]> www.ginac.de Git - ginac.git/blobdiff - ginac/inifcns_trans.cpp
[bugfix] Always #include <lst.h> before using lst. Fixes build error on MinGW.
[ginac.git] / ginac / inifcns_trans.cpp
index 507e18f51639f1c003280064b982f81a7d8f27e9..10a36758f43001f6c02774531522c7fd2667c7c2 100644 (file)
@@ -4,7 +4,7 @@
  *  functions. */
 
 /*
- *  GiNaC Copyright (C) 1999-2001 Johannes Gutenberg University Mainz, Germany
+ *  GiNaC Copyright (C) 1999-2011 Johannes Gutenberg University Mainz, Germany
  *
  *  This program is free software; you can redistribute it and/or modify
  *  it under the terms of the GNU General Public License as published by
  *
  *  You should have received a copy of the GNU General Public License
  *  along with this program; if not, write to the Free Software
- *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
+ *  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
  */
 
-#include <vector>
-#include <stdexcept>
-
 #include "inifcns.h"
 #include "ex.h"
 #include "constant.h"
 #include "numeric.h"
 #include "power.h"
+#include "operators.h"
 #include "relational.h"
 #include "symbol.h"
 #include "pseries.h"
 #include "utils.h"
 
+#include <stdexcept>
+#include <vector>
+
 namespace GiNaC {
 
 //////////
@@ -52,26 +53,28 @@ static ex exp_eval(const ex & x)
 {
        // exp(0) -> 1
        if (x.is_zero()) {
-               return _ex1();
+               return _ex1;
        }
+
        // exp(n*Pi*I/2) -> {+1|+I|-1|-I}
-       const ex TwoExOverPiI=(_ex2()*x)/(Pi*I);
+       const ex TwoExOverPiI=(_ex2*x)/(Pi*I);
        if (TwoExOverPiI.info(info_flags::integer)) {
-               numeric z=mod(ex_to<numeric>(TwoExOverPiI),_num4());
-               if (z.is_equal(_num0()))
-                       return _ex1();
-               if (z.is_equal(_num1()))
+               const numeric z = mod(ex_to<numeric>(TwoExOverPiI),*_num4_p);
+               if (z.is_equal(*_num0_p))
+                       return _ex1;
+               if (z.is_equal(*_num1_p))
                        return ex(I);
-               if (z.is_equal(_num2()))
-                       return _ex_1();
-               if (z.is_equal(_num3()))
+               if (z.is_equal(*_num2_p))
+                       return _ex_1;
+               if (z.is_equal(*_num3_p))
                        return ex(-I);
        }
+
        // exp(log(x)) -> x
        if (is_ex_the_function(x, log))
                return x.op(0);
        
-       // exp(float)
+       // exp(float) -> float
        if (x.info(info_flags::numeric) && !x.info(info_flags::crational))
                return exp(ex_to<numeric>(x));
        
@@ -86,9 +89,28 @@ static ex exp_deriv(const ex & x, unsigned deriv_param)
        return exp(x);
 }
 
+static ex exp_real_part(const ex & x)
+{
+       return exp(GiNaC::real_part(x))*cos(GiNaC::imag_part(x));
+}
+
+static ex exp_imag_part(const ex & x)
+{
+       return exp(GiNaC::real_part(x))*sin(GiNaC::imag_part(x));
+}
+
+static ex exp_conjugate(const ex & x)
+{
+       // conjugate(exp(x))==exp(conjugate(x))
+       return exp(x.conjugate());
+}
+
 REGISTER_FUNCTION(exp, eval_func(exp_eval).
                        evalf_func(exp_evalf).
                        derivative_func(exp_deriv).
+                       real_part_func(exp_real_part).
+                       imag_part_func(exp_imag_part).
+                       conjugate_func(exp_conjugate).
                        latex_name("\\exp"));
 
 //////////
@@ -108,26 +130,25 @@ static ex log_eval(const ex & x)
        if (x.info(info_flags::numeric)) {
                if (x.is_zero())         // log(0) -> infinity
                        throw(pole_error("log_eval(): log(0)",0));
-               if (x.info(info_flags::real) && x.info(info_flags::negative))
+               if (x.info(info_flags::rational) && x.info(info_flags::negative))
                        return (log(-x)+I*Pi);
-               if (x.is_equal(_ex1()))  // log(1) -> 0
-                       return _ex0();
+               if (x.is_equal(_ex1))  // log(1) -> 0
+                       return _ex0;
                if (x.is_equal(I))       // log(I) -> Pi*I/2
-                       return (Pi*I*_num1_2());
+                       return (Pi*I*_ex1_2);
                if (x.is_equal(-I))      // log(-I) -> -Pi*I/2
-                       return (Pi*I*_num_1_2());
-               // log(float)
+                       return (Pi*I*_ex_1_2);
+
+               // log(float) -> float
                if (!x.info(info_flags::crational))
                        return log(ex_to<numeric>(x));
        }
+
        // log(exp(t)) -> t (if -Pi < t.imag() <= Pi):
        if (is_ex_the_function(x, exp)) {
-               ex t = x.op(0);
-               if (t.info(info_flags::numeric)) {
-                       numeric nt = ex_to<numeric>(t);
-                       if (nt.is_real())
-                               return t;
-               }
+               const ex &t = x.op(0);
+               if (t.info(info_flags::real))
+                       return t;
        }
        
        return log(x).hold();
@@ -138,7 +159,7 @@ static ex log_deriv(const ex & x, unsigned deriv_param)
        GINAC_ASSERT(deriv_param==0);
        
