]> www.ginac.de Git - ginac.git/blobdiff - ginac/matrix.cpp
cleaned up some is_a<> vs. is_exactly_a<> stuff
[ginac.git] / ginac / matrix.cpp
index 91382c2fd303612a1899a8f59c7d59b25b478880..46d7a64cd9faa2330cca7a035e9782c2cb334da6 100644 (file)
@@ -3,7 +3,7 @@
  *  Implementation of symbolic matrices */
 
 /*
- *  GiNaC Copyright (C) 1999-2001 Johannes Gutenberg University Mainz, Germany
+ *  GiNaC Copyright (C) 1999-2002 Johannes Gutenberg University Mainz, Germany
  *
  *  This program is free software; you can redistribute it and/or modify
  *  it under the terms of the GNU General Public License as published by
@@ -20,6 +20,9 @@
  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  */
 
+#include <string>
+#include <iostream>
+#include <sstream>
 #include <algorithm>
 #include <map>
 #include <stdexcept>
@@ -35,7 +38,6 @@
 #include "print.h"
 #include "archive.h"
 #include "utils.h"
-#include "debugmsg.h"
 
 namespace GiNaC {
 
@@ -48,8 +50,7 @@ GINAC_IMPLEMENT_REGISTERED_CLASS(matrix, basic)
 /** Default ctor.  Initializes to 1 x 1-dimensional zero-matrix. */
 matrix::matrix() : inherited(TINFO_matrix), row(1), col(1)
 {
-       debugmsg("matrix default ctor",LOGLEVEL_CONSTRUCT);
-       m.push_back(_ex0());
+       m.push_back(_ex0);
 }
 
 void matrix::copy(const matrix & other)
@@ -75,18 +76,14 @@ DEFAULT_DESTROY(matrix)
 matrix::matrix(unsigned r, unsigned c)
   : inherited(TINFO_matrix), row(r), col(c)
 {
-       debugmsg("matrix ctor from unsigned,unsigned",LOGLEVEL_CONSTRUCT);
-       m.resize(r*c, _ex0());
+       m.resize(r*c, _ex0);
 }
 
 // protected
 
 /** Ctor from representation, for internal use only. */
 matrix::matrix(unsigned r, unsigned c, const exvector & m2)
-  : inherited(TINFO_matrix), row(r), col(c), m(m2)
-{
-       debugmsg("matrix ctor from unsigned,unsigned,exvector",LOGLEVEL_CONSTRUCT);
-}
+  : inherited(TINFO_matrix), row(r), col(c), m(m2) {}
 
 /** Construct matrix from (flat) list of elements. If the list has fewer
  *  elements than the matrix, the remaining matrix elements are set to zero.
@@ -95,8 +92,7 @@ matrix::matrix(unsigned r, unsigned c, const exvector & m2)
 matrix::matrix(unsigned r, unsigned c, const lst & l)
   : inherited(TINFO_matrix), row(r), col(c)
 {
-       debugmsg("matrix ctor from unsigned,unsigned,lst",LOGLEVEL_CONSTRUCT);
-       m.resize(r*c, _ex0());
+       m.resize(r*c, _ex0);
 
        for (unsigned i=0; i<l.nops(); i++) {
                unsigned x = i % c;
@@ -113,7 +109,6 @@ matrix::matrix(unsigned r, unsigned c, const lst & l)
 
 matrix::matrix(const archive_node &n, const lst &sym_lst) : inherited(n, sym_lst)
 {
-       debugmsg("matrix ctor from archive_node", LOGLEVEL_CONSTRUCT);
        if (!(n.find_unsigned("row", row)) || !(n.find_unsigned("col", col)))
                throw (std::runtime_error("unknown matrix dimensions in archive"));
        m.reserve(row * col);
@@ -141,38 +136,57 @@ void matrix::archive(archive_node &n) const
 DEFAULT_UNARCHIVE(matrix)
 
 //////////
-// functions overriding virtual functions from bases classes
+// functions overriding virtual functions from base classes
 //////////
 
 // public
 
 void matrix::print(const print_context & c, unsigned level) const
 {
-       debugmsg("matrix print", LOGLEVEL_PRINT);
-
-       if (is_of_type(c, print_tree)) {
+       if (is_a<print_tree>(c)) {
 
                inherited::print(c, level);
 
