                       ++number_of_adds;
-                       if (is_ex_exactly_of_type(last_expanded, add)) {
-#if 0
-                               // Expand a product of two sums, simple and robust version.
-                               const add & add1 = ex_to<add>(last_expanded);
-                               const add & add2 = ex_to<add>(cit->rest);
-                               const int n1 = add1.nops();
-                               const int n2 = add2.nops();
-                               ex tmp_accu;
-                               exvector distrseq;
-                               distrseq.reserve(n2);
-                               for (int i1=0; i1<n1; ++i1) {
-                                       distrseq.clear();
-                                       // cache the first operand (for efficiency):
-                                       const ex op1 = add1.op(i1);
-                                       for (int i2=0; i2<n2; ++i2)
-                                               distrseq.push_back(op1 * add2.op(i2));
-                                       tmp_accu += (new add(distrseq))->
-                                                    setflag(status_flags::dynallocated);
-                               }
-                               last_expanded = tmp_accu;
-#else
+
+       for (const auto & cit : expanded_seq) {
+               if (is_exactly_a<add>(cit.rest) &&
+                       (cit.coeff.is_equal(_ex1))) {
+                       if (is_exactly_a<add>(last_expanded)) {
+
                                // Expand a product of two sums, aggressive version.
                                // Caring for the overall coefficients in separate loops can
                                // sometimes give a performance gain of up to 15%!
 