        // d/dx log(x) -> 1/x
-       return power(x, _ex_1());
+       return power(x, _ex_1);
 }
 
 static ex log_series(const ex &arg,
@@ -146,12 +167,12 @@ static ex log_series(const ex &arg,
                      int order,
                      unsigned options)
 {
-       GINAC_ASSERT(is_exactly_a<symbol>(rel.lhs()));
+       GINAC_ASSERT(is_a<symbol>(rel.lhs()));
        ex arg_pt;
        bool must_expand_arg = false;
        // maybe substitution of rel into arg fails because of a pole
        try {
-               arg_pt = arg.subs(rel);
+               arg_pt = arg.subs(rel, subs_options::no_pattern);
        } catch (pole_error) {
                must_expand_arg = true;
        }
@@ -177,7 +198,7 @@ static ex log_series(const ex &arg,
                } while (!argser.is_terminating() && argser.nops()==1);
 
                const symbol &s = ex_to<symbol>(rel.lhs());
-               const ex point = rel.rhs();
+               const ex &point = rel.rhs();
                const int n = argser.ldegree(s);
                epvector seq;
                // construct what we carelessly called the n*log(x) term above
@@ -185,13 +206,29 @@ static ex log_series(const ex &arg,
                // expand the log, but only if coeff is real and > 0, since otherwise
                // it would make the branch cut run into the wrong direction
                if (coeff.info(info_flags::positive))
-                       seq.push_back(expair(n*log(s-point)+log(coeff), _ex0()));
+                       seq.push_back(expair(n*log(s-point)+log(coeff), _ex0));
                else
-                       seq.push_back(expair(log(coeff*pow(s-point, n)), _ex0()));
+                       seq.push_back(expair(log(coeff*pow(s-point, n)), _ex0));
 
                if (!argser.is_terminating() || argser.nops()!=1) {
                        // in this case n more (or less) terms are needed
                        // (sadly, to generate them, we have to start from the beginning)
+                       if (n == 0 && coeff == 1) {
+                               epvector epv;
+                               ex acc = (new pseries(rel, epv))->setflag(status_flags::dynallocated);
+                               epv.reserve(2);
+                               epv.push_back(expair(-1, _ex0));
+                               epv.push_back(expair(Order(_ex1), order));
+                               ex rest = pseries(rel, epv).add_series(argser);
+                               for (int i = order-1; i>0; --i) {
+                                       epvector cterm;
+                                       cterm.reserve(1);
+                                       cterm.push_back(expair(i%2 ? _ex1/i : _ex_1/i, _ex0));
+                                       acc = pseries(rel, cterm).add_series(ex_to<pseries>(acc));
+                                       acc = (ex_to<pseries>(rest)).mul_series(ex_to<pseries>(acc));
+                               }
+                               return acc;
+                       }
                        const ex newarg = ex_to<pseries>((arg/coeff).series(rel, order+n, options)).shift_exponents(-n).convert_to_poly(true);
                        return pseries(rel, seq).add_series(ex_to<pseries>(log(newarg).series(rel, order, options)));
                } else  // it was a monomial
@@ -203,21 +240,52 @@ static ex log_series(const ex &arg,
                // This is the branch cut: assemble the primitive series manually and
                // then add the corresponding complex step function.
                const symbol &s = ex_to<symbol>(rel.lhs());
-               const ex point = rel.rhs();
+               const ex &point = rel.rhs();
                const symbol foo;
-               const ex replarg = series(log(arg), s==foo, order).subs(foo==point);
+               const ex replarg = series(log(arg), s==foo, order).subs(foo==point, subs_options::no_pattern);
                epvector seq;
-               seq.push_back(expair(-I*csgn(arg*I)*Pi, _ex0()));
-               seq.push_back(expair(Order(_ex1()), order));
+               seq.push_back(expair(-I*csgn(arg*I)*Pi, _ex0));
+               seq.push_back(expair(Order(_ex1), order));
                return series(replarg - I*Pi + pseries(rel, seq), rel, order);
        }
        throw do_taylor();  // caught by function::series()
 }
 
+static ex log_real_part(const ex & x)
+{
+       if (x.info(info_flags::nonnegative))
+               return log(x).hold();
+       return log(abs(x));
+}
+
+static ex log_imag_part(const ex & x)
+{
+       if (x.info(info_flags::nonnegative))
+               return 0;
+       return atan2(GiNaC::imag_part(x), GiNaC::real_part(x));
+}
+
+static ex log_conjugate(const ex & x)
+{
+       // conjugate(log(x))==log(conjugate(x)) unless on the branch cut which
+       // runs along the negative real axis.
+       if (x.info(info_flags::positive)) {
+               return log(x);
+       }
+       if (is_exactly_a<numeric>(x) &&
+           !x.imag_part().is_zero()) {
+               return log(x.conjugate());
+       }
+       return conjugate_function(log(x)).hold();
+}
+
 REGISTER_FUNCTION(log, eval_func(log_eval).
                        evalf_func(log_evalf).
                        derivative_func(log_deriv).
                        series_func(log_series).
+                       real_part_func(log_real_part).
+                       imag_part_func(log_imag_part).
+                       conjugate_func(log_conjugate).
                        latex_name("\\ln"));
 
