]> www.ginac.de Git - ginac.git/blobdiff - ginac/matrix.cpp
- rewrote binary scanning in matrix::pow(), stealing from CLN's expt_pos().
[ginac.git] / ginac / matrix.cpp
index 965e1da8f55e961d51ac85464000e5ae0de09331..65dfd4dc601e9c228f7329d6e5e18f6c471c0718 100644 (file)
@@ -141,7 +141,7 @@ void matrix::archive(archive_node &n) const
 DEFAULT_UNARCHIVE(matrix)
 
 //////////
-// functions overriding virtual functions from bases classes
+// functions overriding virtual functions from base classes
 //////////
 
 // public
@@ -198,16 +198,6 @@ ex & matrix::let_op(int i)
        return m[i];
 }
 
-/** expands the elements of a matrix entry by entry. */
-ex matrix::expand(unsigned options) const
-{
-       exvector tmp(row*col);
-       for (unsigned i=0; i<row*col; ++i)
-               tmp[i] = m[i].expand(options);
-       
-       return matrix(row, col, tmp);
-}
-
 /** Evaluate matrix entry by entry. */
 ex matrix::eval(int level) const
 {
@@ -232,30 +222,6 @@ ex matrix::eval(int level) const
                                                                                           status_flags::evaluated );
 }
 
-/** Evaluate matrix numerically entry by entry. */
-ex matrix::evalf(int level) const
-{
-       debugmsg("matrix evalf",LOGLEVEL_MEMBER_FUNCTION);
-               
-       // check if we have to do anything at all
-       if (level==1)
-               return *this;
-       
-       // emergency break
-       if (level == -max_recursion_level) {
-               throw (std::runtime_error("matrix::evalf(): recursion limit exceeded"));
-       }
-       
-       // evalf() entry by entry
-       exvector m2(row*col);
-       --level;
-       for (unsigned r=0; r<row; ++r)
-               for (unsigned c=0; c<col; ++c)
-                       m2[r*col+c] = m[r*col+c].evalf(level);
-       
-       return matrix(row, col, m2);
-}
-
 ex matrix::subs(const lst & ls, const lst & lr, bool no_pattern) const
 {
        exvector m2(row * col);
@@ -271,7 +237,7 @@ ex matrix::subs(const lst & ls, const lst & lr, bool no_pattern) const
 int matrix::compare_same_type(const basic & other) const
 {
        GINAC_ASSERT(is_exactly_of_type(other, matrix));
-       const matrix & o = static_cast<matrix &>(const_cast<basic &>(other));
+       const matrix & o = static_cast<const matrix &>(other);
        
        // compare number of rows
        if (row != o.rows())
@@ -293,6 +259,16 @@ int matrix::compare_same_type(const basic & other) const
        return 0;
 }
 
+bool matrix::match_same_type(const basic & other) const
+{
+       GINAC_ASSERT(is_exactly_of_type(other, matrix));
+       const matrix & o = static_cast<const matrix &>(other);
+       
+       // The number of rows and columns must be the same. This is necessary to
+       // prevent a 2x3 matrix from matching a 3x2 one.
+       return row == o.rows() && col == o.cols();
+}
+
 /** Automatic symbolic evaluation of an indexed matrix. */
 ex matrix::eval_indexed(const basic & i) const
 {
@@ -439,10 +415,8 @@ bool matrix::contract_with(exvector::iterator self, exvector::iterator other, ex
        const matrix &other_matrix = ex_to<matrix>(other->op(0));
 
        if (self->nops() == 2) {
-               unsigned self_dim = (self_matrix.col == 1) ? self_matrix.row : self_matrix.col;
 
                if (other->nops() == 2) { // vector * vector (scalar product)
-                       unsigned other_dim = (other_matrix.col == 1) ? other_matrix.row : other_matrix.col;
 