-                               const int sizedifference = ex_to<add>(last_expanded).seq.size()-ex_to<add>(cit->rest).seq.size();
+                               const int sizedifference = ex_to<add>(last_expanded).seq.size()-ex_to<add>(cit.rest).seq.size();
                                // add2 is for the inner loop and should be the bigger of the two sums
                                // in the presence of asymptotically good sorting:
-                               const add& add1 = (sizedifference<0 ? ex_to<add>(last_expanded) : ex_to<add>(cit->rest));
-                               const add& add2 = (sizedifference<0 ? ex_to<add>(cit->rest) : ex_to<add>(last_expanded));
-                               const epvector::const_iterator add1begin = add1.seq.begin();
-                               const epvector::const_iterator add1end   = add1.seq.end();
-                               const epvector::const_iterator add2begin = add2.seq.begin();
-                               const epvector::const_iterator add2end   = add2.seq.end();
+                               const add& add1 = (sizedifference<0 ? ex_to<add>(last_expanded) : ex_to<add>(cit.rest));
+                               const add& add2 = (sizedifference<0 ? ex_to<add>(cit.rest) : ex_to<add>(last_expanded));
                                epvector distrseq;
                                distrseq.reserve(add1.seq.size()+add2.seq.size());
+
                                // Multiply add2 with the overall coefficient of add1 and append it to distrseq:
                                if (!add1.overall_coeff.is_zero()) {
                                        if (add1.overall_coeff.is_equal(_ex1))
-                                               distrseq.insert(distrseq.end(),add2begin,add2end);
+                                               distrseq.insert(distrseq.end(), add2.seq.begin(), add2.seq.end());
                                        else
-                                               for (epvector::const_iterator i=add2begin; i!=add2end; ++i)
-                                                       distrseq.push_back(expair(i->rest, ex_to<numeric>(i->coeff).mul_dyn(ex_to<numeric>(add1.overall_coeff))));
+                                               for (const auto & i : add2.seq)
+                                                       distrseq.push_back(expair(i.rest, ex_to<numeric>(i.coeff).mul_dyn(ex_to<numeric>(add1.overall_coeff))));
                                }
+
                                // Multiply add1 with the overall coefficient of add2 and append it to distrseq:
                                if (!add2.overall_coeff.is_zero()) {
                                        if (add2.overall_coeff.is_equal(_ex1))
-                                               distrseq.insert(distrseq.end(),add1begin,add1end);
+                                               distrseq.insert(distrseq.end(), add1.seq.begin(), add1.seq.end());
                                        else
-                                               for (epvector::const_iterator i=add1begin; i!=add1end; ++i)
-                                                       distrseq.push_back(expair(i->rest, ex_to<numeric>(i->coeff).mul_dyn(ex_to<numeric>(add2.overall_coeff))));
+                                               for (const auto & i : add1.seq)
+                                                       distrseq.push_back(expair(i.rest, ex_to<numeric>(i.coeff).mul_dyn(ex_to<numeric>(add2.overall_coeff))));
                                }
+
                                // Compute the new overall coefficient and put it together:
-                               ex tmp_accu = (new add(distrseq, add1.overall_coeff*add2.overall_coeff))->setflag(status_flags::dynallocated);
+                               ex tmp_accu = dynallocate<add>(distrseq, add1.overall_coeff*add2.overall_coeff);
+
+                               exvector add1_dummy_indices, add2_dummy_indices, add_indices;
+                               lst dummy_subs;
+
+                               if (!skip_idx_rename) {
+                                       for (const auto & i : add1.seq) {
+                                               add_indices = get_all_dummy_indices_safely(i.rest);
+                                               add1_dummy_indices.insert(add1_dummy_indices.end(), add_indices.begin(), add_indices.end());
+                                       }
+                                       for (const auto & i : add2.seq) {
+                                               add_indices = get_all_dummy_indices_safely(i.rest);
+                                               add2_dummy_indices.insert(add2_dummy_indices.end(), add_indices.begin(), add_indices.end());
+                                       }
+
+                                       sort(add1_dummy_indices.begin(), add1_dummy_indices.end(), ex_is_less());
+                                       sort(add2_dummy_indices.begin(), add2_dummy_indices.end(), ex_is_less());
+                                       dummy_subs = rename_dummy_indices_uniquely(add1_dummy_indices, add2_dummy_indices);
+                               }
+
                                // Multiply explicitly all non-numeric terms of add1 and add2:
-                               for (epvector::const_iterator i1=add1begin; i1!=add1end; ++i1) {
+                               for (const auto & i2 : add2.seq) {
                                        // We really have to combine terms here in order to compactify
                                        // the result.  Otherwise it would become waayy tooo bigg.
-                                       numeric oc;
-                                       distrseq.clear();
-                                       for (epvector::const_iterator i2=add2begin; i2!=add2end; ++i2) {
+                                       numeric oc(*_num0_p);
+                                       epvector distrseq2;
+                                       distrseq2.reserve(add1.seq.size());
+                                       const ex i2_new = (skip_idx_rename || (dummy_subs.op(0).nops() == 0) ?
+                                                       i2.rest :
+                                                       i2.rest.subs(ex_to<lst>(dummy_subs.op(0)),
+                                                                    ex_to<lst>(dummy_subs.op(1)), subs_options::no_pattern));
+                                       for (const auto & i1 : add1.seq) {
                                                // Don't push_back expairs which might have a rest that evaluates to a numeric,
                                                // since that would violate an invariant of expairseq:
-                                               const ex rest = (new mul(i1->rest, i2->rest))->setflag(status_flags::dynallocated);
-                                               if (is_ex_exactly_of_type(rest, numeric))
-                                                       oc += ex_to<numeric>(rest).mul(ex_to<numeric>(i1->coeff).mul(ex_to<numeric>(i2->coeff)));
-                                               else
-                                                       distrseq.push_back(expair(rest, ex_to<numeric>(i1->coeff).mul_dyn(ex_to<numeric>(i2->coeff))));
+                                               const ex rest = dynallocate<mul>(i1.rest, i2_new);
+                                               if (is_exactly_a<numeric>(rest)) {
+                                                       oc += ex_to<numeric>(rest).mul(ex_to<numeric>(i1.coeff).mul(ex_to<numeric>(i2.coeff)));
+                                               } else {
+                                                       distrseq2.push_back(expair(rest, ex_to<numeric>(i1.coeff).mul_dyn(ex_to<numeric>(i2.coeff))));
+                                               }
                                        }
-                                       tmp_accu += (new add(distrseq, oc))->setflag(status_flags::dynallocated);
+                                       tmp_accu += dynallocate<add>(std::move(distrseq2), oc);
                                }
                                last_expanded = tmp_accu;
-#endif
                        } else {
-                               non_adds.push_back(split_ex_to_pair(last_expanded));
-                               last_expanded = cit->rest;
+                               if (!last_expanded.is_equal(_ex1))
+                                       non_adds.push_back(split_ex_to_pair(last_expanded));
+                               last_expanded = cit.rest;
                        }
+
                } else {
-                       non_adds.push_back(*cit);
+                       non_adds.push_back(cit);
                }
-               ++cit;
        }
-       if (expanded_seqp)
-               delete expanded_seqp;
-       
+
        // Now the only remaining thing to do is to multiply the factors which
        // were not sums into the "last_expanded" sum
-       if (is_ex_exactly_of_type(last_expanded, add)) {
-               const add & finaladd = ex_to<add>(last_expanded);
+       if (is_exactly_a<add>(last_expanded)) {
+               size_t n = last_expanded.nops();
                exvector distrseq;
-               int n = finaladd.nops();
                distrseq.reserve(n);
-               for (int i=0; i<n; ++i) {
+               exvector va;
+               if (! skip_idx_rename) {
+                       va = get_all_dummy_indices_safely(mul(non_adds));
+                       sort(va.begin(), va.end(), ex_is_less());
+               }
+
+               for (size_t i=0; i<n; ++i) {
                        epvector factors = non_adds;
-                       factors.push_back(split_ex_to_pair(finaladd.op(i)));
-                       distrseq.push_back((new mul(factors, overall_coeff))->
-                                           setflag(status_flags::dynallocated | (options == 0 ? status_flags::expanded : 0)));
+                       if (skip_idx_rename)
+                               factors.push_back(split_ex_to_pair(last_expanded.op(i)));
+                       else
+                               factors.push_back(split_ex_to_pair(rename_dummy_indices_uniquely(va, last_expanded.op(i))));
+                       ex term = dynallocate<mul>(factors, overall_coeff);
+                       if (can_be_further_expanded(term)) {
+                               distrseq.push_back(term.expand());
+                       } else {
+                               if (options == 0)
+                                       ex_to<basic>(term).setflag(status_flags::expanded);
+                               distrseq.push_back(term);
+                       }
                }
-               return ((new add(distrseq))->
-                       setflag(status_flags::dynallocated | (options == 0 ? status_flags::expanded : 0)));
+
+               return dynallocate<add>(distrseq).setflag(options == 0 ? status_flags::expanded : 0);
        }
+
        non_adds.push_back(split_ex_to_pair(last_expanded));
-       return (new mul(non_adds, overall_coeff))->
-               setflag(status_flags::dynallocated | (options == 0 ? status_flags::expanded : 0));
+       ex result = dynallocate<mul>(non_adds, overall_coeff);
+       if (can_be_further_expanded(result)) {
+               return result.expand();
+       } else {
+               if (options == 0)
+                       ex_to<basic>(result).setflag(status_flags::expanded);
+               return result;
+       }
 }
 