 //////////
@@ -235,55 +303,62 @@ static ex sin_evalf(const ex & x)
 static ex sin_eval(const ex & x)
 {
        // sin(n/d*Pi) -> { all known non-nested radicals }
-       const ex SixtyExOverPi = _ex60()*x/Pi;
-       ex sign = _ex1();
+       const ex SixtyExOverPi = _ex60*x/Pi;
+       ex sign = _ex1;
        if (SixtyExOverPi.info(info_flags::integer)) {
-               numeric z = mod(ex_to<numeric>(SixtyExOverPi),_num120());
-               if (z>=_num60()) {
+               numeric z = mod(ex_to<numeric>(SixtyExOverPi),*_num120_p);
+               if (z>=*_num60_p) {
                        // wrap to interval [0, Pi)
-                       z -= _num60();
-                       sign = _ex_1();
+                       z -= *_num60_p;
+                       sign = _ex_1;
                }
-               if (z>_num30()) {
+               if (z>*_num30_p) {
                        // wrap to interval [0, Pi/2)
-                       z = _num60()-z;
+                       z = *_num60_p-z;
                }
-               if (z.is_equal(_num0()))  // sin(0)       -> 0
-                       return _ex0();
-               if (z.is_equal(_num5()))  // sin(Pi/12)   -> sqrt(6)/4*(1-sqrt(3)/3)
-                       return sign*_ex1_4()*power(_ex6(),_ex1_2())*(_ex1()+_ex_1_3()*power(_ex3(),_ex1_2()));
-               if (z.is_equal(_num6()))  // sin(Pi/10)   -> sqrt(5)/4-1/4
-                       return sign*(_ex1_4()*power(_ex5(),_ex1_2())+_ex_1_4());
-               if (z.is_equal(_num10())) // sin(Pi/6)    -> 1/2
-                       return sign*_ex1_2();
-               if (z.is_equal(_num15())) // sin(Pi/4)    -> sqrt(2)/2
-                       return sign*_ex1_2()*power(_ex2(),_ex1_2());
-               if (z.is_equal(_num18())) // sin(3/10*Pi) -> sqrt(5)/4+1/4
-                       return sign*(_ex1_4()*power(_ex5(),_ex1_2())+_ex1_4());
-               if (z.is_equal(_num20())) // sin(Pi/3)    -> sqrt(3)/2
-                       return sign*_ex1_2()*power(_ex3(),_ex1_2());
-               if (z.is_equal(_num25())) // sin(5/12*Pi) -> sqrt(6)/4*(1+sqrt(3)/3)
-                       return sign*_ex1_4()*power(_ex6(),_ex1_2())*(_ex1()+_ex1_3()*power(_ex3(),_ex1_2()));
-               if (z.is_equal(_num30())) // sin(Pi/2)    -> 1
-                       return sign*_ex1();
+               if (z.is_equal(*_num0_p))  // sin(0)       -> 0
+                       return _ex0;
+               if (z.is_equal(*_num5_p))  // sin(Pi/12)   -> sqrt(6)/4*(1-sqrt(3)/3)
+                       return sign*_ex1_4*sqrt(_ex6)*(_ex1+_ex_1_3*sqrt(_ex3));
+               if (z.is_equal(*_num6_p))  // sin(Pi/10)   -> sqrt(5)/4-1/4
+                       return sign*(_ex1_4*sqrt(_ex5)+_ex_1_4);
+               if (z.is_equal(*_num10_p)) // sin(Pi/6)    -> 1/2
+                       return sign*_ex1_2;
+               if (z.is_equal(*_num15_p)) // sin(Pi/4)    -> sqrt(2)/2
+                       return sign*_ex1_2*sqrt(_ex2);
+               if (z.is_equal(*_num18_p)) // sin(3/10*Pi) -> sqrt(5)/4+1/4
+                       return sign*(_ex1_4*sqrt(_ex5)+_ex1_4);
+               if (z.is_equal(*_num20_p)) // sin(Pi/3)    -> sqrt(3)/2
+                       return sign*_ex1_2*sqrt(_ex3);
+               if (z.is_equal(*_num25_p)) // sin(5/12*Pi) -> sqrt(6)/4*(1+sqrt(3)/3)
+                       return sign*_ex1_4*sqrt(_ex6)*(_ex1+_ex1_3*sqrt(_ex3));
+               if (z.is_equal(*_num30_p)) // sin(Pi/2)    -> 1
+                       return sign;
        }
-       
+
        if (is_exactly_a<function>(x)) {
-               ex t = x.op(0);
+               const ex &t = x.op(0);
+
                // sin(asin(x)) -> x
                if (is_ex_the_function(x, asin))
                        return t;
+
                // sin(acos(x)) -> sqrt(1-x^2)
                if (is_ex_the_function(x, acos))
-                       return power(_ex1()-power(t,_ex2()),_ex1_2());
-               // sin(atan(x)) -> x*(1+x^2)^(-1/2)
+                       return sqrt(_ex1-power(t,_ex2));
+
+               // sin(atan(x)) -> x/sqrt(1+x^2)
                if (is_ex_the_function(x, atan))
-                       return t*power(_ex1()+power(t,_ex2()),_ex_1_2());
+                       return t*power(_ex1+power(t,_ex2),_ex_1_2);
        }
        
        // sin(float) -> float
        if (x.info(info_flags::numeric) && !x.info(info_flags::crational))
                return sin(ex_to<numeric>(x));
+
+       // sin() is odd
+       if (x.info(info_flags::negative))
+               return -sin(-x);
        
        return sin(x).hold();
 }
@@ -296,9 +371,28 @@ static ex sin_deriv(const ex & x, unsigned deriv_param)
        return cos(x);
 }
 
+static ex sin_real_part(const ex & x)
+{
+       return cosh(GiNaC::imag_part(x))*sin(GiNaC::real_part(x));
+}
+
+static ex sin_imag_part(const ex & x)
+{
+       return sinh(GiNaC::imag_part(x))*cos(GiNaC::real_part(x));
+}
+
+static ex sin_conjugate(const ex & x)
+{
+       // conjugate(sin(x))==sin(conjugate(x))
+       return sin(x.conjugate());
+}
+
 REGISTER_FUNCTION(sin, eval_func(sin_eval).
                        evalf_func(sin_evalf).
                        derivative_func(sin_deriv).
+                       real_part_func(sin_real_part).
+                       imag_part_func(sin_imag_part).
+                       conjugate_func(sin_conjugate).
                        latex_name("\\sin"));
 