        } else {
 
-               c.s << "[";
-               for (unsigned y=0; y<row-1; ++y) {
+               if (is_a<print_python_repr>(c))
+                       c.s << class_name() << '(';
+
+               if (is_a<print_latex>(c))
+                       c.s << "\\left(\\begin{array}{" << std::string(col,'c') << "}";
+               else
                        c.s << "[";
-                       for (unsigned x=0; x<col-1; ++x) {
-                               m[y*col+x].print(c);
-                               c.s << ",";
+
+               for (unsigned ro=0; ro<row; ++ro) {
+                       if (!is_a<print_latex>(c))
+                               c.s << "[";
+                       for (unsigned co=0; co<col; ++co) {
+                               m[ro*col+co].print(c);
+                               if (co<col-1) {
+                                       if (is_a<print_latex>(c))
+                                               c.s << "&";
+                                       else
+                                               c.s << ",";
+                               } else {
+                                       if (!is_a<print_latex>(c))
+                                               c.s << "]";
+                               }
+                       }
+                       if (ro<row-1) {
+                               if (is_a<print_latex>(c))
+                                       c.s << "\\\\";
+                               else
+                                       c.s << ",";
                        }
-                       m[col*(y+1)-1].print(c);
-                       c.s << "],";
-               }
-               c.s << "[";
-               for (unsigned x=0; x<col-1; ++x) {
-                       m[(row-1)*col+x].print(c);
-                       c.s << ",";
                }
-               m[row*col-1].print(c);
-               c.s << "]]";
+
+               if (is_a<print_latex>(c))
+                       c.s << "\\end{array}\\right)";
+               else
+                       c.s << "]";
+
+               if (is_a<print_python_repr>(c))
+                       c.s << ')';
 
        }
 }
@@ -201,8 +215,6 @@ ex & matrix::let_op(int i)
 /** Evaluate matrix entry by entry. */
 ex matrix::eval(int level) const
 {
-       debugmsg("matrix eval",LOGLEVEL_MEMBER_FUNCTION);
-       
        // check if we have to do anything at all
        if ((level==1)&&(flags & status_flags::evaluated))
                return *this;
@@ -219,7 +231,7 @@ ex matrix::eval(int level) const
                        m2[r*col+c] = m[r*col+c].eval(level);
        
        return (new matrix(row, col, m2))->setflag(status_flags::dynallocated |
-                                                                                          status_flags::evaluated );
+                                                                                          status_flags::evaluated);
 }
 
 ex matrix::subs(const lst & ls, const lst & lr, bool no_pattern) const
@@ -229,15 +241,15 @@ ex matrix::subs(const lst & ls, const lst & lr, bool no_pattern) const
                for (unsigned c=0; c<col; ++c)
                        m2[r*col+c] = m[r*col+c].subs(ls, lr, no_pattern);
 
-       return ex(matrix(row, col, m2)).bp->basic::subs(ls, lr, no_pattern);
+       return matrix(row, col, m2).basic::subs(ls, lr, no_pattern);
 }
 
 // protected
 
 int matrix::compare_same_type(const basic & other) const
 {
-       GINAC_ASSERT(is_exactly_of_type(other, matrix));
-       const matrix & o = static_cast<const matrix &>(other);
+       GINAC_ASSERT(is_exactly_a<matrix>(other));
+       const matrix &o = static_cast<const matrix &>(other);
        
        // compare number of rows
        if (row != o.rows())
@@ -261,7 +273,7 @@ int matrix::compare_same_type(const basic & other) const
 
 bool matrix::match_same_type(const basic & other) const
 {
-       GINAC_ASSERT(is_exactly_of_type(other, matrix));
+       GINAC_ASSERT(is_exactly_a<matrix>(other));
        const matrix & o = static_cast<const matrix &>(other);
        
        // The number of rows and columns must be the same. This is necessary to
@@ -272,8 +284,8 @@ bool matrix::match_same_type(const basic & other) const
 /** Automatic symbolic evaluation of an indexed matrix. */
 ex matrix::eval_indexed(const basic & i) const
 {
-       GINAC_ASSERT(is_of_type(i, indexed));
-       GINAC_ASSERT(is_ex_of_type(i.op(0), matrix));
+       GINAC_ASSERT(is_a<indexed>(i));
+       GINAC_ASSERT(is_a<matrix>(i.op(0)));
 
        bool all_indices_unsigned = static_cast<const indexed &>(i).all_index_values_are(info_flags::nonnegint);
 
