]> www.ginac.de Git - ginac.git/blobdiff - ginac/matrix.cpp
- rewrote binary scanning in matrix::pow(), stealing from CLN's expt_pos().
[ginac.git] / ginac / matrix.cpp
index 97b473628464e498a233c691e2d0b724f34e7491..65dfd4dc601e9c228f7329d6e5e18f6c471c0718 100644 (file)
@@ -3,7 +3,7 @@
  *  Implementation of symbolic matrices */
 
 /*
- *  GiNaC Copyright (C) 1999-2000 Johannes Gutenberg University Mainz, Germany
+ *  GiNaC Copyright (C) 1999-2001 Johannes Gutenberg University Mainz, Germany
  *
  *  This program is free software; you can redistribute it and/or modify
  *  it under the terms of the GNU General Public License as published by
  */
 
 #include <algorithm>
+#include <map>
 #include <stdexcept>
 
 #include "matrix.h"
+#include "numeric.h"
+#include "lst.h"
+#include "idx.h"
+#include "indexed.h"
+#include "power.h"
+#include "symbol.h"
+#include "normal.h"
+#include "print.h"
 #include "archive.h"
 #include "utils.h"
 #include "debugmsg.h"
 
-#ifndef NO_NAMESPACE_GINAC
 namespace GiNaC {
-#endif // ndef NO_NAMESPACE_GINAC
 
 GINAC_IMPLEMENT_REGISTERED_CLASS(matrix, basic)
 
 //////////
-// default constructor, destructor, copy constructor, assignment operator
-// and helpers:
+// default ctor, dtor, copy ctor, assignment operator and helpers:
 //////////
 
-// public
-
 /** Default ctor.  Initializes to 1 x 1-dimensional zero-matrix. */
-matrix::matrix()
-    : inherited(TINFO_matrix), row(1), col(1)
-{
-    debugmsg("matrix default constructor",LOGLEVEL_CONSTRUCT);
-    m.push_back(_ex0());
-}
-
-matrix::~matrix()
+matrix::matrix() : inherited(TINFO_matrix), row(1), col(1)
 {
-    debugmsg("matrix destructor",LOGLEVEL_DESTRUCT);
+       debugmsg("matrix default ctor",LOGLEVEL_CONSTRUCT);
+       m.push_back(_ex0());
 }
 
-matrix::matrix(const matrix & other)
-{
-    debugmsg("matrix copy constructor",LOGLEVEL_CONSTRUCT);
-    copy(other);
-}
-
-const matrix & matrix::operator=(const matrix & other)
-{
-    debugmsg("matrix operator=",LOGLEVEL_ASSIGNMENT);
-    if (this != &other) {
-        destroy(1);
-        copy(other);
-    }
-    return *this;
-}
-
-// protected
-
 void matrix::copy(const matrix & other)
 {
-    inherited::copy(other);
-    row=other.row;
-    col=other.col;
-    m=other.m;  // use STL's vector copying
+       inherited::copy(other);
+       row = other.row;
+       col = other.col;
+       m = other.m;  // STL's vector copying invoked here
 }
 
-void matrix::destroy(bool call_parent)
-{
-    if (call_parent) inherited::destroy(call_parent);
-}
+DEFAULT_DESTROY(matrix)
 
 //////////
-// other constructors
+// other ctors
 //////////
 
 // public
@@ -96,235 +73,429 @@ void matrix::destroy(bool call_parent)
  *  @param r number of rows
  *  @param c number of cols */
 matrix::matrix(unsigned r, unsigned c)
-    : inherited(TINFO_matrix), row(r), col(c)
+  : inherited(TINFO_matrix), row(r), col(c)
 {
-    debugmsg("matrix constructor from unsigned,unsigned",LOGLEVEL_CONSTRUCT);
-    m.resize(r*c, _ex0());
+       debugmsg("matrix ctor from unsigned,unsigned",LOGLEVEL_CONSTRUCT);
+       m.resize(r*c, _ex0());
 }
 
 // protected
 
 /** Ctor from representation, for internal use only. */
 matrix::matrix(unsigned r, unsigned c, const exvector & m2)
-    : inherited(TINFO_matrix), row(r), col(c), m(m2)
+  : inherited(TINFO_matrix), row(r), col(c), m(m2)
 {
-    debugmsg("matrix constructor from unsigned,unsigned,exvector",LOGLEVEL_CONSTRUCT);
+       debugmsg("matrix ctor from unsigned,unsigned,exvector",LOGLEVEL_CONSTRUCT);
+}
+
+/** Construct matrix from (flat) list of elements. If the list has fewer
+ *  elements than the matrix, the remaining matrix elements are set to zero.
+ *  If the list has more elements than the matrix, the excessive elements are
+ *  thrown away. */
+matrix::matrix(unsigned r, unsigned c, const lst & l)
+  : inherited(TINFO_matrix), row(r), col(c)
+{
+       debugmsg("matrix ctor from unsigned,unsigned,lst",LOGLEVEL_CONSTRUCT);
+       m.resize(r*c, _ex0());
+
+       for (unsigned i=0; i<l.nops(); i++) {
+               unsigned x = i % c;
+               unsigned y = i / c;
+               if (y >= r)
+                       break; // matrix smaller than list: throw away excessive elements
+               m[y*c+x] = l.op(i);
+       }
 }
 
 //////////
 // archiving
 //////////
 
-/** Construct object from archive_node. */
 matrix::matrix(const archive_node &n, const lst &sym_lst) : inherited(n, sym_lst)
 {
-    debugmsg("matrix constructor from archive_node", LOGLEVEL_CONSTRUCT);
-    if (!(n.find_unsigned("row", row)) || !(n.find_unsigned("col", col)))
-        throw (std::runtime_error("unknown matrix dimensions in archive"));
-    m.reserve(row * col);
-    for (unsigned int i=0; true; i++) {
-        ex e;
-        if (n.find_ex("m", e, sym_lst, i))
-            m.push_back(e);
-        else
-            break;
-    }
-}
-
-/** Unarchive the object. */
-ex matrix::unarchive(const archive_node &n, const lst &sym_lst)
-{
-    return (new matrix(n, sym_lst))->setflag(status_flags::dynallocated);
+       debugmsg("matrix ctor from archive_node", LOGLEVEL_CONSTRUCT);
+       if (!(n.find_unsigned("row", row)) || !(n.find_unsigned("col", col)))
+               throw (std::runtime_error("unknown matrix dimensions in archive"));
+       m.reserve(row * col);
+       for (unsigned int i=0; true; i++) {
+               ex e;
+               if (n.find_ex("m", e, sym_lst, i))
+                       m.push_back(e);
+               else
+                       break;
+       }
 }
 
-/** Archive the object. */
 void matrix::archive(archive_node &n) const
 {
-    inherited::archive(n);
-    n.add_unsigned("row", row);
-    n.add_unsigned("col", col);
-    exvector::const_iterator i = m.begin(), iend = m.end();
-    while (i != iend) {
-        n.add_ex("m", *i);
-        i++;
-    }
+       inherited::archive(n);
+       n.add_unsigned("row", row);
+       n.add_unsigned("col", col);
+       exvector::const_iterator i = m.begin(), iend = m.end();
+       while (i != iend) {
+               n.add_ex("m", *i);
+               ++i;
+       }
 }
 
+DEFAULT_UNARCHIVE(matrix)
+
 //////////
-// functions overriding virtual functions from bases classes
+// functions overriding virtual functions from base classes
 //////////
 
 // public
 
-basic * matrix::duplicate() const
-{
-    debugmsg("matrix duplicate",LOGLEVEL_DUPLICATE);
-    return new matrix(*this);
-}
-
-void matrix::print(ostream & os, unsigned upper_precedence) const
+void matrix::print(const print_context & c, unsigned level) const
 {
-    debugmsg("matrix print",LOGLEVEL_PRINT);
-    os << "[[ ";
-    for (unsigned r=0; r<row-1; ++r) {
-        os << "[[";
-        for (unsigned c=0; c<col-1; ++c) {
-            os << m[r*col+c] << ",";
-        }
-        os << m[col*(r+1)-1] << "]], ";
-    }
-    os << "[[";
-    for (unsigned c=0; c<col-1; ++c) {
-        os << m[(row-1)*col+c] << ",";
-    }
-    os << m[row*col-1] << "]] ]]";
-}
-
-void matrix::printraw(ostream & os) const
-{
-    debugmsg("matrix printraw",LOGLEVEL_PRINT);
-    os << "matrix(" << row << "," << col <<",";
-    for (unsigned r=0; r<row-1; ++r) {
-        os << "(";
-        for (unsigned c=0; c<col-1; ++c) {
-            os << m[r*col+c] << ",";
-        }
-        os << m[col*(r-1)-1] << "),";
-    }
-    os << "(";
-    for (unsigned c=0; c<col-1; ++c) {
-        os << m[(row-1)*col+c] << ",";
-    }
-    os << m[row*col-1] << "))";
+       debugmsg("matrix print", LOGLEVEL_PRINT);
+
+       if (is_of_type(c, print_tree)) {
+
+               inherited::print(c, level);
+
+       } else {
+
+               c.s << "[";
+               for (unsigned y=0; y<row-1; ++y) {
+                       c.s << "[";
+                       for (unsigned x=0; x<col-1; ++x) {
+                               m[y*col+x].print(c);
+                               c.s << ",";
+                       }
+                       m[col*(y+1)-1].print(c);
+                       c.s << "],";
+               }
+               c.s << "[";
+               for (unsigned x=0; x<col-1; ++x) {
+                       m[(row-1)*col+x].print(c);
+                       c.s << ",";
+               }
+               m[row*col-1].print(c);
+               c.s << "]]";
+
+       }
 }
 
 /** nops is defined to be rows x columns. */
 unsigned matrix::nops() const
 {
-    return row*col;
+       return row*col;
 }
 
 /** returns matrix entry at position (i/col, i%col). */
 ex matrix::op(int i) const
 {
-    return m[i];
+       return m[i];
 }
 
 /** returns matrix entry at position (i/col, i%col). */
 ex & matrix::let_op(int i)
 {
-    return m[i];
+       GINAC_ASSERT(i>=0);
+       GINAC_ASSERT(i<nops());
+       
+       return m[i];
 }
 