 //////////
@@ -316,56 +410,63 @@ static ex cos_evalf(const ex & x)
 static ex cos_eval(const ex & x)
 {
        // cos(n/d*Pi) -> { all known non-nested radicals }
-       const ex SixtyExOverPi = _ex60()*x/Pi;
-       ex sign = _ex1();
+       const ex SixtyExOverPi = _ex60*x/Pi;
+       ex sign = _ex1;
        if (SixtyExOverPi.info(info_flags::integer)) {
-               numeric z = mod(ex_to<numeric>(SixtyExOverPi),_num120());
-               if (z>=_num60()) {
+               numeric z = mod(ex_to<numeric>(SixtyExOverPi),*_num120_p);
+               if (z>=*_num60_p) {
                        // wrap to interval [0, Pi)
-                       z = _num120()-z;
+                       z = *_num120_p-z;
                }
-               if (z>=_num30()) {
+               if (z>=*_num30_p) {
                        // wrap to interval [0, Pi/2)
-                       z = _num60()-z;
-                       sign = _ex_1();
+                       z = *_num60_p-z;
+                       sign = _ex_1;
                }
-               if (z.is_equal(_num0()))  // cos(0)       -> 1
-                       return sign*_ex1();
-               if (z.is_equal(_num5()))  // cos(Pi/12)   -> sqrt(6)/4*(1+sqrt(3)/3)
-                       return sign*_ex1_4()*power(_ex6(),_ex1_2())*(_ex1()+_ex1_3()*power(_ex3(),_ex1_2()));
-               if (z.is_equal(_num10())) // cos(Pi/6)    -> sqrt(3)/2
-                       return sign*_ex1_2()*power(_ex3(),_ex1_2());
-               if (z.is_equal(_num12())) // cos(Pi/5)    -> sqrt(5)/4+1/4
-                       return sign*(_ex1_4()*power(_ex5(),_ex1_2())+_ex1_4());
-               if (z.is_equal(_num15())) // cos(Pi/4)    -> sqrt(2)/2
-                       return sign*_ex1_2()*power(_ex2(),_ex1_2());
-               if (z.is_equal(_num20())) // cos(Pi/3)    -> 1/2
-                       return sign*_ex1_2();
-               if (z.is_equal(_num24())) // cos(2/5*Pi)  -> sqrt(5)/4-1/4x
-                       return sign*(_ex1_4()*power(_ex5(),_ex1_2())+_ex_1_4());
-               if (z.is_equal(_num25())) // cos(5/12*Pi) -> sqrt(6)/4*(1-sqrt(3)/3)
-                       return sign*_ex1_4()*power(_ex6(),_ex1_2())*(_ex1()+_ex_1_3()*power(_ex3(),_ex1_2()));
-               if (z.is_equal(_num30())) // cos(Pi/2)    -> 0
-                       return sign*_ex0();
+               if (z.is_equal(*_num0_p))  // cos(0)       -> 1
+                       return sign;
+               if (z.is_equal(*_num5_p))  // cos(Pi/12)   -> sqrt(6)/4*(1+sqrt(3)/3)
+                       return sign*_ex1_4*sqrt(_ex6)*(_ex1+_ex1_3*sqrt(_ex3));
+               if (z.is_equal(*_num10_p)) // cos(Pi/6)    -> sqrt(3)/2
+                       return sign*_ex1_2*sqrt(_ex3);
+               if (z.is_equal(*_num12_p)) // cos(Pi/5)    -> sqrt(5)/4+1/4
+                       return sign*(_ex1_4*sqrt(_ex5)+_ex1_4);
+               if (z.is_equal(*_num15_p)) // cos(Pi/4)    -> sqrt(2)/2
+                       return sign*_ex1_2*sqrt(_ex2);
+               if (z.is_equal(*_num20_p)) // cos(Pi/3)    -> 1/2
+                       return sign*_ex1_2;
+               if (z.is_equal(*_num24_p)) // cos(2/5*Pi)  -> sqrt(5)/4-1/4x
+                       return sign*(_ex1_4*sqrt(_ex5)+_ex_1_4);
+               if (z.is_equal(*_num25_p)) // cos(5/12*Pi) -> sqrt(6)/4*(1-sqrt(3)/3)
+                       return sign*_ex1_4*sqrt(_ex6)*(_ex1+_ex_1_3*sqrt(_ex3));
+               if (z.is_equal(*_num30_p)) // cos(Pi/2)    -> 0
+                       return _ex0;
        }
-       
+
        if (is_exactly_a<function>(x)) {
-               ex t = x.op(0);
+               const ex &t = x.op(0);
+
                // cos(acos(x)) -> x
                if (is_ex_the_function(x, acos))
                        return t;
-               // cos(asin(x)) -> (1-x^2)^(1/2)
+
+               // cos(asin(x)) -> sqrt(1-x^2)
                if (is_ex_the_function(x, asin))
-                       return power(_ex1()-power(t,_ex2()),_ex1_2());
-               // cos(atan(x)) -> (1+x^2)^(-1/2)
+                       return sqrt(_ex1-power(t,_ex2));
+
+               // cos(atan(x)) -> 1/sqrt(1+x^2)
                if (is_ex_the_function(x, atan))
-                       return power(_ex1()+power(t,_ex2()),_ex_1_2());
+                       return power(_ex1+power(t,_ex2),_ex_1_2);
        }
        
        // cos(float) -> float
        if (x.info(info_flags::numeric) && !x.info(info_flags::crational))
                return cos(ex_to<numeric>(x));
        
+       // cos() is even
+       if (x.info(info_flags::negative))
+               return cos(-x);
+       
        return cos(x).hold();
 }
 
@@ -374,12 +475,31 @@ static ex cos_deriv(const ex & x, unsigned deriv_param)
        GINAC_ASSERT(deriv_param==0);
 