@@ -349,9 +361,9 @@ ex matrix::eval_indexed(const basic & i) const
 /** Sum of two indexed matrices. */
 ex matrix::add_indexed(const ex & self, const ex & other) const
 {
-       GINAC_ASSERT(is_ex_of_type(self, indexed));
-       GINAC_ASSERT(is_ex_of_type(self.op(0), matrix));
-       GINAC_ASSERT(is_ex_of_type(other, indexed));
+       GINAC_ASSERT(is_a<indexed>(self));
+       GINAC_ASSERT(is_a<matrix>(self.op(0)));
+       GINAC_ASSERT(is_a<indexed>(other));
        GINAC_ASSERT(self.nops() == 2 || self.nops() == 3);
 
        // Only add two matrices
@@ -385,8 +397,8 @@ ex matrix::add_indexed(const ex & self, const ex & other) const
 /** Product of an indexed matrix with a number. */
 ex matrix::scalar_mul_indexed(const ex & self, const numeric & other) const
 {
-       GINAC_ASSERT(is_ex_of_type(self, indexed));
-       GINAC_ASSERT(is_ex_of_type(self.op(0), matrix));
+       GINAC_ASSERT(is_a<indexed>(self));
+       GINAC_ASSERT(is_a<matrix>(self.op(0)));
        GINAC_ASSERT(self.nops() == 2 || self.nops() == 3);
 
        const matrix &self_matrix = ex_to<matrix>(self.op(0));
@@ -400,10 +412,10 @@ ex matrix::scalar_mul_indexed(const ex & self, const numeric & other) const
 /** Contraction of an indexed matrix with something else. */
 bool matrix::contract_with(exvector::iterator self, exvector::iterator other, exvector & v) const
 {
-       GINAC_ASSERT(is_ex_of_type(*self, indexed));
-       GINAC_ASSERT(is_ex_of_type(*other, indexed));
+       GINAC_ASSERT(is_a<indexed>(*self));
+       GINAC_ASSERT(is_a<indexed>(*other));
        GINAC_ASSERT(self->nops() == 2 || self->nops() == 3);
-       GINAC_ASSERT(is_ex_of_type(self->op(0), matrix));
+       GINAC_ASSERT(is_a<matrix>(self->op(0)));
 
        // Only contract with other matrices
        if (!is_ex_of_type(other->op(0), matrix))
@@ -415,10 +427,8 @@ bool matrix::contract_with(exvector::iterator self, exvector::iterator other, ex
        const matrix &other_matrix = ex_to<matrix>(other->op(0));
 
        if (self->nops() == 2) {
-               unsigned self_dim = (self_matrix.col == 1) ? self_matrix.row : self_matrix.col;
 
                if (other->nops() == 2) { // vector * vector (scalar product)
-                       unsigned other_dim = (other_matrix.col == 1) ? other_matrix.row : other_matrix.col;
 
                        if (self_matrix.col == 1) {
                                if (other_matrix.col == 1) {
@@ -437,7 +447,7 @@ bool matrix::contract_with(exvector::iterator self, exvector::iterator other, ex
                                        *self = self_matrix.mul(other_matrix.transpose())(0, 0);
                                }
                        }
-                       *other = _ex1();
+                       *other = _ex1;
                        return true;
 
                } else { // vector * matrix
@@ -448,7 +458,7 @@ bool matrix::contract_with(exvector::iterator self, exvector::iterator other, ex
                                        *self = indexed(self_matrix.mul(other_matrix), other->op(2));
                                else
                                        *self = indexed(self_matrix.transpose().mul(other_matrix), other->op(2));
-                               *other = _ex1();
+                               *other = _ex1;
                                return true;
                        }
 