                        if (self_matrix.col == 1) {
                                if (other_matrix.col == 1) {
@@ -537,10 +511,10 @@ matrix matrix::add(const matrix & other) const
                throw std::logic_error("matrix::add(): incompatible matrices");
        
        exvector sum(this->m);
-       exvector::iterator i;
-       exvector::const_iterator ci;
-       for (i=sum.begin(), ci=other.m.begin(); i!=sum.end(); ++i, ++ci)
-               (*i) += (*ci);
+       exvector::iterator i = sum.begin(), end = sum.end();
+       exvector::const_iterator ci = other.m.begin();
+       while (i != end)
+               *i++ += *ci++;
        
        return matrix(row,col,sum);
 }
@@ -555,10 +529,10 @@ matrix matrix::sub(const matrix & other) const
                throw std::logic_error("matrix::sub(): incompatible matrices");
        
        exvector dif(this->m);
-       exvector::iterator i;
-       exvector::const_iterator ci;
-       for (i=dif.begin(), ci=other.m.begin(); i!=dif.end(); ++i, ++ci)
-               (*i) -= (*ci);
+       exvector::iterator i = dif.begin(), end = dif.end();
+       exvector::const_iterator ci = other.m.begin();
+       while (i != end)
+               *i++ -= *ci++;
        
        return matrix(row,col,dif);
 }
@@ -625,32 +599,31 @@ matrix matrix::pow(const ex & expn) const
                // Integer cases are computed by successive multiplication, using the
                // obvious shortcut of storing temporaries, like A^4 == (A*A)*(A*A).
                if (expn.info(info_flags::integer)) {
-                       numeric k;
-                       matrix prod(row,col);
+                       numeric b = ex_to<numeric>(expn);
+                       matrix A(row,col);
                        if (expn.info(info_flags::negative)) {
-                               k = -ex_to<numeric>(expn);
-                               prod = this->inverse();
+                               b *= -1;
+                               A = this->inverse();
                        } else {
-                               k = ex_to<numeric>(expn);
-                               prod = *this;
+                               A = *this;
                        }
-                       matrix result(row,col);
+                       matrix C(row,col);
                        for (unsigned r=0; r<row; ++r)
-                               result(r,r) = _ex1();
-                       numeric b(1);
-                       // this loop computes the representation of k in base 2 and
-                       // multiplies the factors whenever needed:
-                       while (b.compare(k)<=0) {
-                               b *= numeric(2);
-                               numeric r(mod(k,b));
-                               if (!r.is_zero()) {
-                                       k -= r;
-                                       result = result.mul(prod);
+                               C(r,r) = _ex1();
+                       // This loop computes the representation of b in base 2 from right
+                       // to left and multiplies the factors whenever needed.  Note
+                       // that this is not entirely optimal but close to optimal and
+                       // "better" algorithms are much harder to implement.  (See Knuth,
+                       // TAoCP2, section "Evaluation of Powers" for a good discussion.)
+                       while (b!=1) {
+                               if (b.is_odd()) {
+                                       C = C.mul(A);
+                                       b -= 1;
                                }
-                               if (b.compare(k)<=0)
-                                       prod = prod.mul(prod);
+                               b *= _num1_2();  // b /= 2, still integer.
+                               A = A.mul(A);
                        }
-                       return result;
+                       return A.mul(C);
                }
        }
        throw (std::runtime_error("matrix::pow(): don't know how to handle exponent"));
@@ -723,9 +696,10 @@ ex matrix::determinant(unsigned algo) const
        bool numeric_flag = true;
        bool normal_flag = false;
        unsigned sparse_count = 0;  // counts non-zero elements
-       for (exvector::const_iterator r=m.begin(); r!=m.end(); ++r) {
+       exvector::const_iterator r = m.begin(), rend = m.end();
+       while (r != rend) {
                lst srl;  // symbol replacement list
-               ex rtest = (*r).to_rational(srl);
+               ex rtest = r->to_rational(srl);
                if (!rtest.is_zero())
                        ++sparse_count;
                if (!rtest.info(info_flags::numeric))
@@ -733,6 +707,7 @@ ex matrix::determinant(unsigned algo) const
                if (!rtest.info(info_flags::crational_polynomial) &&
                         rtest.info(info_flags::rational_function))
                        normal_flag = true;
+               ++r;
        }
        