        // d/dx cos(x) -> -sin(x)
-       return _ex_1()*sin(x);
+       return -sin(x);
+}
+
+static ex cos_real_part(const ex & x)
+{
+       return cosh(GiNaC::imag_part(x))*cos(GiNaC::real_part(x));
+}
+
+static ex cos_imag_part(const ex & x)
+{
+       return -sinh(GiNaC::imag_part(x))*sin(GiNaC::real_part(x));
+}
+
+static ex cos_conjugate(const ex & x)
+{
+       // conjugate(cos(x))==cos(conjugate(x))
+       return cos(x.conjugate());
 }
 
 REGISTER_FUNCTION(cos, eval_func(cos_eval).
                        evalf_func(cos_evalf).
                        derivative_func(cos_deriv).
+                       real_part_func(cos_real_part).
+                       imag_part_func(cos_imag_part).
+                       conjugate_func(cos_conjugate).
                        latex_name("\\cos"));
 
 //////////
@@ -397,46 +517,49 @@ static ex tan_evalf(const ex & x)
 static ex tan_eval(const ex & x)
 {
        // tan(n/d*Pi) -> { all known non-nested radicals }
-       const ex SixtyExOverPi = _ex60()*x/Pi;
-       ex sign = _ex1();
+       const ex SixtyExOverPi = _ex60*x/Pi;
+       ex sign = _ex1;
        if (SixtyExOverPi.info(info_flags::integer)) {
-               numeric z = mod(ex_to<numeric>(SixtyExOverPi),_num60());
-               if (z>=_num60()) {
+               numeric z = mod(ex_to<numeric>(SixtyExOverPi),*_num60_p);
+               if (z>=*_num60_p) {
                        // wrap to interval [0, Pi)
-                       z -= _num60();
+                       z -= *_num60_p;
                }
-               if (z>=_num30()) {
+               if (z>=*_num30_p) {
                        // wrap to interval [0, Pi/2)
-                       z = _num60()-z;
-                       sign = _ex_1();
+                       z = *_num60_p-z;
+                       sign = _ex_1;
                }
-               if (z.is_equal(_num0()))  // tan(0)       -> 0
-                       return _ex0();
-               if (z.is_equal(_num5()))  // tan(Pi/12)   -> 2-sqrt(3)
-                       return sign*(_ex2()-power(_ex3(),_ex1_2()));
-               if (z.is_equal(_num10())) // tan(Pi/6)    -> sqrt(3)/3
-                       return sign*_ex1_3()*power(_ex3(),_ex1_2());
-               if (z.is_equal(_num15())) // tan(Pi/4)    -> 1
-                       return sign*_ex1();
-               if (z.is_equal(_num20())) // tan(Pi/3)    -> sqrt(3)
-                       return sign*power(_ex3(),_ex1_2());
-               if (z.is_equal(_num25())) // tan(5/12*Pi) -> 2+sqrt(3)
-                       return sign*(power(_ex3(),_ex1_2())+_ex2());
-               if (z.is_equal(_num30())) // tan(Pi/2)    -> infinity
+               if (z.is_equal(*_num0_p))  // tan(0)       -> 0
+                       return _ex0;
+               if (z.is_equal(*_num5_p))  // tan(Pi/12)   -> 2-sqrt(3)
+                       return sign*(_ex2-sqrt(_ex3));
+               if (z.is_equal(*_num10_p)) // tan(Pi/6)    -> sqrt(3)/3
+                       return sign*_ex1_3*sqrt(_ex3);
+               if (z.is_equal(*_num15_p)) // tan(Pi/4)    -> 1
+                       return sign;
+               if (z.is_equal(*_num20_p)) // tan(Pi/3)    -> sqrt(3)
+                       return sign*sqrt(_ex3);
+               if (z.is_equal(*_num25_p)) // tan(5/12*Pi) -> 2+sqrt(3)
+                       return sign*(sqrt(_ex3)+_ex2);
+               if (z.is_equal(*_num30_p)) // tan(Pi/2)    -> infinity
                        throw (pole_error("tan_eval(): simple pole",1));
        }
-       
+
        if (is_exactly_a<function>(x)) {
-               ex t = x.op(0);
+               const ex &t = x.op(0);
+
                // tan(atan(x)) -> x
                if (is_ex_the_function(x, atan))
                        return t;
-               // tan(asin(x)) -> x*(1+x^2)^(-1/2)
+
+               // tan(asin(x)) -> x/sqrt(1+x^2)
                if (is_ex_the_function(x, asin))
-                       return t*power(_ex1()-power(t,_ex2()),_ex_1_2());
-               // tan(acos(x)) -> (1-x^2)^(1/2)/x
+                       return t*power(_ex1-power(t,_ex2),_ex_1_2);
+
+               // tan(acos(x)) -> sqrt(1-x^2)/x
                if (is_ex_the_function(x, acos))
-                       return power(t,_ex_1())*power(_ex1()-power(t,_ex2()),_ex1_2());
+                       return power(t,_ex_1)*sqrt(_ex1-power(t,_ex2));
        }
        
        // tan(float) -> float
@@ -444,6 +567,10 @@ static ex tan_eval(const ex & x)
                return tan(ex_to<numeric>(x));
        }
        
+       // tan() is odd
+       if (x.info(info_flags::negative))
+               return -tan(-x);
+       
        return tan(x).hold();
 }
 
@@ -452,7 +579,21 @@ static ex tan_deriv(const ex & x, unsigned deriv_param)
        GINAC_ASSERT(deriv_param==0);
        