-/** expands the elements of a matrix entry by entry. */
-ex matrix::expand(unsigned options) const
+/** Evaluate matrix entry by entry. */
+ex matrix::eval(int level) const
 {
-    exvector tmp(row*col);
-    for (unsigned i=0; i<row*col; ++i) {
-        tmp[i]=m[i].expand(options);
-    }
-    return matrix(row, col, tmp);
+       debugmsg("matrix eval",LOGLEVEL_MEMBER_FUNCTION);
+       
+       // check if we have to do anything at all
+       if ((level==1)&&(flags & status_flags::evaluated))
+               return *this;
+       
+       // emergency break
+       if (level == -max_recursion_level)
+               throw (std::runtime_error("matrix::eval(): recursion limit exceeded"));
+       
+       // eval() entry by entry
+       exvector m2(row*col);
+       --level;
+       for (unsigned r=0; r<row; ++r)
+               for (unsigned c=0; c<col; ++c)
+                       m2[r*col+c] = m[r*col+c].eval(level);
+       
+       return (new matrix(row, col, m2))->setflag(status_flags::dynallocated |
+                                                                                          status_flags::evaluated );
 }
 
-/** Search ocurrences.  A matrix 'has' an expression if it is the expression
- *  itself or one of the elements 'has' it. */
-bool matrix::has(const ex & other) const
+ex matrix::subs(const lst & ls, const lst & lr, bool no_pattern) const
 {
-    GINAC_ASSERT(other.bp!=0);
-    
-    // tautology: it is the expression itself
-    if (is_equal(*other.bp)) return true;
-    
-    // search all the elements
-    for (exvector::const_iterator r=m.begin(); r!=m.end(); ++r) {
-        if ((*r).has(other)) return true;
-    }
-    return false;
-}
+       exvector m2(row * col);
+       for (unsigned r=0; r<row; ++r)
+               for (unsigned c=0; c<col; ++c)
+                       m2[r*col+c] = m[r*col+c].subs(ls, lr, no_pattern);
 
-/** evaluate matrix entry by entry. */
-ex matrix::eval(int level) const
-{
-    debugmsg("matrix eval",LOGLEVEL_MEMBER_FUNCTION);
-    
-    // check if we have to do anything at all
-    if ((level==1)&&(flags & status_flags::evaluated)) {
-        return *this;
-    }
-    
-    // emergency break
-    if (level == -max_recursion_level) {
-        throw (std::runtime_error("matrix::eval(): recursion limit exceeded"));
-    }
-    
-    // eval() entry by entry
-    exvector m2(row*col);
-    --level;    
-    for (unsigned r=0; r<row; ++r) {
-        for (unsigned c=0; c<col; ++c) {
-            m2[r*col+c] = m[r*col+c].eval(level);
-        }
-    }
-    
-    return (new matrix(row, col, m2))->setflag(status_flags::dynallocated |
-                                               status_flags::evaluated );
-}
-
-/** evaluate matrix numerically entry by entry. */
-ex matrix::evalf(int level) const
-{
-    debugmsg("matrix evalf",LOGLEVEL_MEMBER_FUNCTION);
-        
-    // check if we have to do anything at all
-    if (level==1) {
-        return *this;
-    }
-    
-    // emergency break
-    if (level == -max_recursion_level) {
-        throw (std::runtime_error("matrix::evalf(): recursion limit exceeded"));
-    }
-    
-    // evalf() entry by entry
-    exvector m2(row*col);
-    --level;
-    for (unsigned r=0; r<row; ++r) {
-        for (unsigned c=0; c<col; ++c) {
-            m2[r*col+c] = m[r*col+c].evalf(level);
-        }
-    }
-    return matrix(row, col, m2);
+       return ex(matrix(row, col, m2)).bp->basic::subs(ls, lr, no_pattern);
 }
 
 // protected
 
 int matrix::compare_same_type(const basic & other) const
 {
-    GINAC_ASSERT(is_exactly_of_type(other, matrix));
-    const matrix & o=static_cast<matrix &>(const_cast<basic &>(other));
-    
-    // compare number of rows
-    if (row != o.rows()) {
-        return row < o.rows() ? -1 : 1;
-    }
-    
-    // compare number of columns
-    if (col != o.cols()) {
-        return col < o.cols() ? -1 : 1;
-    }
-    
-    // equal number of rows and columns, compare individual elements
-    int cmpval;
-    for (unsigned r=0; r<row; ++r) {
-        for (unsigned c=0; c<col; ++c) {
-            cmpval=((*this)(r,c)).compare(o(r,c));
-            if (cmpval!=0) return cmpval;
-        }
-    }
-    // all elements are equal => matrices are equal;
-    return 0;
+       GINAC_ASSERT(is_exactly_of_type(other, matrix));
+       const matrix & o = static_cast<const matrix &>(other);
+       
+       // compare number of rows
+       if (row != o.rows())
+               return row < o.rows() ? -1 : 1;
+       
+       // compare number of columns
+       if (col != o.cols())
+               return col < o.cols() ? -1 : 1;
+       
+       // equal number of rows and columns, compare individual elements
+       int cmpval;
+       for (unsigned r=0; r<row; ++r) {
+               for (unsigned c=0; c<col; ++c) {
+                       cmpval = ((*this)(r,c)).compare(o(r,c));
+                       if (cmpval!=0) return cmpval;
+               }
+       }
+       // all elements are equal => matrices are equal;
+       return 0;
+}
+
+bool matrix::match_same_type(const basic & other) const
+{
+       GINAC_ASSERT(is_exactly_of_type(other, matrix));
+       const matrix & o = static_cast<const matrix &>(other);
+       
+       // The number of rows and columns must be the same. This is necessary to
+       // prevent a 2x3 matrix from matching a 3x2 one.
+       return row == o.rows() && col == o.cols();
+}
+
+/** Automatic symbolic evaluation of an indexed matrix. */
+ex matrix::eval_indexed(const basic & i) const
+{
+       GINAC_ASSERT(is_of_type(i, indexed));
+       GINAC_ASSERT(is_ex_of_type(i.op(0), matrix));
+
+       bool all_indices_unsigned = static_cast<const indexed &>(i).all_index_values_are(info_flags::nonnegint);
+
+       // Check indices
+       if (i.nops() == 2) {
+
+               // One index, must be one-dimensional vector
+               if (row != 1 && col != 1)
+                       throw (std::runtime_error("matrix::eval_indexed(): vector must have exactly 1 index"));
+
+               const idx & i1 = ex_to<idx>(i.op(1));
+
+               if (col == 1) {
+
+                       // Column vector
+                       if (!i1.get_dim().is_equal(row))
+                               throw (std::runtime_error("matrix::eval_indexed(): dimension of index must match number of vector elements"));
+
+                       // Index numeric -> return vector element
+                       if (all_indices_unsigned) {
+                               unsigned n1 = ex_to<numeric>(i1.get_value()).to_int();
+                               if (n1 >= row)
+                                       throw (std::runtime_error("matrix::eval_indexed(): value of index exceeds number of vector elements"));
+                               return (*this)(n1, 0);
+                       }
+
+               } else {
+
+                       // Row vector
+                       if (!i1.get_dim().is_equal(col))
+                               throw (std::runtime_error("matrix::eval_indexed(): dimension of index must match number of vector elements"));
+
+                       // Index numeric -> return vector element
+                       if (all_indices_unsigned) {
+                               unsigned n1 = ex_to<numeric>(i1.get_value()).to_int();
+                               if (n1 >= col)
+                                       throw (std::runtime_error("matrix::eval_indexed(): value of index exceeds number of vector elements"));
+                               return (*this)(0, n1);
+                       }
+               }
+
+       } else if (i.nops() == 3) {
+
+               // Two indices
+               const idx & i1 = ex_to<idx>(i.op(1));
+               const idx & i2 = ex_to<idx>(i.op(2));
+
+               if (!i1.get_dim().is_equal(row))
+                       throw (std::runtime_error("matrix::eval_indexed(): dimension of first index must match number of rows"));
+               if (!i2.get_dim().is_equal(col))
+                       throw (std::runtime_error("matrix::eval_indexed(): dimension of second index must match number of columns"));
+
+               // Pair of dummy indices -> compute trace
+               if (is_dummy_pair(i1, i2))
+                       return trace();
+
+               // Both indices numeric -> return matrix element
+               if (all_indices_unsigned) {
+                       unsigned n1 = ex_to<numeric>(i1.get_value()).to_int(), n2 = ex_to<numeric>(i2.get_value()).to_int();
+                       if (n1 >= row)
+                               throw (std::runtime_error("matrix::eval_indexed(): value of first index exceeds number of rows"));
+                       if (n2 >= col)
+                               throw (std::runtime_error("matrix::eval_indexed(): value of second index exceeds number of columns"));
+                       return (*this)(n1, n2);
+               }
+
+       } else
+               throw (std::runtime_error("matrix::eval_indexed(): matrix must have exactly 2 indices"));
+
+       return i.hold();
 }
 