@@ -458,7 +468,7 @@ bool matrix::contract_with(exvector::iterator self, exvector::iterator other, ex
                                        *self = indexed(other_matrix.mul(self_matrix), other->op(1));
                                else
                                        *self = indexed(other_matrix.mul(self_matrix.transpose()), other->op(1));
-                               *other = _ex1();
+                               *other = _ex1;
                                return true;
                        }
                }
@@ -468,28 +478,28 @@ bool matrix::contract_with(exvector::iterator self, exvector::iterator other, ex
                // A_ij * B_jk = (A*B)_ik
                if (is_dummy_pair(self->op(2), other->op(1))) {
                        *self = indexed(self_matrix.mul(other_matrix), self->op(1), other->op(2));
-                       *other = _ex1();
+                       *other = _ex1;
                        return true;
                }
 
                // A_ij * B_kj = (A*Btrans)_ik
                if (is_dummy_pair(self->op(2), other->op(2))) {
                        *self = indexed(self_matrix.mul(other_matrix.transpose()), self->op(1), other->op(1));
-                       *other = _ex1();
+                       *other = _ex1;
                        return true;
                }
 
                // A_ji * B_jk = (Atrans*B)_ik
                if (is_dummy_pair(self->op(1), other->op(1))) {
                        *self = indexed(self_matrix.transpose().mul(other_matrix), self->op(2), other->op(2));
-                       *other = _ex1();
+                       *other = _ex1;
                        return true;
                }
 
                // A_ji * B_kj = (B*A)_ki
                if (is_dummy_pair(self->op(1), other->op(2))) {
                        *self = indexed(other_matrix.mul(self_matrix), other->op(1), self->op(2));
-                       *other = _ex1();
+                       *other = _ex1;
                        return true;
                }
        }
@@ -601,32 +611,33 @@ matrix matrix::pow(const ex & expn) const
                // Integer cases are computed by successive multiplication, using the
                // obvious shortcut of storing temporaries, like A^4 == (A*A)*(A*A).
                if (expn.info(info_flags::integer)) {
-                       numeric k;
-                       matrix prod(row,col);
+                       numeric b = ex_to<numeric>(expn);
+                       matrix A(row,col);
                        if (expn.info(info_flags::negative)) {
-                               k = -ex_to<numeric>(expn);
-                               prod = this->inverse();
+                               b *= -1;
+                               A = this->inverse();
                        } else {
-                               k = ex_to<numeric>(expn);
-                               prod = *this;
+                               A = *this;
                        }
-                       matrix result(row,col);
+                       matrix C(row,col);
                        for (unsigned r=0; r<row; ++r)
-                               result(r,r) = _ex1();
-                       numeric b(1);
-                       // this loop computes the representation of k in base 2 and
-                       // multiplies the factors whenever needed:
-                       while (b.compare(k)<=0) {
-                               b *= numeric(2);
-                               numeric r(mod(k,b));
-                               if (!r.is_zero()) {
-                                       k -= r;
-                                       result = result.mul(prod);
+                               C(r,r) = _ex1;
+                       if (b.is_zero())
+                               return C;
+                       // This loop computes the representation of b in base 2 from right
+                       // to left and multiplies the factors whenever needed.  Note
+                       // that this is not entirely optimal but close to optimal and
+                       // "better" algorithms are much harder to implement.  (See Knuth,
+                       // TAoCP2, section "Evaluation of Powers" for a good discussion.)
+                       while (b!=_num1) {
+                               if (b.is_odd()) {
+                                       C = C.mul(A);
+                                       --b;
                                }
-                               if (b.compare(k)<=0)
-                                       prod = prod.mul(prod);
+                               b /= _num2;  // still integer.
+                               A = A.mul(A);
                        }
-                       return result;
+                       return A.mul(C);
                }
        }
        throw (std::runtime_error("matrix::pow(): don't know how to handle exponent"));
@@ -763,7 +774,7 @@ ex matrix::determinant(unsigned algo) const
                        int sign;
                        sign = tmp.division_free_elimination(true);
                        if (sign==0)
-                               return _ex0();
+                               return _ex0;
                        ex det = tmp.m[row*col-1];
                        // factor out accumulated bogus slag
                        for (unsigned d=0; d<row-2; ++d)
@@ -775,10 +786,13 @@ ex matrix::determinant(unsigned algo) const
                default: {
                        // This is the minor expansion scheme.  We always develop such
                        // that the smallest minors (i.e, the trivial 1x1 ones) are on the
-                       // rightmost column.  For this to be efficient it turns out that
-                       // the emptiest columns (i.e. the ones with most zeros) should be
-                       // the ones on the right hand side.  Therefore we presort the
-                       // columns of the matrix:
+                       // rightmost column.  For this to be efficient, empirical tests
+                       // have shown that the emptiest columns (i.e. the ones with most
+                       // zeros) should be the ones on the right hand side -- although
+                       // this might seem counter-intuitive (and in contradiction to some
+                       // literature like the FORM manual).  Please go ahead and test it
+                       // if you don't believe me!  Therefore we presort the columns of
+                       // the matrix:
                        typedef std::pair<unsigned,unsigned> uintpair;
                        std::vector<uintpair> c_zeros;  // number of zeros in column
                        for (unsigned c=0; c<col; ++c) {
@@ -788,7 +802,7 @@ ex matrix::determinant(unsigned algo) const
                                                ++acc;
                                c_zeros.push_back(uintpair(acc,c));
                        }
-                       sort(c_zeros.begin(),c_zeros.end());
+                       std::sort(c_zeros.begin(),c_zeros.end());
                        std::vector<unsigned> pre_sort;
                        for (std::vector<uintpair>::const_iterator i=c_zeros.begin(); i!=c_zeros.end(); ++i)
                                pre_sort.push_back(i->second);
@@ -853,7 +867,7 @@ ex matrix::charpoly(const symbol & lambda) const
        