        // d/dx tan(x) -> 1+tan(x)^2;
-       return (_ex1()+power(tan(x),_ex2()));
+       return (_ex1+power(tan(x),_ex2));
+}
+
+static ex tan_real_part(const ex & x)
+{
+       ex a = GiNaC::real_part(x);
+       ex b = GiNaC::imag_part(x);
+       return tan(a)/(1+power(tan(a),2)*power(tan(b),2));
+}
+
+static ex tan_imag_part(const ex & x)
+{
+       ex a = GiNaC::real_part(x);
+       ex b = GiNaC::imag_part(x);
+       return tanh(b)/(1+power(tan(a),2)*power(tan(b),2));
 }
 
 static ex tan_series(const ex &x,
@@ -460,21 +601,30 @@ static ex tan_series(const ex &x,
                      int order,
                      unsigned options)
 {
-       GINAC_ASSERT(is_exactly_a<symbol>(rel.lhs()));
+       GINAC_ASSERT(is_a<symbol>(rel.lhs()));
        // method:
        // Taylor series where there is no pole falls back to tan_deriv.
        // On a pole simply expand sin(x)/cos(x).
-       const ex x_pt = x.subs(rel);
+       const ex x_pt = x.subs(rel, subs_options::no_pattern);
        if (!(2*x_pt/Pi).info(info_flags::odd))
                throw do_taylor();  // caught by function::series()
        // if we got here we have to care for a simple pole
-       return (sin(x)/cos(x)).series(rel, order+2, options);
+       return (sin(x)/cos(x)).series(rel, order, options);
+}
+
+static ex tan_conjugate(const ex & x)
+{
+       // conjugate(tan(x))==tan(conjugate(x))
+       return tan(x.conjugate());
 }
 
 REGISTER_FUNCTION(tan, eval_func(tan_eval).
                        evalf_func(tan_evalf).
                        derivative_func(tan_deriv).
                        series_func(tan_series).
+                       real_part_func(tan_real_part).
+                       imag_part_func(tan_imag_part).
+                       conjugate_func(tan_conjugate).
                        latex_name("\\tan"));
 
 //////////
@@ -492,24 +642,34 @@ static ex asin_evalf(const ex & x)
 static ex asin_eval(const ex & x)
 {
        if (x.info(info_flags::numeric)) {
+
                // asin(0) -> 0
                if (x.is_zero())
                        return x;
+
                // asin(1/2) -> Pi/6
-               if (x.is_equal(_ex1_2()))
+               if (x.is_equal(_ex1_2))
                        return numeric(1,6)*Pi;
+
                // asin(1) -> Pi/2
-               if (x.is_equal(_ex1()))
-                       return _num1_2()*Pi;
+               if (x.is_equal(_ex1))
+                       return _ex1_2*Pi;
+
                // asin(-1/2) -> -Pi/6
-               if (x.is_equal(_ex_1_2()))
+               if (x.is_equal(_ex_1_2))
                        return numeric(-1,6)*Pi;
+
                // asin(-1) -> -Pi/2
-               if (x.is_equal(_ex_1()))
-                       return _num_1_2()*Pi;
+               if (x.is_equal(_ex_1))
+                       return _ex_1_2*Pi;
+
                // asin(float) -> float
                if (!x.info(info_flags::crational))
                        return asin(ex_to<numeric>(x));
+
+               // asin() is odd
+               if (x.info(info_flags::negative))
+                       return -asin(-x);
        }
        
        return asin(x).hold();
@@ -520,12 +680,24 @@ static ex asin_deriv(const ex & x, unsigned deriv_param)
        GINAC_ASSERT(deriv_param==0);
        
        // d/dx asin(x) -> 1/sqrt(1-x^2)
-       return power(1-power(x,_ex2()),_ex_1_2());
+       return power(1-power(x,_ex2),_ex_1_2);
+}
+
+static ex asin_conjugate(const ex & x)
+{
+       // conjugate(asin(x))==asin(conjugate(x)) unless on the branch cuts which
+       // run along the real axis outside the interval [-1, +1].
+       if (is_exactly_a<numeric>(x) &&
+           (!x.imag_part().is_zero() || (x > *_num_1_p && x < *_num1_p))) {
+               return asin(x.conjugate());
+       }
+       return conjugate_function(asin(x)).hold();
 }
 
 REGISTER_FUNCTION(asin, eval_func(asin_eval).
                         evalf_func(asin_evalf).
                         derivative_func(asin_deriv).
+                        conjugate_func(asin_conjugate).
                         latex_name("\\arcsin"));
 
 //////////
@@ -543,24 +715,34 @@ static ex acos_evalf(const ex & x)
 static ex acos_eval(const ex & x)
 {
        if (x.info(info_flags::numeric)) {
+
                // acos(1) -> 0
-               if (x.is_equal(_ex1()))
-                       return _ex0();
+               if (x.is_equal(_ex1))
+                       return _ex0;
+
                // acos(1/2) -> Pi/3
-               if (x.is_equal(_ex1_2()))
-                       return _ex1_3()*Pi;
+               if (x.is_equal(_ex1_2))
+                       return _ex1_3*Pi;
+
                // acos(0) -> Pi/2
                if (x.is_zero())
-                       return _ex1_2()*Pi;
+                       return _ex1_2*Pi;
+
                // acos(-1/2) -> 2/3*Pi
-               if (x.is_equal(_ex_1_2()))
+               if (x.is_equal(_ex_1_2))
                        return numeric(2,3)*Pi;
+
                // acos(-1) -> Pi
-               if (x.is_equal(_ex_1()))
+               if (x.is_equal(_ex_1))
                        return Pi;
+
                // acos(float) -> float
                if (!x.info(info_flags::crational))
                        return acos(ex_to<numeric>(x));
+
+               // acos(-x) -> Pi-acos(x)
+               if (x.info(info_flags::negative))
+                       return Pi-acos(-x);
        }
        
        return acos(x).hold();
@@ -571,12 +753,24 @@ static ex acos_deriv(const ex & x, unsigned deriv_param)
        GINAC_ASSERT(deriv_param==0);
        