+/** Sum of two indexed matrices. */
+ex matrix::add_indexed(const ex & self, const ex & other) const
+{
+       GINAC_ASSERT(is_ex_of_type(self, indexed));
+       GINAC_ASSERT(is_ex_of_type(self.op(0), matrix));
+       GINAC_ASSERT(is_ex_of_type(other, indexed));
+       GINAC_ASSERT(self.nops() == 2 || self.nops() == 3);
+
+       // Only add two matrices
+       if (is_ex_of_type(other.op(0), matrix)) {
+               GINAC_ASSERT(other.nops() == 2 || other.nops() == 3);
+
+               const matrix &self_matrix = ex_to<matrix>(self.op(0));
+               const matrix &other_matrix = ex_to<matrix>(other.op(0));
+
+               if (self.nops() == 2 && other.nops() == 2) { // vector + vector
+
+                       if (self_matrix.row == other_matrix.row)
+                               return indexed(self_matrix.add(other_matrix), self.op(1));
+                       else if (self_matrix.row == other_matrix.col)
+                               return indexed(self_matrix.add(other_matrix.transpose()), self.op(1));
+
+               } else if (self.nops() == 3 && other.nops() == 3) { // matrix + matrix
+
+                       if (self.op(1).is_equal(other.op(1)) && self.op(2).is_equal(other.op(2)))
+                               return indexed(self_matrix.add(other_matrix), self.op(1), self.op(2));
+                       else if (self.op(1).is_equal(other.op(2)) && self.op(2).is_equal(other.op(1)))
+                               return indexed(self_matrix.add(other_matrix.transpose()), self.op(1), self.op(2));
+
+               }
+       }
+
+       // Don't know what to do, return unevaluated sum
+       return self + other;
+}
+
+/** Product of an indexed matrix with a number. */
+ex matrix::scalar_mul_indexed(const ex & self, const numeric & other) const
+{
+       GINAC_ASSERT(is_ex_of_type(self, indexed));
+       GINAC_ASSERT(is_ex_of_type(self.op(0), matrix));
+       GINAC_ASSERT(self.nops() == 2 || self.nops() == 3);
+
+       const matrix &self_matrix = ex_to<matrix>(self.op(0));
+
+       if (self.nops() == 2)
+               return indexed(self_matrix.mul(other), self.op(1));
+       else // self.nops() == 3
+               return indexed(self_matrix.mul(other), self.op(1), self.op(2));
+}
+
+/** Contraction of an indexed matrix with something else. */
+bool matrix::contract_with(exvector::iterator self, exvector::iterator other, exvector & v) const
+{
+       GINAC_ASSERT(is_ex_of_type(*self, indexed));
+       GINAC_ASSERT(is_ex_of_type(*other, indexed));
+       GINAC_ASSERT(self->nops() == 2 || self->nops() == 3);
+       GINAC_ASSERT(is_ex_of_type(self->op(0), matrix));
+
+       // Only contract with other matrices
+       if (!is_ex_of_type(other->op(0), matrix))
+               return false;
+
+       GINAC_ASSERT(other->nops() == 2 || other->nops() == 3);
+
+       const matrix &self_matrix = ex_to<matrix>(self->op(0));
+       const matrix &other_matrix = ex_to<matrix>(other->op(0));
+
+       if (self->nops() == 2) {
+
+               if (other->nops() == 2) { // vector * vector (scalar product)
+
+                       if (self_matrix.col == 1) {
+                               if (other_matrix.col == 1) {
+                                       // Column vector * column vector, transpose first vector
+                                       *self = self_matrix.transpose().mul(other_matrix)(0, 0);
+                               } else {
+                                       // Column vector * row vector, swap factors
+                                       *self = other_matrix.mul(self_matrix)(0, 0);
+                               }
+                       } else {
+                               if (other_matrix.col == 1) {
+                                       // Row vector * column vector, perfect
+                                       *self = self_matrix.mul(other_matrix)(0, 0);
+                               } else {
+                                       // Row vector * row vector, transpose second vector
+                                       *self = self_matrix.mul(other_matrix.transpose())(0, 0);
+                               }
+                       }
+                       *other = _ex1();
+                       return true;
+
+               } else { // vector * matrix
+
+                       // B_i * A_ij = (B*A)_j (B is row vector)
+                       if (is_dummy_pair(self->op(1), other->op(1))) {
+                               if (self_matrix.row == 1)
+                                       *self = indexed(self_matrix.mul(other_matrix), other->op(2));
+                               else
+                                       *self = indexed(self_matrix.transpose().mul(other_matrix), other->op(2));
+                               *other = _ex1();
+                               return true;
+                       }
+
+                       // B_j * A_ij = (A*B)_i (B is column vector)
+                       if (is_dummy_pair(self->op(1), other->op(2))) {
+                               if (self_matrix.col == 1)
+                                       *self = indexed(other_matrix.mul(self_matrix), other->op(1));
+                               else
+                                       *self = indexed(other_matrix.mul(self_matrix.transpose()), other->op(1));
+                               *other = _ex1();
+                               return true;
+                       }
+               }
+
+       } else if (other->nops() == 3) { // matrix * matrix
+
+               // A_ij * B_jk = (A*B)_ik
+               if (is_dummy_pair(self->op(2), other->op(1))) {
+                       *self = indexed(self_matrix.mul(other_matrix), self->op(1), other->op(2));
+                       *other = _ex1();
+                       return true;
+               }
+
+               // A_ij * B_kj = (A*Btrans)_ik
+               if (is_dummy_pair(self->op(2), other->op(2))) {
+                       *self = indexed(self_matrix.mul(other_matrix.transpose()), self->op(1), other->op(1));
+                       *other = _ex1();
+                       return true;
+               }
+
+               // A_ji * B_jk = (Atrans*B)_ik
+               if (is_dummy_pair(self->op(1), other->op(1))) {
+                       *self = indexed(self_matrix.transpose().mul(other_matrix), self->op(2), other->op(2));
+                       *other = _ex1();
+                       return true;
+               }
+
+               // A_ji * B_kj = (B*A)_ki
+               if (is_dummy_pair(self->op(1), other->op(2))) {
+                       *self = indexed(other_matrix.mul(self_matrix), other->op(1), self->op(2));
+                       *other = _ex1();
+                       return true;
+               }
+       }
+
+       return false;
+}
+
+
 //////////
 // non-virtual functions in this class
 //////////
@@ -336,314 +507,383 @@ int matrix::compare_same_type(const basic & other) const
  *  @exception logic_error (incompatible matrices) */
 matrix matrix::add(const matrix & other) const
 {
-    if (col != other.col || row != other.row) {
-        throw (std::logic_error("matrix::add(): incompatible matrices"));
-    }
-    
-    exvector sum(this->m);
-    exvector::iterator i;
-    exvector::const_iterator ci;
-    for (i=sum.begin(), ci=other.m.begin();
-         i!=sum.end();
-         ++i, ++ci) {
-        (*i) += (*ci);
-    }
-    return matrix(row,col,sum);
+       if (col != other.col || row != other.row)
+               throw std::logic_error("matrix::add(): incompatible matrices");
+       
+       exvector sum(this->m);
+       exvector::iterator i = sum.begin(), end = sum.end();
+       exvector::const_iterator ci = other.m.begin();
+       while (i != end)
+               *i++ += *ci++;
+       
+       return matrix(row,col,sum);
 }
 
+
 /** Difference of matrices.
  *
  *  @exception logic_error (incompatible matrices) */
 matrix matrix::sub(const matrix & other) const
 {
-    if (col != other.col || row != other.row) {
-        throw (std::logic_error("matrix::sub(): incompatible matrices"));
-    }
-    
-    exvector dif(this->m);
-    exvector::iterator i;
-    exvector::const_iterator ci;
-    for (i=dif.begin(), ci=other.m.begin();
-         i!=dif.end();
-         ++i, ++ci) {
-        (*i) -= (*ci);
-    }
-    return matrix(row,col,dif);
+       if (col != other.col || row != other.row)
+               throw std::logic_error("matrix::sub(): incompatible matrices");
+       
+       exvector dif(this->m);
+       exvector::iterator i = dif.begin(), end = dif.end();
+       exvector::const_iterator ci = other.m.begin();
+       while (i != end)
+               *i++ -= *ci++;
+       
+       return matrix(row,col,dif);
 }
 
+
 /** Product of matrices.
  *
  *  @exception logic_error (incompatible matrices) */
 matrix matrix::mul(const matrix & other) const
 {
-    if (col != other.row) {
-        throw (std::logic_error("matrix::mul(): incompatible matrices"));
-    }
-    
-    exvector prod(row*other.col);
-    for (unsigned i=0; i<row; ++i) {
-        for (unsigned j=0; j<other.col; ++j) {
-            for (unsigned l=0; l<col; ++l) {
-                prod[i*other.col+j] += m[i*col+l] * other.m[l*other.col+j];
-            }
-        }
-    }
-    return matrix(row, other.col, prod);
-}
-
-/** operator() to access elements.
+       if (this->cols() != other.rows())
+               throw std::logic_error("matrix::mul(): incompatible matrices");
+       
+       exvector prod(this->rows()*other.cols());
+       
+       for (unsigned r1=0; r1<this->rows(); ++r1) {
+               for (unsigned c=0; c<this->cols(); ++c) {
+                       if (m[r1*col+c].is_zero())
+                               continue;
+                       for (unsigned r2=0; r2<other.cols(); ++r2)
+                               prod[r1*other.col+r2] += (m[r1*col+c] * other.m[c*other.col+r2]).expand();
+               }
+       }
+       return matrix(row, other.col, prod);
+}
+
+
+/** Product of matrix and scalar. */
+matrix matrix::mul(const numeric & other) const
+{
+       exvector prod(row * col);
+
+       for (unsigned r=0; r<row; ++r)
+               for (unsigned c=0; c<col; ++c)
+                       prod[r*col+c] = m[r*col+c] * other;
+
+       return matrix(row, col, prod);
+}
+
+
+/** Product of matrix and scalar expression. */
+matrix matrix::mul_scalar(const ex & other) const
+{
+       if (other.return_type() != return_types::commutative)
+               throw std::runtime_error("matrix::mul_scalar(): non-commutative scalar");
+
+       exvector prod(row * col);
+
+       for (unsigned r=0; r<row; ++r)
+               for (unsigned c=0; c<col; ++c)
+                       prod[r*col+c] = m[r*col+c] * other;
+
+       return matrix(row, col, prod);
+}
+
+
+/** Power of a matrix.  Currently handles integer exponents only. */
+matrix matrix::pow(const ex & expn) const
+{
+       if (col!=row)
+               throw (std::logic_error("matrix::pow(): matrix not square"));
+       
+       if (is_ex_exactly_of_type(expn, numeric)) {
+               // Integer cases are computed by successive multiplication, using the
+               // obvious shortcut of storing temporaries, like A^4 == (A*A)*(A*A).
+               if (expn.info(info_flags::integer)) {
+                       numeric b = ex_to<numeric>(expn);
+                       matrix A(row,col);
+                       if (expn.info(info_flags::negative)) {
+                               b *= -1;
+                               A = this->inverse();
+                       } else {
+                               A = *this;
+                       }
+                       matrix C(row,col);
+                       for (unsigned r=0; r<row; ++r)
+                               C(r,r) = _ex1();
+                       // This loop computes the representation of b in base 2 from right
+                       // to left and multiplies the factors whenever needed.  Note
+                       // that this is not entirely optimal but close to optimal and
+                       // "better" algorithms are much harder to implement.  (See Knuth,
+                       // TAoCP2, section "Evaluation of Powers" for a good discussion.)
+                       while (b!=1) {
+                               if (b.is_odd()) {
+                                       C = C.mul(A);
+                                       b -= 1;
+                               }
+                               b *= _num1_2();  // b /= 2, still integer.
+                               A = A.mul(A);
+                       }
+                       return A.mul(C);
+               }
+       }
+       throw (std::runtime_error("matrix::pow(): don't know how to handle exponent"));
+}
+
+
+/** operator() to access elements for reading.
  *
  *  @param ro row of element
- *  @param co column of element 
+ *  @param co column of element
  *  @exception range_error (index out of range) */
 const ex & matrix::operator() (unsigned ro, unsigned co) const
 {
-    if (ro<0 || ro>=row || co<0 || co>=col) {
-        throw (std::range_error("matrix::operator(): index out of range"));
-    }
-    
-    return m[ro*col+co];
+       if (ro>=row || co>=col)
+               throw (std::range_error("matrix::operator(): index out of range"));
+
+       return m[ro*col+co];
 }
 