        bool numeric_flag = true;
        exvector::const_iterator r = m.begin(), rend = m.end();
-       while (r != rend) {
+       while (r!=rend && numeric_flag==true) {
                if (!r->info(info_flags::numeric))
                        numeric_flag = false;
                ++r;
@@ -903,7 +917,7 @@ matrix matrix::inverse(void) const
        // First populate the identity matrix supposed to become the right hand side.
        matrix identity(row,col);
        for (unsigned i=0; i<row; ++i)
-               identity(i,i) = _ex1();
+               identity(i,i) = _ex1;
        
        // Populate a dummy matrix of variables, just because of compatibility with
        // matrix::solve() which wants this (for compatibility with under-determined
@@ -964,7 +978,7 @@ matrix matrix::solve(const matrix & vars,
        // Gather some statistical information about the augmented matrix:
        bool numeric_flag = true;
        exvector::const_iterator r = aug.m.begin(), rend = aug.m.end();
-       while (r != rend) {
+       while (r!=rend && numeric_flag==true) {
                if (!r->info(info_flags::numeric))
                        numeric_flag = false;
                ++r;
@@ -1114,7 +1128,7 @@ ex matrix::determinant_minor(void) const
                        Pkey.push_back(i);
                unsigned fc = 0;  // controls logic for our strange flipper counter
                do {
-                       det = _ex0();
+                       det = _ex0;
                        for (unsigned r=0; r<n-c; ++r) {
                                // maybe there is nothing to do?
                                if (m[Pkey[r]*n+c].is_zero())
@@ -1194,12 +1208,12 @@ int matrix::gauss_elimination(const bool det)
                                }
                                // fill up left hand side with zeros
                                for (unsigned c=0; c<=r1; ++c)
-                                       this->m[r2*n+c] = _ex0();
+                                       this->m[r2*n+c] = _ex0;
                        }
                        if (det) {
                                // save space by deleting no longer needed elements
                                for (unsigned c=r0+1; c<n; ++c)
-                                       this->m[r0*n+c] = _ex0();
+                                       this->m[r0*n+c] = _ex0;
                        }
                        ++r0;
                }
@@ -1241,12 +1255,12 @@ int matrix::division_free_elimination(const bool det)
                                        this->m[r2*n+c] = (this->m[r0*n+r1]*this->m[r2*n+c] - this->m[r2*n+r1]*this->m[r0*n+c]).expand();
                                // fill up left hand side with zeros
                                for (unsigned c=0; c<=r1; ++c)
-                                       this->m[r2*n+c] = _ex0();
+                                       this->m[r2*n+c] = _ex0;
                        }
                        if (det) {
                                // save space by deleting no longer needed elements
                                for (unsigned c=r0+1; c<n; ++c)
-                                       this->m[r0*n+c] = _ex0();
+                                       this->m[r0*n+c] = _ex0;
                        }
                        ++r0;
                }
@@ -1354,7 +1368,7 @@ int matrix::fraction_free_elimination(const bool det)
                                }
                                // fill up left hand side with zeros
                                for (unsigned c=0; c<=r1; ++c)
-                                       tmp_n.m[r2*n+c] = _ex0();
+                                       tmp_n.m[r2*n+c] = _ex0;
                        }
                        if ((r1<n-1)&&(r0<m-1)) {
                                // compute next iteration's divisor
@@ -1363,8 +1377,8 @@ int matrix::fraction_free_elimination(const bool det)
                                if (det) {
                                        // save space by deleting no longer needed elements
                                        for (unsigned c=0; c<n; ++c) {
-                                               tmp_n.m[r0*n+c] = _ex0();
-                                               tmp_d.m[r0*n+c] = _ex1();
+                                               tmp_n.m[r0*n+c] = _ex0;
+                                               tmp_d.m[r0*n+c] = _ex1;
                                        }
                                }
                        }
@@ -1404,11 +1418,11 @@ int matrix::pivot(unsigned ro, unsigned co, bool symbolic)
                        ++k;
        } else {
                // search largest element in column co beginning at row ro
-               GINAC_ASSERT(is_ex_of_type(this->m[k*col+co],numeric));
+               GINAC_ASSERT(is_exactly_a<numeric>(this->m[k*col+co]));
                unsigned kmax = k+1;
                numeric mmax = abs(ex_to<numeric>(m[kmax*col+co]));
                while (kmax<row) {
-                       GINAC_ASSERT(is_ex_of_type(this->m[kmax*col+co],numeric));
+                       GINAC_ASSERT(is_exactly_a<numeric>(this->m[kmax*col+co]));
                        numeric tmp = ex_to<numeric>(this->m[kmax*col+co]);
                        if (abs(tmp) > mmax) {
                                mmax = tmp;
@@ -1442,15 +1456,15 @@ ex lst_to_matrix(const lst & l)
                        cols = l.op(i).nops();
 