        // d/dx acos(x) -> -1/sqrt(1-x^2)
-       return _ex_1()*power(1-power(x,_ex2()),_ex_1_2());
+       return -power(1-power(x,_ex2),_ex_1_2);
+}
+
+static ex acos_conjugate(const ex & x)
+{
+       // conjugate(acos(x))==acos(conjugate(x)) unless on the branch cuts which
+       // run along the real axis outside the interval [-1, +1].
+       if (is_exactly_a<numeric>(x) &&
+           (!x.imag_part().is_zero() || (x > *_num_1_p && x < *_num1_p))) {
+               return acos(x.conjugate());
+       }
+       return conjugate_function(acos(x)).hold();
 }
 
 REGISTER_FUNCTION(acos, eval_func(acos_eval).
                         evalf_func(acos_evalf).
                         derivative_func(acos_deriv).
+                        conjugate_func(acos_conjugate).
                         latex_name("\\arccos"));
 
 //////////
@@ -594,20 +788,29 @@ static ex atan_evalf(const ex & x)
 static ex atan_eval(const ex & x)
 {
        if (x.info(info_flags::numeric)) {
+
                // atan(0) -> 0
                if (x.is_zero())
-                       return _ex0();
+                       return _ex0;
+
                // atan(1) -> Pi/4
-               if (x.is_equal(_ex1()))
-                       return _ex1_4()*Pi;
+               if (x.is_equal(_ex1))
+                       return _ex1_4*Pi;
+
                // atan(-1) -> -Pi/4
-               if (x.is_equal(_ex_1()))
-                       return _ex_1_4()*Pi;
+               if (x.is_equal(_ex_1))
+                       return _ex_1_4*Pi;
+
                if (x.is_equal(I) || x.is_equal(-I))
                        throw (pole_error("atan_eval(): logarithmic pole",0));
+
                // atan(float) -> float
                if (!x.info(info_flags::crational))
                        return atan(ex_to<numeric>(x));
+
+               // atan() is odd
+               if (x.info(info_flags::negative))
+                       return -atan(-x);
        }
        
        return atan(x).hold();
@@ -618,7 +821,7 @@ static ex atan_deriv(const ex & x, unsigned deriv_param)
        GINAC_ASSERT(deriv_param==0);
 
        // d/dx atan(x) -> 1/(1+x^2)
-       return power(_ex1()+power(x,_ex2()), _ex_1());
+       return power(_ex1+power(x,_ex2), _ex_1);
 }
 
 static ex atan_series(const ex &arg,
@@ -626,7 +829,7 @@ static ex atan_series(const ex &arg,
                       int order,
                       unsigned options)
 {
-       GINAC_ASSERT(is_exactly_a<symbol>(rel.lhs()));
+       GINAC_ASSERT(is_a<symbol>(rel.lhs()));
        // method:
        // Taylor series where there is no pole or cut falls back to atan_deriv.
        // There are two branch cuts, one runnig from I up the imaginary axis and
@@ -635,10 +838,10 @@ static ex atan_series(const ex &arg,
        // On the branch cuts and the poles series expand
        //     (log(1+I*x)-log(1-I*x))/(2*I)
        // instead.
-       const ex arg_pt = arg.subs(rel);
+       const ex arg_pt = arg.subs(rel, subs_options::no_pattern);
        if (!(I*arg_pt).info(info_flags::real))
                throw do_taylor();     // Re(x) != 0
-       if ((I*arg_pt).info(info_flags::real) && abs(I*arg_pt)<_ex1())
+       if ((I*arg_pt).info(info_flags::real) && abs(I*arg_pt)<_ex1)
                throw do_taylor();     // Re(x) == 0, but abs(x)<1
        // care for the poles, using the defining formula for atan()...
        if (arg_pt.is_equal(I) || arg_pt.is_equal(-I))
@@ -648,26 +851,43 @@ static ex atan_series(const ex &arg,
                // This is the branch cut: assemble the primitive series manually and
                // then add the corresponding complex step function.
                const symbol &s = ex_to<symbol>(rel.lhs());
-               const ex point = rel.rhs();
+               const ex &point = rel.rhs();
                const symbol foo;
-               const ex replarg = series(atan(arg), s==foo, order).subs(foo==point);
-               ex Order0correction = replarg.op(0)+csgn(arg)*Pi*_ex_1_2();
-               if ((I*arg_pt)<_ex0())
-                       Order0correction += log((I*arg_pt+_ex_1())/(I*arg_pt+_ex1()))*I*_ex_1_2();
+               const ex replarg = series(atan(arg), s==foo, order).subs(foo==point, subs_options::no_pattern);
+               ex Order0correction = replarg.op(0)+csgn(arg)*Pi*_ex_1_2;
+               if ((I*arg_pt)<_ex0)
+                       Order0correction += log((I*arg_pt+_ex_1)/(I*arg_pt+_ex1))*I*_ex_1_2;
                else
-                       Order0correction += log((I*arg_pt+_ex1())/(I*arg_pt+_ex_1()))*I*_ex1_2();
+                       Order0correction += log((I*arg_pt+_ex1)/(I*arg_pt+_ex_1))*I*_ex1_2;
                epvector seq;
-               seq.push_back(expair(Order0correction, _ex0()));
-               seq.push_back(expair(Order(_ex1()), order));
+               seq.push_back(expair(Order0correction, _ex0));
+               seq.push_back(expair(Order(_ex1), order));
                return series(replarg - pseries(rel, seq), rel, order);
        }
        throw do_taylor();
 }
 