-/** Set individual elements manually.
+
+/** operator() to access elements for writing.
  *
+ *  @param ro row of element
+ *  @param co column of element
  *  @exception range_error (index out of range) */
-matrix & matrix::set(unsigned ro, unsigned co, ex value)
+ex & matrix::operator() (unsigned ro, unsigned co)
 {
-    if (ro<0 || ro>=row || co<0 || co>=col) {
-        throw (std::range_error("matrix::set(): index out of range"));
-    }
-    
-    ensure_if_modifiable();
-    m[ro*col+co]=value;
-    return *this;
+       if (ro>=row || co>=col)
+               throw (std::range_error("matrix::operator(): index out of range"));
+
+       ensure_if_modifiable();
+       return m[ro*col+co];
 }
 
+
 /** Transposed of an m x n matrix, producing a new n x m matrix object that
  *  represents the transposed. */
 matrix matrix::transpose(void) const
 {
-    exvector trans(col*row);
-    
-    for (unsigned r=0; r<col; ++r) {
-        for (unsigned c=0; c<row; ++c) {
-            trans[r*row+c] = m[c*col+r];
-        }
-    }
-    return matrix(col,row,trans);
-}
-
-/* Determiant of purely numeric matrix, using pivoting. This routine is only
- * called internally by matrix::determinant(). */
-ex determinant_numeric(const matrix & M)
-{
-    GINAC_ASSERT(M.rows()==M.cols());  // cannot happen, just in case...
-    matrix tmp(M);
-    ex det=_ex1();
-    ex piv;
-    
-    for (unsigned r1=0; r1<M.rows(); ++r1) {
-        int indx = tmp.pivot(r1);
-        if (indx == -1) {
-            return _ex0();
-        }
-        if (indx != 0) {
-            det *= _ex_1();
-        }
-        det = det * tmp.m[r1*M.cols()+r1];
-        for (unsigned r2=r1+1; r2<M.rows(); ++r2) {
-            piv = tmp.m[r2*M.cols()+r1] / tmp.m[r1*M.cols()+r1];
-            for (unsigned c=r1+1; c<M.cols(); c++) {
-                tmp.m[r2*M.cols()+c] -= piv * tmp.m[r1*M.cols()+c];
-            }
-        }
-    }
-    return det;
-}
-
-// Compute the sign of a permutation of a vector of things, used internally
-// by determinant_symbolic_perm() where it is instantiated for int.
-template <typename T>
-int permutation_sign(vector<T> s)
-{
-    if (s.size() < 2)
-        return 0;
-    int sigma=1;
-    for (typename vector<T>::iterator i=s.begin(); i!=s.end()-1; ++i) {
-        for (typename vector<T>::iterator j=i+1; j!=s.end(); ++j) {
-            if (*i == *j)
-                return 0;
-            if (*i > *j) {
-                iter_swap(i,j);
-                sigma = -sigma;
-            }
-        }
-    }
-    return sigma;
-}
-
-/** Determinant built by application of the full permutation group. This
- *  routine is only called internally by matrix::determinant(). */
-ex determinant_symbolic_perm(const matrix & M)
-{
-    GINAC_ASSERT(M.rows()==M.cols());  // cannot happen, just in case...
-    
-    if (M.rows()==1) {  // speed things up
-        return M(0,0);
-    }
-    
-    ex det;
-    ex term;
-    vector<unsigned> sigma(M.cols());
-    for (unsigned i=0; i<M.cols(); ++i) sigma[i]=i;
-    
-    do {
-        term = M(sigma[0],0);
-        for (unsigned i=1; i<M.cols(); ++i) term *= M(sigma[i],i);
-        det += permutation_sign(sigma)*term;
-    } while (next_permutation(sigma.begin(), sigma.end()));
-    
-    return det;
-}
-
-/** Recursive determiant for small matrices having at least one symbolic entry.
- *  This algorithm is also known as Laplace-expansion. This routine is only
- *  called internally by matrix::determinant(). */
-ex determinant_symbolic_minor(const matrix & M)
-{
-    GINAC_ASSERT(M.rows()==M.cols());  // cannot happen, just in case...
-    
-    if (M.rows()==1) {  // end of recursion
-        return M(0,0);
-    }
-    if (M.rows()==2) {  // speed things up
-        return (M(0,0)*M(1,1)-
-                M(1,0)*M(0,1));
-    }
-    if (M.rows()==3) {  // speed things up even a little more
-        return ((M(2,1)*M(0,2)-M(2,2)*M(0,1))*M(1,0)+
-                (M(1,2)*M(0,1)-M(1,1)*M(0,2))*M(2,0)+
-                (M(2,2)*M(1,1)-M(2,1)*M(1,2))*M(0,0));
-    }
-    
-    ex det;
-    matrix minorM(M.rows()-1,M.cols()-1);
-    for (unsigned r1=0; r1<M.rows(); ++r1) {
-        // assemble the minor matrix
-        for (unsigned r=0; r<minorM.rows(); ++r) {
-            for (unsigned c=0; c<minorM.cols(); ++c) {
-                if (r<r1) {
-                    minorM.set(r,c,M(r,c+1));
-                } else {
-                    minorM.set(r,c,M(r+1,c+1));
-                }
-            }
-        }
-        // recurse down
-        if (r1%2) {
-            det -= M(r1,0) * determinant_symbolic_minor(minorM);
-        } else {
-            det += M(r1,0) * determinant_symbolic_minor(minorM);
-        }
-    }
-    return det;
-}
-
-/*  Leverrier algorithm for large matrices having at least one symbolic entry.
- *  This routine is only called internally by matrix::determinant(). The
- *  algorithm is deemed bad for symbolic matrices since it returns expressions
- *  that are very hard to canonicalize. */
-/*ex determinant_symbolic_leverrier(const matrix & M)
- *{
- *    GINAC_ASSERT(M.rows()==M.cols());  // cannot happen, just in case...
- *    
- *    matrix B(M);
- *    matrix I(M.row, M.col);
- *    ex c=B.trace();
- *    for (unsigned i=1; i<M.row; ++i) {
- *        for (unsigned j=0; j<M.row; ++j)
- *            I.m[j*M.col+j] = c;
- *        B = M.mul(B.sub(I));
- *        c = B.trace()/ex(i+1);
- *    }
- *    if (M.row%2) {
- *        return c;
- *    } else {
- *        return -c;
- *    }
- *}*/
+       exvector trans(this->cols()*this->rows());
+       
+       for (unsigned r=0; r<this->cols(); ++r)
+               for (unsigned c=0; c<this->rows(); ++c)
+                       trans[r*this->rows()+c] = m[c*this->cols()+r];
+       
+       return matrix(this->cols(),this->rows(),trans);
+}
 
