]> www.ginac.de Git - ginac.git/blobdiff - ginac/matrix.cpp
Happy New Year!
[ginac.git] / ginac / matrix.cpp
index 7b0b34889f396cfb66feda3f0011e7fb45378393..299cacfc98fa58ce8a6d78322ca49be9928794ce 100644 (file)
@@ -3,7 +3,7 @@
  *  Implementation of symbolic matrices */
 
 /*
- *  GiNaC Copyright (C) 1999-2018 Johannes Gutenberg University Mainz, Germany
+ *  GiNaC Copyright (C) 1999-2019 Johannes Gutenberg University Mainz, Germany
  *
  *  This program is free software; you can redistribute it and/or modify
  *  it under the terms of the GNU General Public License as published by
@@ -986,7 +986,7 @@ matrix matrix::inverse(unsigned algo) const
 /** Solve a linear system consisting of a m x n matrix and a m x p right hand
  *  side by applying an elimination scheme to the augmented matrix.
  *
- *  @param vars n x p matrix, all elements must be symbols 
+ *  @param vars n x p matrix, all elements must be symbols
  *  @param rhs m x p matrix
  *  @param algo selects the solving algorithm
  *  @return n x p solution matrix
@@ -1002,7 +1002,7 @@ matrix matrix::solve(const matrix & vars,
        const unsigned n = this->cols();
        const unsigned p = rhs.cols();
        
-       // syntax checks    
+       // syntax checks
        if ((rhs.rows() != m) || (vars.rows() != n) || (vars.cols() != p))
                throw (std::logic_error("matrix::solve(): incompatible matrices"));
        for (unsigned ro=0; ro<n; ++ro)
@@ -1018,50 +1018,9 @@ matrix matrix::solve(const matrix & vars,
                for (unsigned c=0; c<p; ++c)
                        aug.m[r*(n+p)+c+n] = rhs.m[r*p+c];
        }
-       
-       // Gather some statistical information about the augmented matrix:
-       bool numeric_flag = true;
-       for (auto & r : aug.m) {
-               if (!r.info(info_flags::numeric)) {
-                       numeric_flag = false;
-                       break;
-               }
-       }
-       
-       // Here is the heuristics in case this routine has to decide:
-       if (algo == solve_algo::automatic) {
-               // Bareiss (fraction-free) elimination is generally a good guess:
-               algo = solve_algo::bareiss;
-               // For m<3, Bareiss elimination is equivalent to division free
-               // elimination but has more logistic overhead
-               if (m<3)
-                       algo = solve_algo::divfree;
-               // This overrides any prior decisions.
-               if (numeric_flag)
-                       algo = solve_algo::gauss;
-       }
-       
+
        // Eliminate the augmented matrix:
-       std::vector<unsigned> colid(aug.cols());
-       for (unsigned c = 0; c < aug.cols(); c++) {
-               colid[c] = c;
-       }
-       switch(algo) {
-               case solve_algo::gauss:
-                       aug.gauss_elimination();
-                       break;
-               case solve_algo::divfree:
-                       aug.division_free_elimination();
-                       break;
-               case solve_algo::bareiss:
-                       aug.fraction_free_elimination();
-                       break;
-               case solve_algo::markowitz:
-                       colid = aug.markowitz_elimination(n);
-                       break;
-               default:
-                       throw std::invalid_argument("matrix::solve(): 'algo' is not one of the solve_algo enum");
-       }
+       auto colid = aug.echelon_form(algo, n);
        
        // assemble the solution matrix:
        matrix sol(n,p);
@@ -1097,20 +1056,23 @@ matrix matrix::solve(const matrix & vars,
        return sol;
 }
 
-
 /** Compute the rank of this matrix. */
 unsigned matrix::rank() const
+{
+       return rank(solve_algo::automatic);
+}
+
+/** Compute the rank of this matrix using the given algorithm,
+ *  which should be a member of enum solve_algo. */
+unsigned matrix::rank(unsigned solve_algo) const
 {
        // Method:
        // Transform this matrix into upper echelon form and then count the
        // number of non-zero rows.
-
        GINAC_ASSERT(row*col==m.capacity());
 
-       // Actually, any elimination scheme will do since we are only
-       // interested in the echelon matrix' zeros.
        matrix to_eliminate = *this;
-       to_eliminate.fraction_free_elimination();
+       to_eliminate.echelon_form(solve_algo, col);
 
        unsigned r = row*col;  // index of last non-zero element
        while (r--) {
@@ -1242,6 +1204,69 @@ ex matrix::determinant_minor() const
        return det;
 }
 
+std::vector<unsigned>
+matrix::echelon_form(unsigned algo, int n)
+{
+       // Here is the heuristics in case this routine has to decide:
+       if (algo == solve_algo::automatic) {
+               // Gather some statistical information about the augmented matrix:
+               bool numeric_flag = true;
+               for (const auto & r : m) {
+                       if (!r.info(info_flags::numeric)) {
+                               numeric_flag = false;
+                               break;
+                       }
+               }
+               unsigned density = 0;
+               for (const auto & r : m) {
+                       density += !r.is_zero();
+               }
+               unsigned ncells = col*row;
+               if (numeric_flag) {
+                       // For numerical matrices Gauss is good, but Markowitz becomes
+                       // better for large sparse matrices.
+                       if ((ncells > 200) && (density < ncells/2)) {
+                               algo = solve_algo::markowitz;
+                       } else {
+                               algo = solve_algo::gauss;
+                       }
+               } else {
+                       // For symbolic matrices Markowitz is good, but Bareiss/Divfree
+                       // is better for small and dense matrices.
+                       if ((ncells < 120) && (density*5 > ncells*3)) {
+                               if (ncells <= 12) {
+                                       algo = solve_algo::divfree;
+                               } else {
+                                       algo = solve_algo::bareiss;
+                               }
+                       } else {
+                               algo = solve_algo::markowitz;
+                       }
+               }
+       }
+       // Eliminate the augmented matrix:
+       std::vector<unsigned> colid(col);
+       for (unsigned c = 0; c < col; c++) {
+               colid[c] = c;
+       }
+       switch(algo) {
+               case solve_algo::gauss:
+                       gauss_elimination();
+                       break;
+               case solve_algo::divfree:
+                       division_free_elimination();
+                       break;
+               case solve_algo::bareiss:
+                       fraction_free_elimination();
+                       break;
+               case solve_algo::markowitz:
+                       colid = markowitz_elimination(n);
+                       break;
+               default:
+                       throw std::invalid_argument("matrix::echelon_form(): 'algo' is not one of the solve_algo enum");
+       }
+       return colid;
+}
 
 /** Perform the steps of an ordinary Gaussian elimination to bring the m x n
  *  matrix into an upper echelon form.  The algorithm is ok for matrices
@@ -1445,7 +1470,7 @@ int matrix::division_free_elimination(const bool det)
                                sign = -sign;
                        for (unsigned r2=r0+1; r2<m; ++r2) {
                                for (unsigned c=c0+1; c<n; ++c)
-                                       this->m[r2*n+c] = (this->m[r0*n+c0]*this->m[r2*n+c] - this->m[r2*n+c0]*this->m[r0*n+c]).expand();
+                                       this->m[r2*n+c] = (this->m[r0*n+c0]*this->m[r2*n+c] - this->m[r2*n+c0]*this->m[r0*n+c]).normal();
                                // fill up left hand side with zeros
                                for (unsigned c=r0; c<=c0; ++c)
                                        this->m[r2*n+c] = _ex0;