   
@@ -844,44 +1250,47 @@ ex mul::expand(unsigned options) const
 
 /** Member-wise expand the expairs representing this sequence.  This must be
  *  overridden from expairseq::expandchildren() and done iteratively in order
- *  to allow for early cancallations and thus safe memory.
+ *  to allow for early cancellations and thus safe memory.
  *
  *  @see mul::expand()
- *  @return pointer to epvector containing expanded representation or zero
- *  pointer, if sequence is unchanged. */
-epvector mul::expandchildren(unsigned options) const
+ *  @return epvector containing expanded pairs, empty if no members
+ *    had to be changed. */
+epvector mul::expandchildren(unsigned options) const
 {
-       const epvector::const_iterator last = seq.end();
-       epvector::const_iterator cit = seq.begin();
+       auto cit = seq.begin(), last = seq.end();
        while (cit!=last) {
                const ex & factor = recombine_pair_to_ex(*cit);
                const ex & expanded_factor = factor.expand(options);
                if (!are_ex_trivially_equal(factor,expanded_factor)) {
                        
                        // something changed, copy seq, eval and return it
-                       epvector *s = new epvector;
-                       s->reserve(seq.size());
+                       epvector s;
+                       s.reserve(seq.size());
                        
                        // copy parts of seq which are known not to have changed
-                       epvector::const_iterator cit2 = seq.begin();
+                       auto cit2 = seq.begin();
                        while (cit2!=cit) {
-                               s->push_back(*cit2);
+                               s.push_back(*cit2);
                                ++cit2;
                        }
+
                        // copy first changed element
-                       s->push_back(split_ex_to_pair(expanded_factor));
+                       s.push_back(split_ex_to_pair(expanded_factor));
                        ++cit2;
+
                        // copy rest
                        while (cit2!=last) {
-                               s->push_back(split_ex_to_pair(recombine_pair_to_ex(*cit2).expand(options)));
+                               s.push_back(split_ex_to_pair(recombine_pair_to_ex(*cit2).expand(options)));
                                ++cit2;
                        }
                        return s;
                }
                ++cit;
        }
-       
-       return 0; // nothing has changed
+
+       return epvector(); // nothing has changed
 }
 
+GINAC_BIND_UNARCHIVER(mul);
+
 } // namespace GiNaC