 /** Determinant of square matrix.  This routine doesn't actually calculate the
  *  determinant, it only implements some heuristics about which algorithm to
- *  call.  When the parameter for normalization is explicitly turned off this
- *  method does not normalize its result at the end, which might imply that
- *  the symbolic 2x2 matrix [[a/(a-b),1],[b/(a-b),1]] is not immediatly
- *  recognized to be unity.  (This is Mathematica's default behaviour, it
- *  should be used with care.)
+ *  run.  If all the elements of the matrix are elements of an integral domain
+ *  the determinant is also in that integral domain and the result is expanded
+ *  only.  If one or more elements are from a quotient field the determinant is
+ *  usually also in that quotient field and the result is normalized before it
+ *  is returned.  This implies that the determinant of the symbolic 2x2 matrix
+ *  [[a/(a-b),1],[b/(a-b),1]] is returned as unity.  (In this respect, it
+ *  behaves like MapleV and unlike Mathematica.)
  *
- *  @param     normalized may be set to false if no normalization of the
- *             result is desired (i.e. to force Mathematica behavior, Maple
- *             does normalize the result).
+ *  @param     algo allows to chose an algorithm
  *  @return    the determinant as a new expression
- *  @exception logic_error (matrix not square) */
-ex matrix::determinant(bool normalized) const
-{
-    if (row != col) {
-        throw (std::logic_error("matrix::determinant(): matrix not square"));
-    }
-
-    // check, if there are non-numeric entries in the matrix:
-    for (exvector::const_iterator r=m.begin(); r!=m.end(); ++r) {
-        if (!(*r).info(info_flags::numeric)) {
-            if (normalized) {
-                return determinant_symbolic_minor(*this).normal();
-            } else {
-                return determinant_symbolic_perm(*this);
-            }
-        }
-    }
-    // if it turns out that all elements are numeric
-    return determinant_numeric(*this);
-}
-
-/** Trace of a matrix.
+ *  @exception logic_error (matrix not square)
+ *  @see       determinant_algo */
+ex matrix::determinant(unsigned algo) const
+{
+       if (row!=col)
+               throw (std::logic_error("matrix::determinant(): matrix not square"));
+       GINAC_ASSERT(row*col==m.capacity());
+       
+       // Gather some statistical information about this matrix:
+       bool numeric_flag = true;
+       bool normal_flag = false;
+       unsigned sparse_count = 0;  // counts non-zero elements
+       exvector::const_iterator r = m.begin(), rend = m.end();
+       while (r != rend) {
+               lst srl;  // symbol replacement list
+               ex rtest = r->to_rational(srl);
+               if (!rtest.is_zero())
+                       ++sparse_count;
+               if (!rtest.info(info_flags::numeric))
+                       numeric_flag = false;
+               if (!rtest.info(info_flags::crational_polynomial) &&
+                        rtest.info(info_flags::rational_function))
+                       normal_flag = true;
+               ++r;
+       }
+       
+       // Here is the heuristics in case this routine has to decide:
+       if (algo == determinant_algo::automatic) {
+               // Minor expansion is generally a good guess:
+               algo = determinant_algo::laplace;
+               // Does anybody know when a matrix is really sparse?
+               // Maybe <~row/2.236 nonzero elements average in a row?
+               if (row>3 && 5*sparse_count<=row*col)
+                       algo = determinant_algo::bareiss;
+               // Purely numeric matrix can be handled by Gauss elimination.
+               // This overrides any prior decisions.
+               if (numeric_flag)
+                       algo = determinant_algo::gauss;
+       }
+       
+       // Trap the trivial case here, since some algorithms don't like it
+       if (this->row==1) {
+               // for consistency with non-trivial determinants...
+               if (normal_flag)
+                       return m[0].normal();
+               else
+                       return m[0].expand();
+       }
+       
+       // Compute the determinant
+       switch(algo) {
+               case determinant_algo::gauss: {
+                       ex det = 1;
+                       matrix tmp(*this);
+                       int sign = tmp.gauss_elimination(true);
+                       for (unsigned d=0; d<row; ++d)
+                               det *= tmp.m[d*col+d];
+                       if (normal_flag)
+                               return (sign*det).normal();
+                       else
+                               return (sign*det).normal().expand();
+               }
+               case determinant_algo::bareiss: {
+                       matrix tmp(*this);
+                       int sign;
+                       sign = tmp.fraction_free_elimination(true);
+                       if (normal_flag)
+                               return (sign*tmp.m[row*col-1]).normal();
+                       else
+                               return (sign*tmp.m[row*col-1]).expand();
+               }
+               case determinant_algo::divfree: {
+                       matrix tmp(*this);
+                       int sign;
+                       sign = tmp.division_free_elimination(true);
+                       if (sign==0)
+                               return _ex0();
+                       ex det = tmp.m[row*col-1];
+                       // factor out accumulated bogus slag
+                       for (unsigned d=0; d<row-2; ++d)
+                               for (unsigned j=0; j<row-d-2; ++j)
+                                       det = (det/tmp.m[d*col+d]).normal();
+                       return (sign*det);
+               }
+               case determinant_algo::laplace:
+               default: {
+                       // This is the minor expansion scheme.  We always develop such
+                       // that the smallest minors (i.e, the trivial 1x1 ones) are on the
+                       // rightmost column.  For this to be efficient it turns out that
+                       // the emptiest columns (i.e. the ones with most zeros) should be
+                       // the ones on the right hand side.  Therefore we presort the
+                       // columns of the matrix:
+                       typedef std::pair<unsigned,unsigned> uintpair;
+                       std::vector<uintpair> c_zeros;  // number of zeros in column
+                       for (unsigned c=0; c<col; ++c) {
+                               unsigned acc = 0;
+                               for (unsigned r=0; r<row; ++r)
+                                       if (m[r*col+c].is_zero())
+                                               ++acc;
+                               c_zeros.push_back(uintpair(acc,c));
+                       }
+                       sort(c_zeros.begin(),c_zeros.end());
+                       std::vector<unsigned> pre_sort;
+                       for (std::vector<uintpair>::const_iterator i=c_zeros.begin(); i!=c_zeros.end(); ++i)
+                               pre_sort.push_back(i->second);
+                       std::vector<unsigned> pre_sort_test(pre_sort); // permutation_sign() modifies the vector so we make a copy here
+                       int sign = permutation_sign(pre_sort_test.begin(), pre_sort_test.end());
+                       exvector result(row*col);  // represents sorted matrix
+                       unsigned c = 0;
+                       for (std::vector<unsigned>::const_iterator i=pre_sort.begin();
+                                i!=pre_sort.end();
+                                ++i,++c) {
+                               for (unsigned r=0; r<row; ++r)
+                                       result[r*col+c] = m[r*col+(*i)];
+                       }
+                       
+                       if (normal_flag)
+                               return (sign*matrix(row,col,result).determinant_minor()).normal();
+                       else
+                               return sign*matrix(row,col,result).determinant_minor();
+               }
+       }
+}
+
+
+/** Trace of a matrix.  The result is normalized if it is in some quotient
+ *  field and expanded only otherwise.  This implies that the trace of the
+ *  symbolic 2x2 matrix [[a/(a-b),x],[y,b/(b-a)]] is recognized to be unity.
  *
  *  @return    the sum of diagonal elements
  *  @exception logic_error (matrix not square) */
 ex matrix::trace(void) const
 {
-    if (row != col) {
-        throw (std::logic_error("matrix::trace(): matrix not square"));
-    }
-    
-    ex tr;
-    for (unsigned r=0; r<col; ++r) {
-        tr += m[r*col+r];
-    }
-    return tr;
-}
-
-/** Characteristic Polynomial.  The characteristic polynomial of a matrix M is
- *  defined as the determiant of (M - lambda * 1) where 1 stands for the unit
- *  matrix of the same dimension as M.  This method returns the characteristic
- *  polynomial as a new expression.
+       if (row != col)
+               throw (std::logic_error("matrix::trace(): matrix not square"));
+       
+       ex tr;
+       for (unsigned r=0; r<col; ++r)
+               tr += m[r*col+r];
+       
+       if (tr.info(info_flags::rational_function) &&
+               !tr.info(info_flags::crational_polynomial))
+               return tr.normal();
+       else
+               return tr.expand();
+}
+
+
+/** Characteristic Polynomial.  Following mathematica notation the
+ *  characteristic polynomial of a matrix M is defined as the determiant of
+ *  (M - lambda * 1) where 1 stands for the unit matrix of the same dimension
+ *  as M.  Note that some CASs define it with a sign inside the determinant
+ *  which gives rise to an overall sign if the dimension is odd.  This method
+ *  returns the characteristic polynomial collected in powers of lambda as a
+ *  new expression.
  *
  *  @return    characteristic polynomial as new expression
  *  @exception logic_error (matrix not square)
  *  @see       matrix::determinant() */
-ex matrix::charpoly(const ex & lambda) const
+ex matrix::charpoly(const symbol & lambda) const
 {
-    if (row != col) {
-        throw (std::logic_error("matrix::charpoly(): matrix not square"));
-    }
-    
-    matrix M(*this);
-    for (unsigned r=0; r<col; ++r) {
-        M.m[r*col+r] -= lambda;
-    }
-    return (M.determinant());
+       if (row != col)
+               throw (std::logic_error("matrix::charpoly(): matrix not square"));
+       
+       bool numeric_flag = true;
+       exvector::const_iterator r = m.begin(), rend = m.end();
+       while (r != rend) {
+               if (!r->info(info_flags::numeric))
+                       numeric_flag = false;
+               ++r;
+       }
+       
+       // The pure numeric case is traditionally rather common.  Hence, it is
+       // trapped and we use Leverrier's algorithm which goes as row^3 for
+       // every coefficient.  The expensive part is the matrix multiplication.
+       if (numeric_flag) {
+               matrix B(*this);
+               ex c = B.trace();
+               ex poly = power(lambda,row)-c*power(lambda,row-1);
+               for (unsigned i=1; i<row; ++i) {
+                       for (unsigned j=0; j<row; ++j)
+                               B.m[j*col+j] -= c;
+                       B = this->mul(B);
+                       c = B.trace()/ex(i+1);
+                       poly -= c*power(lambda,row-i-1);
+               }
+               if (row%2)
+                       return -poly;
+               else
+                       return poly;
+       }
+       
+       matrix M(*this);
+       for (unsigned r=0; r<col; ++r)
+               M.m[r*col+r] -= lambda;
+       
+       return M.determinant().collect(lambda);
 }
 