        // Allocate and fill matrix
-       matrix &m = *new matrix(rows, cols);
-       m.setflag(status_flags::dynallocated);
+       matrix &M = *new matrix(rows, cols);
+       M.setflag(status_flags::dynallocated);
        for (i=0; i<rows; i++)
                for (j=0; j<cols; j++)
                        if (l.op(i).nops() > j)
-                               m(i, j) = l.op(i).op(j);
+                               M(i, j) = l.op(i).op(j);
                        else
-                               m(i, j) = _ex0();
-       return m;
+                               M(i, j) = _ex0;
+       return M;
 }
 
 ex diag_matrix(const lst & l)
@@ -1465,4 +1479,49 @@ ex diag_matrix(const lst & l)
        return m;
 }
 
+ex unit_matrix(unsigned r, unsigned c)
+{
+       matrix Id(r,c);
+       for (unsigned i=0; i<r && i<c; ++i)
+               Id(i,i) = _ex1;
+       return Id;
+}
+
+ex symbolic_matrix(unsigned r, unsigned c, const std::string & base_name, const std::string & tex_base_name)
+{
+       matrix &M = *new matrix(r, c);
+       M.setflag(status_flags::dynallocated | status_flags::evaluated);
+
+       bool long_format = (r > 10 || c > 10);
+       bool single_row = (r == 1 || c == 1);
+
+       for (unsigned i=0; i<r; i++) {
+               for (unsigned j=0; j<c; j++) {
+                       std::ostringstream s1, s2;
+                       s1 << base_name;
+                       s2 << tex_base_name << "_{";
+                       if (single_row) {
+                               if (c == 1) {
+                                       s1 << i;
+                                       s2 << i << '}';
+                               } else {
+                                       s1 << j;
+                                       s2 << j << '}';
+                               }
+                       } else {
+                               if (long_format) {
+                                       s1 << '_' << i << '_' << j;
+                                       s2 << i << ';' << j << "}";
+                               } else {
+                                       s1 << i << j;
+                                       s2 << i << j << '}';
+                               }
+                       }
+                       M(i, j) = symbol(s1.str(), s2.str());
+               }
+       }
+
+       return M;
+}
+
 } // namespace GiNaC