]> www.ginac.de Git - ginac.git/blobdiff - ginac/matrix.cpp
Finalize 1.7.6 release.
[ginac.git] / ginac / matrix.cpp
index 299cacfc98fa58ce8a6d78322ca49be9928794ce..fb6750602caf1e36a34bc93eace613b24fea8323 100644 (file)
@@ -1097,17 +1097,8 @@ unsigned matrix::rank(unsigned solve_algo) const
  *  @see matrix::determinant() */
 ex matrix::determinant_minor() const
 {
-       // for small matrices the algorithm does not make any sense:
        const unsigned n = this->cols();
-       if (n==1)
-               return m[0].expand();
-       if (n==2)
-               return (m[0]*m[3]-m[2]*m[1]).expand();
-       if (n==3)
-               return (m[0]*m[4]*m[8]-m[0]*m[5]*m[7]-
-                       m[1]*m[3]*m[8]+m[2]*m[3]*m[7]+
-                       m[1]*m[5]*m[6]-m[2]*m[4]*m[6]).expand();
-       
+
        // This algorithm can best be understood by looking at a naive
        // implementation of Laplace-expansion, like this one:
        // ex det;
@@ -1140,65 +1131,65 @@ ex matrix::determinant_minor() const
        // calculated in step c-1.  We therefore only have to store at most 
        // 2*binomial(n,n/2) minors.
        
-       // Unique flipper counter for partitioning into minors
-       std::vector<unsigned> Pkey;
-       Pkey.reserve(n);
-       // key for minor determinant (a subpartition of Pkey)
-       std::vector<unsigned> Mkey;
+       // we store the minors in maps, keyed by the rows they arise from
+       typedef std::vector<unsigned> keyseq;
+       typedef std::map<keyseq, ex> Rmap;
+
+       Rmap M, N;  // minors used in current and next column, respectively
+       // populate M with dummy unit, to be used as factor in rightmost column
+       M[keyseq{}] = _ex1;
+
+       // keys to identify minor of M and N (Mkey is a subsequence of Nkey)
+       keyseq Mkey, Nkey;
        Mkey.reserve(n-1);
-       // we store our subminors in maps, keys being the rows they arise from
-       typedef std::map<std::vector<unsigned>,class ex> Rmap;
-       typedef std::map<std::vector<unsigned>,class ex>::value_type Rmap_value;
-       Rmap A;
-       Rmap B;
+       Nkey.reserve(n);
+
        ex det;
-       // initialize A with last column:
-       for (unsigned r=0; r<n; ++r) {
-               Pkey.erase(Pkey.begin(),Pkey.end());
-               Pkey.push_back(r);
-               A.insert(Rmap_value(Pkey,m[n*(r+1)-1]));
-       }
        // proceed from right to left through matrix
-       for (int c=n-2; c>=0; --c) {
-               Pkey.erase(Pkey.begin(),Pkey.end());  // don't change capacity
-               Mkey.erase(Mkey.begin(),Mkey.end());
+       for (int c=n-1; c>=0; --c) {
+               Nkey.clear();
+               Mkey.clear();
                for (unsigned i=0; i<n-c; ++i)
-                       Pkey.push_back(i);
-               unsigned fc = 0;  // controls logic for our strange flipper counter
+                       Nkey.push_back(i);
+               unsigned fc = 0;  // controls logic for minor key generator
                do {
                        det = _ex0;
                        for (unsigned r=0; r<n-c; ++r) {
                                // maybe there is nothing to do?
-                               if (m[Pkey[r]*n+c].is_zero())
+                               if (m[Nkey[r]*n+c].is_zero())
                                        continue;
-                               // create the sorted key for all possible minors
-                               Mkey.erase(Mkey.begin(),Mkey.end());
-                               for (unsigned i=0; i<n-c; ++i)
-                                       if (i!=r)
-                                               Mkey.push_back(Pkey[i]);
-                               // Fetch the minors and compute the new determinant
+                               // Mkey is same as Nkey, but with element r removed
+                               Mkey.clear();
+                               Mkey.insert(Mkey.begin(), Nkey.begin(), Nkey.begin() + r);
+                               Mkey.insert(Mkey.end(), Nkey.begin() + r + 1, Nkey.end());
+                               // add product of matrix element and minor M to determinant
                                if (r%2)
-                                       det -= m[Pkey[r]*n+c]*A[Mkey];
+                                       det -= m[Nkey[r]*n+c]*M[Mkey];
                                else
-                                       det += m[Pkey[r]*n+c]*A[Mkey];
+                                       det += m[Nkey[r]*n+c]*M[Mkey];
                        }
-                       // prevent build-up of deep nesting of expressions saves time:
+                       // prevent nested expressions to save time
                        det = det.expand();
-                       // store the new determinant at its place in B:
+                       // if the next computed minor is zero, don't store it in N:
+                       // (if key is not found, operator[] will just return a zero ex)
                        if (!det.is_zero())
-                               B.insert(Rmap_value(Pkey,det));
-                       // increment our strange flipper counter
+                               N[Nkey] = det;
+                       // compute next minor key
                        for (fc=n-c; fc>0; --fc) {
-                               ++Pkey[fc-1];
-                               if (Pkey[fc-1]<fc+c)
+                               ++Nkey[fc-1];
+                               if (Nkey[fc-1]<fc+c)
                                        break;
                        }
                        if (fc<n-c && fc>0)
                                for (unsigned j=fc; j<n-c; ++j)
-                                       Pkey[j] = Pkey[j-1]+1;
+                                       Nkey[j] = Nkey[j-1]+1;
                } while(fc);
-               // next column, clear B and change the role of A and B:
-               A = std::move(B);
+               // if N contains no minors, then they all vanished
+               if (N.empty())
+                       return _ex0;
+
+               // proceed to next column: switch roles of M and N, clear N
+               M = std::move(N);
        }
        
        return det;