+
 /** Inverse of this matrix.
  *
  *  @return    the inverted matrix
@@ -651,314 +891,575 @@ ex matrix::charpoly(const ex & lambda) const
  *  @exception runtime_error (singular matrix) */
 matrix matrix::inverse(void) const
 {
-    if (row != col) {
-        throw (std::logic_error("matrix::inverse(): matrix not square"));
-    }
-    
-    matrix tmp(row,col);
-    // set tmp to the unit matrix
-    for (unsigned i=0; i<col; ++i) {
-        tmp.m[i*col+i] = _ex1();
-    }
-    // create a copy of this matrix
-    matrix cpy(*this);
-    for (unsigned r1=0; r1<row; ++r1) {
-        int indx = cpy.pivot(r1);
-        if (indx == -1) {
-            throw (std::runtime_error("matrix::inverse(): singular matrix"));
-        }
-        if (indx != 0) {  // swap rows r and indx of matrix tmp
-            for (unsigned i=0; i<col; ++i) {
-                tmp.m[r1*col+i].swap(tmp.m[indx*col+i]);
-            }
-        }
-        ex a1 = cpy.m[r1*col+r1];
-        for (unsigned c=0; c<col; ++c) {
-            cpy.m[r1*col+c] /= a1;
-            tmp.m[r1*col+c] /= a1;
-        }
-        for (unsigned r2=0; r2<row; ++r2) {
-            if (r2 != r1) {
-                ex a2 = cpy.m[r2*col+r1];
-                for (unsigned c=0; c<col; ++c) {
-                    cpy.m[r2*col+c] -= a2 * cpy.m[r1*col+c];
-                    tmp.m[r2*col+c] -= a2 * tmp.m[r1*col+c];
-                }
-            }
-        }
-    }
-    return tmp;
-}
-
-void matrix::ffe_swap(unsigned r1, unsigned c1, unsigned r2 ,unsigned c2)
-{
-    ensure_if_modifiable();
-    
-    ex tmp=ffe_get(r1,c1);
-    ffe_set(r1,c1,ffe_get(r2,c2));
-    ffe_set(r2,c2,tmp);
-}
-
-void matrix::ffe_set(unsigned r, unsigned c, ex e)
-{
-    set(r-1,c-1,e);
-}
-
-ex matrix::ffe_get(unsigned r, unsigned c) const
-{
-    return operator()(r-1,c-1);
-}
-
-/** Solve a set of equations for an m x n matrix by fraction-free Gaussian
- *  elimination. Based on algorithm 9.1 from 'Algorithms for Computer Algebra'
- *  by Keith O. Geddes et al.
+       if (row != col)
+               throw (std::logic_error("matrix::inverse(): matrix not square"));
+       
+       // This routine actually doesn't do anything fancy at all.  We compute the
+       // inverse of the matrix A by solving the system A * A^{-1} == Id.
+       
+       // First populate the identity matrix supposed to become the right hand side.
+       matrix identity(row,col);
+       for (unsigned i=0; i<row; ++i)
+               identity(i,i) = _ex1();
+       
+       // Populate a dummy matrix of variables, just because of compatibility with
+       // matrix::solve() which wants this (for compatibility with under-determined
+       // systems of equations).
+       matrix vars(row,col);
+       for (unsigned r=0; r<row; ++r)
+               for (unsigned c=0; c<col; ++c)
+                       vars(r,c) = symbol();
+       
+       matrix sol(row,col);
+       try {
+               sol = this->solve(vars,identity);
+       } catch (const std::runtime_error & e) {
+           if (e.what()==std::string("matrix::solve(): inconsistent linear system"))
+                       throw (std::runtime_error("matrix::inverse(): singular matrix"));
+               else
+                       throw;
+       }
+       return sol;
+}
+
+
+/** Solve a linear system consisting of a m x n matrix and a m x p right hand
+ *  side by applying an elimination scheme to the augmented matrix.
  *
- *  @param vars n x p matrix
+ *  @param vars n x p matrix, all elements must be symbols 
  *  @param rhs m x p matrix
+ *  @return n x p solution matrix
  *  @exception logic_error (incompatible matrices)
- *  @exception runtime_error (singular matrix) */
-matrix matrix::fraction_free_elim(const matrix & vars,
-                                  const matrix & rhs) const
-{
-    if ((row != rhs.row) || (col != vars.row) || (rhs.col != vars.col)) {
-        throw (std::logic_error("matrix::solve(): incompatible matrices"));
-    }
-    
-    matrix a(*this); // make a copy of the matrix
-    matrix b(rhs);     // make a copy of the rhs vector
-    
-    // given an m x n matrix a, reduce it to upper echelon form
-    unsigned m=a.row;
-    unsigned n=a.col;
-    int sign=1;
-    ex divisor=1;
-    unsigned r=1;
-    
-    // eliminate below row r, with pivot in column k
-    for (unsigned k=1; (k<=n)&&(r<=m); ++k) {
-        // find a nonzero pivot
-        unsigned p;
-        for (p=r; (p<=m)&&(a.ffe_get(p,k).is_equal(_ex0())); ++p) {}
-        // pivot is in row p
-        if (p<=m) {
-            if (p!=r) {
-                // switch rows p and r
-                for (unsigned j=k; j<=n; ++j) {
-                    a.ffe_swap(p,j,r,j);
-                }
-                b.ffe_swap(p,1,r,1);
-                // keep track of sign changes due to row exchange
-                sign=-sign;
-            }
-            for (unsigned i=r+1; i<=m; ++i) {
-                for (unsigned j=k+1; j<=n; ++j) {
-                    a.ffe_set(i,j,(a.ffe_get(r,k)*a.ffe_get(i,j)
-                                  -a.ffe_get(r,j)*a.ffe_get(i,k))/divisor);
-                    a.ffe_set(i,j,a.ffe_get(i,j).normal() /*.normal() */ );
-                }
-                b.ffe_set(i,1,(a.ffe_get(r,k)*b.ffe_get(i,1)
-                              -b.ffe_get(r,1)*a.ffe_get(i,k))/divisor);
-                b.ffe_set(i,1,b.ffe_get(i,1).normal() /*.normal() */ );
-                a.ffe_set(i,k,0);
-            }
-            divisor=a.ffe_get(r,k);
-            r++;
-        }
-    }
-    // optionally compute the determinant for square or augmented matrices
-    // if (r==m+1) { det=sign*divisor; } else { det=0; }
-    
-    /*
-    for (unsigned r=1; r<=m; ++r) {
-        for (unsigned c=1; c<=n; ++c) {
-            cout << a.ffe_get(r,c) << "\t";
-        }
-        cout << " | " <<  b.ffe_get(r,1) << endl;
-    }
-    */
-    
-#ifdef DO_GINAC_ASSERT
-    // test if we really have an upper echelon matrix
-    int zero_in_last_row=-1;
-    for (unsigned r=1; r<=m; ++r) {
-        int zero_in_this_row=0;
-        for (unsigned c=1; c<=n; ++c) {
-            if (a.ffe_get(r,c).is_equal(_ex0())) {
-               zero_in_this_row++;
-            } else {
-                break;
-            }
-        }
-        GINAC_ASSERT((zero_in_this_row>zero_in_last_row)||(zero_in_this_row=n));
-        zero_in_last_row=zero_in_this_row;
-    }
-#endif // def DO_GINAC_ASSERT
-    
-    // assemble solution
-    matrix sol(n,1);
-    unsigned last_assigned_sol=n+1;
-    for (unsigned r=m; r>0; --r) {
-        unsigned first_non_zero=1;
-        while ((first_non_zero<=n)&&(a.ffe_get(r,first_non_zero).is_zero())) {
-            first_non_zero++;
-        }
-        if (first_non_zero>n) {
-            // row consists only of zeroes, corresponding rhs must be 0 as well
-            if (!b.ffe_get(r,1).is_zero()) {
-                throw (std::runtime_error("matrix::fraction_free_elim(): singular matrix"));
-            }
-        } else {
-            // assign solutions for vars between first_non_zero+1 and
-            // last_assigned_sol-1: free parameters
-            for (unsigned c=first_non_zero+1; c<=last_assigned_sol-1; ++c) {
-                sol.ffe_set(c,1,vars.ffe_get(c,1));
-            }
-            ex e=b.ffe_get(r,1);
-            for (unsigned c=first_non_zero+1; c<=n; ++c) {
-                e=e-a.ffe_get(r,c)*sol.ffe_get(c,1);
-            }
-            sol.ffe_set(first_non_zero,1,
-                        (e/a.ffe_get(r,first_non_zero)).normal());
-            last_assigned_sol=first_non_zero;
-        }
-    }
-    // assign solutions for vars between 1 and
-    // last_assigned_sol-1: free parameters
-    for (unsigned c=1; c<=last_assigned_sol-1; ++c) {
-        sol.ffe_set(c,1,vars.ffe_get(c,1));
-    }
-
-    /*
-    for (unsigned c=1; c<=n; ++c) {
-        cout << vars.ffe_get(c,1) << "->" << sol.ffe_get(c,1) << endl;
-    }
-    */
-    
-#ifdef DO_GINAC_ASSERT
-    // test solution with echelon matrix
-    for (unsigned r=1; r<=m; ++r) {
-        ex e=0;
-        for (unsigned c=1; c<=n; ++c) {
-            e=e+a.ffe_get(r,c)*sol.ffe_get(c,1);
-        }
-        if (!(e-b.ffe_get(r,1)).normal().is_zero()) {
-            cout << "e=" << e;
-            cout << "b.ffe_get(" << r<<",1)=" << b.ffe_get(r,1) << endl;
-            cout << "diff=" << (e-b.ffe_get(r,1)).normal() << endl;
-        }
-        GINAC_ASSERT((e-b.ffe_get(r,1)).normal().is_zero());
-    }
-
-    // test solution with original matrix
-    for (unsigned r=1; r<=m; ++r) {
-        ex e=0;
-        for (unsigned c=1; c<=n; ++c) {
-            e=e+ffe_get(r,c)*sol.ffe_get(c,1);
-        }
-        try {
-        if (!(e-rhs.ffe_get(r,1)).normal().is_zero()) {
-            cout << "e=" << e << endl;
-            e.printtree(cout);
-            ex en=e.normal();
-            cout << "e.normal()=" << en << endl;
-            en.printtree(cout);
-            cout << "rhs.ffe_get(" << r<<",1)=" << rhs.ffe_get(r,1) << endl;
-            cout << "diff=" << (e-rhs.ffe_get(r,1)).normal() << endl;
-        }
-        } catch (...) {
-            ex xxx=e-rhs.ffe_get(r,1);
-            cerr << "xxx=" << xxx << endl << endl;
-        }
-        GINAC_ASSERT((e-rhs.ffe_get(r,1)).normal().is_zero());
-    }
-#endif // def DO_GINAC_ASSERT
-    
-    return sol;
-}   
-    
-/** Solve simultaneous set of equations. */
-matrix matrix::solve(const matrix & v) const
-{
-    if (!(row == col && col == v.row)) {
-        throw (std::logic_error("matrix::solve(): incompatible matrices"));
-    }
-    
-    // build the extended matrix of *this with v attached to the right
-    matrix tmp(row,col+v.col);
-    for (unsigned r=0; r<row; ++r) {
-        for (unsigned c=0; c<col; ++c) {
-            tmp.m[r*tmp.col+c] = m[r*col+c];
-        }
-        for (unsigned c=0; c<v.col; ++c) {
-            tmp.m[r*tmp.col+c+col] = v.m[r*v.col+c];
-        }
-    }
-    for (unsigned r1=0; r1<row; ++r1) {
-        int indx = tmp.pivot(r1);
-        if (indx == -1) {
-            throw (std::runtime_error("matrix::solve(): singular matrix"));
-        }
-        for (unsigned c=r1; c<tmp.col; ++c) {
-            tmp.m[r1*tmp.col+c] /= tmp.m[r1*tmp.col+r1];
-        }
-        for (unsigned r2=r1+1; r2<row; ++r2) {
-            for (unsigned c=r1; c<tmp.col; ++c) {
-                tmp.m[r2*tmp.col+c]
-                    -= tmp.m[r2*tmp.col+r1] * tmp.m[r1*tmp.col+c];
-            }
-        }
-    }
-    
-    // assemble the solution matrix
-    exvector sol(v.row*v.col);
-    for (unsigned c=0; c<v.col; ++c) {
-        for (unsigned r=col-1; r>=0; --r) {
-            sol[r*v.col+c] = tmp[r*tmp.col+c];
-            for (unsigned i=r+1; i<col; ++i) {
-                sol[r*v.col+c]
-                    -= tmp[r*tmp.col+i] * sol[i*v.col+c];
-            }
-        }
-    }
-    return matrix(v.row, v.col, sol);
+ *  @exception invalid_argument (1st argument must be matrix of symbols)
+ *  @exception runtime_error (inconsistent linear system)
+ *  @see       solve_algo */
+matrix matrix::solve(const matrix & vars,
+                                        const matrix & rhs,
+                                        unsigned algo) const
+{
+       const unsigned m = this->rows();
+       const unsigned n = this->cols();
+       const unsigned p = rhs.cols();
+       
+       // syntax checks    
+       if ((rhs.rows() != m) || (vars.rows() != n) || (vars.col != p))
+               throw (std::logic_error("matrix::solve(): incompatible matrices"));
+       for (unsigned ro=0; ro<n; ++ro)
+               for (unsigned co=0; co<p; ++co)
+                       if (!vars(ro,co).info(info_flags::symbol))
+                               throw (std::invalid_argument("matrix::solve(): 1st argument must be matrix of symbols"));
+       
+       // build the augmented matrix of *this with rhs attached to the right
+       matrix aug(m,n+p);
+       for (unsigned r=0; r<m; ++r) {
+               for (unsigned c=0; c<n; ++c)
+                       aug.m[r*(n+p)+c] = this->m[r*n+c];
+               for (unsigned c=0; c<p; ++c)
+                       aug.m[r*(n+p)+c+n] = rhs.m[r*p+c];
+       }
+       
+       // Gather some statistical information about the augmented matrix:
+       bool numeric_flag = true;
+       exvector::const_iterator r = aug.m.begin(), rend = aug.m.end();
+       while (r != rend) {
+               if (!r->info(info_flags::numeric))
+                       numeric_flag = false;
+               ++r;
+       }
+       
+       // Here is the heuristics in case this routine has to decide:
+       if (algo == solve_algo::automatic) {
+               // Bareiss (fraction-free) elimination is generally a good guess:
+               algo = solve_algo::bareiss;
+               // For m<3, Bareiss elimination is equivalent to division free
+               // elimination but has more logistic overhead
+               if (m<3)
+                       algo = solve_algo::divfree;
+               // This overrides any prior decisions.
+               if (numeric_flag)
+                       algo = solve_algo::gauss;
+       }
+       
+       // Eliminate the augmented matrix:
+       switch(algo) {
+               case solve_algo::gauss:
+                       aug.gauss_elimination();
+                       break;
+               case solve_algo::divfree:
+                       aug.division_free_elimination();
+                       break;
+               case solve_algo::bareiss:
+               default:
+                       aug.fraction_free_elimination();
+       }
+       
+       // assemble the solution matrix:
+       matrix sol(n,p);
+       for (unsigned co=0; co<p; ++co) {
+               unsigned last_assigned_sol = n+1;
+               for (int r=m-1; r>=0; --r) {
+                       unsigned fnz = 1;    // first non-zero in row
+                       while ((fnz<=n) && (aug.m[r*(n+p)+(fnz-1)].is_zero()))
+                               ++fnz;
+                       if (fnz>n) {
+                               // row consists only of zeros, corresponding rhs must be 0, too
+                               if (!aug.m[r*(n+p)+n+co].is_zero()) {
+                                       throw (std::runtime_error("matrix::solve(): inconsistent linear system"));
+                               }
+                       } else {
+                               // assign solutions for vars between fnz+1 and
+                               // last_assigned_sol-1: free parameters
+                               for (unsigned c=fnz; c<last_assigned_sol-1; ++c)
+                                       sol(c,co) = vars.m[c*p+co];
+                               ex e = aug.m[r*(n+p)+n+co];
+                               for (unsigned c=fnz; c<n; ++c)
+                                       e -= aug.m[r*(n+p)+c]*sol.m[c*p+co];
+                               sol(fnz-1,co) = (e/(aug.m[r*(n+p)+(fnz-1)])).normal();
+                               last_assigned_sol = fnz;
+                       }
+               }
+               // assign solutions for vars between 1 and
+               // last_assigned_sol-1: free parameters
+               for (unsigned ro=0; ro<last_assigned_sol-1; ++ro)
+                       sol(ro,co) = vars(ro,co);
+       }
+       
+       return sol;
 }
 