        // Here is the heuristics in case this routine has to decide:
@@ -812,13 +787,13 @@ ex matrix::determinant(unsigned algo) const
                        }
                        sort(c_zeros.begin(),c_zeros.end());
                        std::vector<unsigned> pre_sort;
-                       for (std::vector<uintpair>::iterator i=c_zeros.begin(); i!=c_zeros.end(); ++i)
+                       for (std::vector<uintpair>::const_iterator i=c_zeros.begin(); i!=c_zeros.end(); ++i)
                                pre_sort.push_back(i->second);
                        std::vector<unsigned> pre_sort_test(pre_sort); // permutation_sign() modifies the vector so we make a copy here
                        int sign = permutation_sign(pre_sort_test.begin(), pre_sort_test.end());
                        exvector result(row*col);  // represents sorted matrix
                        unsigned c = 0;
-                       for (std::vector<unsigned>::iterator i=pre_sort.begin();
+                       for (std::vector<unsigned>::const_iterator i=pre_sort.begin();
                                 i!=pre_sort.end();
                                 ++i,++c) {
                                for (unsigned r=0; r<row; ++r)
@@ -874,10 +849,11 @@ ex matrix::charpoly(const symbol & lambda) const
                throw (std::logic_error("matrix::charpoly(): matrix not square"));
        
        bool numeric_flag = true;
-       for (exvector::const_iterator r=m.begin(); r!=m.end(); ++r) {
-               if (!(*r).info(info_flags::numeric)) {
+       exvector::const_iterator r = m.begin(), rend = m.end();
+       while (r != rend) {
+               if (!r->info(info_flags::numeric))
                        numeric_flag = false;
-               }
+               ++r;
        }
        
        // The pure numeric case is traditionally rather common.  Hence, it is
@@ -984,9 +960,11 @@ matrix matrix::solve(const matrix & vars,
        
        // Gather some statistical information about the augmented matrix:
        bool numeric_flag = true;
-       for (exvector::const_iterator r=aug.m.begin(); r!=aug.m.end(); ++r) {
-               if (!(*r).info(info_flags::numeric))
+       exvector::const_iterator r = aug.m.begin(), rend = aug.m.end();
+       while (r != rend) {
+               if (!r->info(info_flags::numeric))
                        numeric_flag = false;
+               ++r;
        }
        
        // Here is the heuristics in case this routine has to decide:
@@ -1333,13 +1311,13 @@ int matrix::fraction_free_elimination(const bool det)
        matrix tmp_n(*this);
        matrix tmp_d(m,n);  // for denominators, if needed
        lst srl;  // symbol replacement list
-       exvector::iterator it = this->m.begin();
-       exvector::iterator tmp_n_it = tmp_n.m.begin();
-       exvector::iterator tmp_d_it = tmp_d.m.begin();
-       for (; it!= this->m.end(); ++it, ++tmp_n_it, ++tmp_d_it) {
-               (*tmp_n_it) = (*it).normal().to_rational(srl);
-               (*tmp_d_it) = (*tmp_n_it).denom();
-               (*tmp_n_it) = (*tmp_n_it).numer();
+       exvector::const_iterator cit = this->m.begin(), citend = this->m.end();
+       exvector::iterator tmp_n_it = tmp_n.m.begin(), tmp_d_it = tmp_d.m.begin();
+       while (cit != citend) {
+               ex nd = cit->normal().to_rational(srl).numer_denom();
+               ++cit;
+               *tmp_n_it++ = nd.op(0);
+               *tmp_d_it++ = nd.op(1);
        }
        
        unsigned r0 = 0;
@@ -1391,11 +1369,11 @@ int matrix::fraction_free_elimination(const bool det)
                }
        }
        // repopulate *this matrix:
-       it = this->m.begin();
+       exvector::iterator it = this->m.begin(), itend = this->m.end();
        tmp_n_it = tmp_n.m.begin();
        tmp_d_it = tmp_d.m.begin();
-       for (; it!= this->m.end(); ++it, ++tmp_n_it, ++tmp_d_it)
-               (*it) = ((*tmp_n_it)/(*tmp_d_it)).subs(srl);
+       while (it != itend)
+               *it++ = ((*tmp_n_it++)/(*tmp_d_it++)).subs(srl);
        
        return sign;
 }