+
 // protected
 
-/** Partial pivoting method.
- *  Usual pivoting returns the index to the element with the largest absolute
- *  value and swaps the current row with the one where the element was found.
- *  Here it does the same with the first non-zero element. (This works fine,
- *  but may be far from optimal for numerics.) */
-int matrix::pivot(unsigned ro)
-{
-    unsigned k=ro;
-    
-    for (unsigned r=ro; r<row; ++r) {
-        if (!m[r*col+ro].is_zero()) {
-            k = r;
-            break;
-        }
-    }
-    if (m[k*col+ro].is_zero()) {
-        return -1;
-    }
-    if (k!=ro) {  // swap rows
-        for (unsigned c=0; c<col; ++c) {
-            m[k*col+c].swap(m[ro*col+c]);
-        }
-        return k;
-    }
-    return 0;
+/** Recursive determinant for small matrices having at least one symbolic
+ *  entry.  The basic algorithm, known as Laplace-expansion, is enhanced by
+ *  some bookkeeping to avoid calculation of the same submatrices ("minors")
+ *  more than once.  According to W.M.Gentleman and S.C.Johnson this algorithm
+ *  is better than elimination schemes for matrices of sparse multivariate
+ *  polynomials and also for matrices of dense univariate polynomials if the
+ *  matrix' dimesion is larger than 7.
+ *
+ *  @return the determinant as a new expression (in expanded form)
+ *  @see matrix::determinant() */
+ex matrix::determinant_minor(void) const
+{
+       // for small matrices the algorithm does not make any sense:
+       const unsigned n = this->cols();
+       if (n==1)
+               return m[0].expand();
+       if (n==2)
+               return (m[0]*m[3]-m[2]*m[1]).expand();
+       if (n==3)
+               return (m[0]*m[4]*m[8]-m[0]*m[5]*m[7]-
+                       m[1]*m[3]*m[8]+m[2]*m[3]*m[7]+
+                       m[1]*m[5]*m[6]-m[2]*m[4]*m[6]).expand();
+       
+       // This algorithm can best be understood by looking at a naive
+       // implementation of Laplace-expansion, like this one:
+       // ex det;
+       // matrix minorM(this->rows()-1,this->cols()-1);
+       // for (unsigned r1=0; r1<this->rows(); ++r1) {
+       //     // shortcut if element(r1,0) vanishes
+       //     if (m[r1*col].is_zero())
+       //         continue;
+       //     // assemble the minor matrix
+       //     for (unsigned r=0; r<minorM.rows(); ++r) {
+       //         for (unsigned c=0; c<minorM.cols(); ++c) {
+       //             if (r<r1)
+       //                 minorM(r,c) = m[r*col+c+1];
+       //             else
+       //                 minorM(r,c) = m[(r+1)*col+c+1];
+       //         }
+       //     }
+       //     // recurse down and care for sign:
+       //     if (r1%2)
+       //         det -= m[r1*col] * minorM.determinant_minor();
+       //     else
+       //         det += m[r1*col] * minorM.determinant_minor();
+       // }
+       // return det.expand();
+       // What happens is that while proceeding down many of the minors are
+       // computed more than once.  In particular, there are binomial(n,k)
+       // kxk minors and each one is computed factorial(n-k) times.  Therefore
+       // it is reasonable to store the results of the minors.  We proceed from
+       // right to left.  At each column c we only need to retrieve the minors
+       // calculated in step c-1.  We therefore only have to store at most 
+       // 2*binomial(n,n/2) minors.
+       
+       // Unique flipper counter for partitioning into minors
+       std::vector<unsigned> Pkey;
+       Pkey.reserve(n);
+       // key for minor determinant (a subpartition of Pkey)
+       std::vector<unsigned> Mkey;
+       Mkey.reserve(n-1);
+       // we store our subminors in maps, keys being the rows they arise from
+       typedef std::map<std::vector<unsigned>,class ex> Rmap;
+       typedef std::map<std::vector<unsigned>,class ex>::value_type Rmap_value;
+       Rmap A;
+       Rmap B;
+       ex det;
+       // initialize A with last column:
+       for (unsigned r=0; r<n; ++r) {
+               Pkey.erase(Pkey.begin(),Pkey.end());
+               Pkey.push_back(r);
+               A.insert(Rmap_value(Pkey,m[n*(r+1)-1]));
+       }
+       // proceed from right to left through matrix
+       for (int c=n-2; c>=0; --c) {
+               Pkey.erase(Pkey.begin(),Pkey.end());  // don't change capacity
+               Mkey.erase(Mkey.begin(),Mkey.end());
+               for (unsigned i=0; i<n-c; ++i)
+                       Pkey.push_back(i);
+               unsigned fc = 0;  // controls logic for our strange flipper counter
+               do {
+                       det = _ex0();
+                       for (unsigned r=0; r<n-c; ++r) {
+                               // maybe there is nothing to do?
+                               if (m[Pkey[r]*n+c].is_zero())
+                                       continue;
+                               // create the sorted key for all possible minors
+                               Mkey.erase(Mkey.begin(),Mkey.end());
+                               for (unsigned i=0; i<n-c; ++i)
+                                       if (i!=r)
+                                               Mkey.push_back(Pkey[i]);
+                               // Fetch the minors and compute the new determinant
+                               if (r%2)
+                                       det -= m[Pkey[r]*n+c]*A[Mkey];
+                               else
+                                       det += m[Pkey[r]*n+c]*A[Mkey];
+                       }
+                       // prevent build-up of deep nesting of expressions saves time:
+                       det = det.expand();
+                       // store the new determinant at its place in B:
+                       if (!det.is_zero())
+                               B.insert(Rmap_value(Pkey,det));
+                       // increment our strange flipper counter
+                       for (fc=n-c; fc>0; --fc) {
+                               ++Pkey[fc-1];
+                               if (Pkey[fc-1]<fc+c)
+                                       break;
+                       }
+                       if (fc<n-c && fc>0)
+                               for (unsigned j=fc; j<n-c; ++j)
+                                       Pkey[j] = Pkey[j-1]+1;
+               } while(fc);
+               // next column, so change the role of A and B:
+               A = B;
+               B.clear();
+       }
+       
+       return det;
+}
+
+
+/** Perform the steps of an ordinary Gaussian elimination to bring the m x n
+ *  matrix into an upper echelon form.  The algorithm is ok for matrices
+ *  with numeric coefficients but quite unsuited for symbolic matrices.
+ *
+ *  @param det may be set to true to save a lot of space if one is only
+ *  interested in the diagonal elements (i.e. for calculating determinants).
+ *  The others are set to zero in this case.
+ *  @return sign is 1 if an even number of rows was swapped, -1 if an odd
+ *  number of rows was swapped and 0 if the matrix is singular. */
+int matrix::gauss_elimination(const bool det)
+{
+       ensure_if_modifiable();
+       const unsigned m = this->rows();
+       const unsigned n = this->cols();
+       GINAC_ASSERT(!det || n==m);
+       int sign = 1;
+       
+       unsigned r0 = 0;
+       for (unsigned r1=0; (r1<n-1)&&(r0<m-1); ++r1) {
+               int indx = pivot(r0, r1, true);
+               if (indx == -1) {
+                       sign = 0;
+                       if (det)
+                               return 0;  // leaves *this in a messy state
+               }
+               if (indx>=0) {
+                       if (indx > 0)
+                               sign = -sign;
+                       for (unsigned r2=r0+1; r2<m; ++r2) {
+                               if (!this->m[r2*n+r1].is_zero()) {
+                                       // yes, there is something to do in this row
+                                       ex piv = this->m[r2*n+r1] / this->m[r0*n+r1];
+                                       for (unsigned c=r1+1; c<n; ++c) {
+                                               this->m[r2*n+c] -= piv * this->m[r0*n+c];
+                                               if (!this->m[r2*n+c].info(info_flags::numeric))
+                                                       this->m[r2*n+c] = this->m[r2*n+c].normal();
+                                       }
+                               }
+                               // fill up left hand side with zeros
+                               for (unsigned c=0; c<=r1; ++c)
+                                       this->m[r2*n+c] = _ex0();
+                       }
+                       if (det) {
+                               // save space by deleting no longer needed elements
+                               for (unsigned c=r0+1; c<n; ++c)
+                                       this->m[r0*n+c] = _ex0();
+                       }
+                       ++r0;
+               }
+       }
+       
+       return sign;
+}
+
+
+/** Perform the steps of division free elimination to bring the m x n matrix
+ *  into an upper echelon form.
+ *
+ *  @param det may be set to true to save a lot of space if one is only
+ *  interested in the diagonal elements (i.e. for calculating determinants).
+ *  The others are set to zero in this case.
+ *  @return sign is 1 if an even number of rows was swapped, -1 if an odd
+ *  number of rows was swapped and 0 if the matrix is singular. */
+int matrix::division_free_elimination(const bool det)
+{
+       ensure_if_modifiable();
+       const unsigned m = this->rows();
+       const unsigned n = this->cols();
+       GINAC_ASSERT(!det || n==m);
+       int sign = 1;
+       
+       unsigned r0 = 0;
+       for (unsigned r1=0; (r1<n-1)&&(r0<m-1); ++r1) {
+               int indx = pivot(r0, r1, true);
+               if (indx==-1) {
+                       sign = 0;
+                       if (det)
+                               return 0;  // leaves *this in a messy state
+               }
+               if (indx>=0) {
+                       if (indx>0)
+                               sign = -sign;
+                       for (unsigned r2=r0+1; r2<m; ++r2) {
+                               for (unsigned c=r1+1; c<n; ++c)
+                                       this->m[r2*n+c] = (this->m[r0*n+r1]*this->m[r2*n+c] - this->m[r2*n+r1]*this->m[r0*n+c]).expand();
+                               // fill up left hand side with zeros
+                               for (unsigned c=0; c<=r1; ++c)
+                                       this->m[r2*n+c] = _ex0();
+                       }
+                       if (det) {
+                               // save space by deleting no longer needed elements
+                               for (unsigned c=r0+1; c<n; ++c)
+                                       this->m[r0*n+c] = _ex0();
+                       }
+                       ++r0;
+               }
+       }
+       
+       return sign;
 }
 
-//////////
-// global constants
-//////////
 
-const matrix some_matrix;
-const type_info & typeid_matrix=typeid(some_matrix);
+/** Perform the steps of Bareiss' one-step fraction free elimination to bring
+ *  the matrix into an upper echelon form.  Fraction free elimination means
+ *  that divide is used straightforwardly, without computing GCDs first.  This
+ *  is possible, since we know the divisor at each step.
+ *  
+ *  @param det may be set to true to save a lot of space if one is only
+ *  interested in the last element (i.e. for calculating determinants). The
+ *  others are set to zero in this case.
+ *  @return sign is 1 if an even number of rows was swapped, -1 if an odd
+ *  number of rows was swapped and 0 if the matrix is singular. */
+int matrix::fraction_free_elimination(const bool det)
+{
+       // Method:
+       // (single-step fraction free elimination scheme, already known to Jordan)
+       //
+       // Usual division-free elimination sets m[0](r,c) = m(r,c) and then sets
+       //     m[k+1](r,c) = m[k](k,k) * m[k](r,c) - m[k](r,k) * m[k](k,c).
+       //
+       // Bareiss (fraction-free) elimination in addition divides that element
+       // by m[k-1](k-1,k-1) for k>1, where it can be shown by means of the
+       // Sylvester determinant that this really divides m[k+1](r,c).
+       //
+       // We also allow rational functions where the original prove still holds.
+       // However, we must care for numerator and denominator separately and
+       // "manually" work in the integral domains because of subtle cancellations
+       // (see below).  This blows up the bookkeeping a bit and the formula has
+       // to be modified to expand like this (N{x} stands for numerator of x,
+       // D{x} for denominator of x):
+       //     N{m[k+1](r,c)} = N{m[k](k,k)}*N{m[k](r,c)}*D{m[k](r,k)}*D{m[k](k,c)}
+       //                     -N{m[k](r,k)}*N{m[k](k,c)}*D{m[k](k,k)}*D{m[k](r,c)}
+       //     D{m[k+1](r,c)} = D{m[k](k,k)}*D{m[k](r,c)}*D{m[k](r,k)}*D{m[k](k,c)}
+       // where for k>1 we now divide N{m[k+1](r,c)} by
+       //     N{m[k-1](k-1,k-1)}
+       // and D{m[k+1](r,c)} by
+       //     D{m[k-1](k-1,k-1)}.
+       
+       ensure_if_modifiable();
+       const unsigned m = this->rows();
+       const unsigned n = this->cols();
+       GINAC_ASSERT(!det || n==m);
+       int sign = 1;
+       if (m==1)
+               return 1;
+       ex divisor_n = 1;
+       ex divisor_d = 1;
+       ex dividend_n;
+       ex dividend_d;
+       
+       // We populate temporary matrices to subsequently operate on.  There is
+       // one holding numerators and another holding denominators of entries.
+       // This is a must since the evaluator (or even earlier mul's constructor)
+       // might cancel some trivial element which causes divide() to fail.  The
+       // elements are normalized first (yes, even though this algorithm doesn't
+       // need GCDs) since the elements of *this might be unnormalized, which
+       // makes things more complicated than they need to be.
+       matrix tmp_n(*this);
+       matrix tmp_d(m,n);  // for denominators, if needed
+       lst srl;  // symbol replacement list
+       exvector::const_iterator cit = this->m.begin(), citend = this->m.end();
+       exvector::iterator tmp_n_it = tmp_n.m.begin(), tmp_d_it = tmp_d.m.begin();
+       while (cit != citend) {
+               ex nd = cit->normal().to_rational(srl).numer_denom();
+               ++cit;
+               *tmp_n_it++ = nd.op(0);
+               *tmp_d_it++ = nd.op(1);
+       }
+       
+       unsigned r0 = 0;
+       for (unsigned r1=0; (r1<n-1)&&(r0<m-1); ++r1) {
+               int indx = tmp_n.pivot(r0, r1, true);
+               if (indx==-1) {
+                       sign = 0;
+                       if (det)
+                               return 0;
+               }
+               if (indx>=0) {
+                       if (indx>0) {
+                               sign = -sign;
+                               // tmp_n's rows r0 and indx were swapped, do the same in tmp_d:
+                               for (unsigned c=r1; c<n; ++c)
+                                       tmp_d.m[n*indx+c].swap(tmp_d.m[n*r0+c]);
+                       }
+                       for (unsigned r2=r0+1; r2<m; ++r2) {
+                               for (unsigned c=r1+1; c<n; ++c) {
+                                       dividend_n = (tmp_n.m[r0*n+r1]*tmp_n.m[r2*n+c]*
+                                                     tmp_d.m[r2*n+r1]*tmp_d.m[r0*n+c]
+                                                    -tmp_n.m[r2*n+r1]*tmp_n.m[r0*n+c]*
+                                                     tmp_d.m[r0*n+r1]*tmp_d.m[r2*n+c]).expand();
+                                       dividend_d = (tmp_d.m[r2*n+r1]*tmp_d.m[r0*n+c]*
+                                                     tmp_d.m[r0*n+r1]*tmp_d.m[r2*n+c]).expand();
+                                       bool check = divide(dividend_n, divisor_n,
+                                                           tmp_n.m[r2*n+c], true);
+                                       check &= divide(dividend_d, divisor_d,
+                                                       tmp_d.m[r2*n+c], true);
+                                       GINAC_ASSERT(check);
+                               }
+                               // fill up left hand side with zeros
+                               for (unsigned c=0; c<=r1; ++c)
+                                       tmp_n.m[r2*n+c] = _ex0();
+                       }
+                       if ((r1<n-1)&&(r0<m-1)) {
+                               // compute next iteration's divisor
+                               divisor_n = tmp_n.m[r0*n+r1].expand();
+                               divisor_d = tmp_d.m[r0*n+r1].expand();
+                               if (det) {
+                                       // save space by deleting no longer needed elements
+                                       for (unsigned c=0; c<n; ++c) {
+                                               tmp_n.m[r0*n+c] = _ex0();
+                                               tmp_d.m[r0*n+c] = _ex1();
+                                       }
+                               }
+                       }
+                       ++r0;
+               }
+       }
+       // repopulate *this matrix:
+       exvector::iterator it = this->m.begin(), itend = this->m.end();
+       tmp_n_it = tmp_n.m.begin();
+       tmp_d_it = tmp_d.m.begin();
+       while (it != itend)
+               *it++ = ((*tmp_n_it++)/(*tmp_d_it++)).subs(srl);
+       
+       return sign;
+}
+
+
+/** Partial pivoting method for matrix elimination schemes.
+ *  Usual pivoting (symbolic==false) returns the index to the element with the
+ *  largest absolute value in column ro and swaps the current row with the one
+ *  where the element was found.  With (symbolic==true) it does the same thing
+ *  with the first non-zero element.
+ *
+ *  @param ro is the row from where to begin
+ *  @param co is the column to be inspected
+ *  @param symbolic signal if we want the first non-zero element to be pivoted
+ *  (true) or the one with the largest absolute value (false).
+ *  @return 0 if no interchange occured, -1 if all are zero (usually signaling
+ *  a degeneracy) and positive integer k means that rows ro and k were swapped.
+ */
+int matrix::pivot(unsigned ro, unsigned co, bool symbolic)
+{
+       unsigned k = ro;
+       if (symbolic) {
+               // search first non-zero element in column co beginning at row ro
+               while ((k<row) && (this->m[k*col+co].expand().is_zero()))
+                       ++k;
+       } else {
+               // search largest element in column co beginning at row ro
+               GINAC_ASSERT(is_ex_of_type(this->m[k*col+co],numeric));
+               unsigned kmax = k+1;
+               numeric mmax = abs(ex_to<numeric>(m[kmax*col+co]));
+               while (kmax<row) {
+                       GINAC_ASSERT(is_ex_of_type(this->m[kmax*col+co],numeric));
+                       numeric tmp = ex_to<numeric>(this->m[kmax*col+co]);
+                       if (abs(tmp) > mmax) {
+                               mmax = tmp;
+                               k = kmax;
+                       }
+                       ++kmax;
+               }
+               if (!mmax.is_zero())
+                       k = kmax;
+       }
+       if (k==row)
+               // all elements in column co below row ro vanish
+               return -1;
+       if (k==ro)
+               // matrix needs no pivoting
+               return 0;
+       // matrix needs pivoting, so swap rows k and ro
+       ensure_if_modifiable();
+       for (unsigned c=0; c<col; ++c)
+               this->m[k*col+c].swap(this->m[ro*col+c]);
+       
+       return k;
+}
+
+ex lst_to_matrix(const lst & l)
+{
+       // Find number of rows and columns
+       unsigned rows = l.nops(), cols = 0, i, j;
+       for (i=0; i<rows; i++)
+               if (l.op(i).nops() > cols)
+                       cols = l.op(i).nops();
+
+       // Allocate and fill matrix
+       matrix &m = *new matrix(rows, cols);
+       m.setflag(status_flags::dynallocated);
+       for (i=0; i<rows; i++)
+               for (j=0; j<cols; j++)
+                       if (l.op(i).nops() > j)
+                               m(i, j) = l.op(i).op(j);
+                       else
+                               m(i, j) = _ex0();
+       return m;
+}
+
+ex diag_matrix(const lst & l)
+{
+       unsigned dim = l.nops();
+
+       matrix &m = *new matrix(dim, dim);
+       m.setflag(status_flags::dynallocated);
+       for (unsigned i=0; i<dim; i++)
+               m(i, i) = l.op(i);
+
+       return m;
+}
 
-#ifndef NO_NAMESPACE_GINAC
 } // namespace GiNaC
-#endif // ndef NO_NAMESPACE_GINAC