+static ex atan_conjugate(const ex & x)
+{
+       // conjugate(atan(x))==atan(conjugate(x)) unless on the branch cuts which
+       // run along the imaginary axis outside the interval [-I, +I].
+       if (x.info(info_flags::real))
+               return atan(x);
+       if (is_exactly_a<numeric>(x)) {
+               const numeric x_re = ex_to<numeric>(x.real_part());
+               const numeric x_im = ex_to<numeric>(x.imag_part());
+               if (!x_re.is_zero() ||
+                   (x_im > *_num_1_p && x_im < *_num1_p))
+                       return atan(x.conjugate());
+       }
+       return conjugate_function(atan(x)).hold();
+}
+
 REGISTER_FUNCTION(atan, eval_func(atan_eval).
                         evalf_func(atan_evalf).
                         derivative_func(atan_deriv).
                         series_func(atan_series).
+                        conjugate_func(atan_conjugate).
                         latex_name("\\arctan"));
 
 //////////
@@ -677,19 +897,80 @@ REGISTER_FUNCTION(atan, eval_func(atan_eval).
 static ex atan2_evalf(const ex &y, const ex &x)
 {
        if (is_exactly_a<numeric>(y) && is_exactly_a<numeric>(x))
-               return atan2(ex_to<numeric>(y), ex_to<numeric>(x));
+               return atan(ex_to<numeric>(y), ex_to<numeric>(x));
        
        return atan2(y, x).hold();
 }
 
 static ex atan2_eval(const ex & y, const ex & x)
 {
-       if (y.info(info_flags::numeric) && !y.info(info_flags::crational) &&
-               x.info(info_flags::numeric) && !x.info(info_flags::crational)) {
-               return atan2_evalf(y,x);
+       if (y.is_zero()) {
+
+               // atan2(0, 0) -> 0
+               if (x.is_zero())
+                       return _ex0;
+
+               // atan2(0, x), x real and positive -> 0
+               if (x.info(info_flags::positive))
+                       return _ex0;
+
+               // atan2(0, x), x real and negative -> Pi
+               if (x.info(info_flags::negative))
+                       return Pi;
        }
-       
-       return atan2(y,x).hold();
+
+       if (x.is_zero()) {
+
+               // atan2(y, 0), y real and positive -> Pi/2
+               if (y.info(info_flags::positive))
+                       return _ex1_2*Pi;
+
+               // atan2(y, 0), y real and negative -> -Pi/2
+               if (y.info(info_flags::negative))
+                       return _ex_1_2*Pi;
+       }
+
+       if (y.is_equal(x)) {
+
+               // atan2(y, y), y real and positive -> Pi/4
+               if (y.info(info_flags::positive))
+                       return _ex1_4*Pi;
+
+               // atan2(y, y), y real and negative -> -3/4*Pi
+               if (y.info(info_flags::negative))
+                       return numeric(-3, 4)*Pi;
+       }
+
+       if (y.is_equal(-x)) {
+
+               // atan2(y, -y), y real and positive -> 3*Pi/4
+               if (y.info(info_flags::positive))
+                       return numeric(3, 4)*Pi;
+
+               // atan2(y, -y), y real and negative -> -Pi/4
+               if (y.info(info_flags::negative))
+                       return _ex_1_4*Pi;
+       }
+
+       // atan2(float, float) -> float
+       if (is_a<numeric>(y) && !y.info(info_flags::crational) &&
+           is_a<numeric>(x) && !x.info(info_flags::crational))
+               return atan(ex_to<numeric>(y), ex_to<numeric>(x));
+
+       // atan2(real, real) -> atan(y/x) +/- Pi
+       if (y.info(info_flags::real) && x.info(info_flags::real)) {
+               if (x.info(info_flags::positive))
+                       return atan(y/x);
+
+               if (x.info(info_flags::negative)) {
+                       if (y.info(info_flags::positive))
+                               return atan(y/x)+Pi;
+                       if (y.info(info_flags::negative))
+                               return atan(y/x)-Pi;
+               }
+       }
+
+       return atan2(y, x).hold();
 }    
 
 static ex atan2_deriv(const ex & y, const ex & x, unsigned deriv_param)
@@ -697,11 +978,11 @@ static ex atan2_deriv(const ex & y, const ex & x, unsigned deriv_param)
        GINAC_ASSERT(deriv_param<2);
        
        if (deriv_param==0) {
-               // d/dy atan(y,x)
-               return x*power(power(x,_ex2())+power(y,_ex2()),_ex_1());
+               // d/dy atan2(y,x)
+               return x*power(power(x,_ex2)+power(y,_ex2),_ex_1);
        }
-       // d/dx atan(y,x)
-       return -y*power(power(x,_ex2())+power(y,_ex2()),_ex_1());
+       // d/dx atan2(y,x)
+       return -y*power(power(x,_ex2)+power(y,_ex2),_ex_1);
 }
 
 REGISTER_FUNCTION(atan2, eval_func(atan2_eval).
@@ -723,10 +1004,18 @@ static ex sinh_evalf(const ex & x)
 static ex sinh_eval(const ex & x)
 {
        if (x.info(info_flags::numeric)) {
-               if (x.is_zero())  // sinh(0) -> 0
-                       return _ex0();        
-               if (!x.info(info_flags::crational))  // sinh(float) -> float
+
+               // sinh(0) -> 0
+               if (x.is_zero())
+                       return _ex0;        
+
+               // sinh(float) -> float
+               if (!x.info(info_flags::crational))
                        return sinh(ex_to<numeric>(x));
+
+               // sinh() is odd
+               if (x.info(info_flags::negative))
+                       return -sinh(-x);
        }
        
        if ((x/Pi).info(info_flags::numeric) &&
@@ -734,16 +1023,19 @@ static ex sinh_eval(const ex & x)
                return I*sin(x/I);
        
        if (is_exactly_a<function>(x)) {
-               ex t = x.op(0);
+               const ex &t = x.op(0);
+
                // sinh(asinh(x)) -> x
                if (is_ex_the_function(x, asinh))
                        return t;
-               // sinh(acosh(x)) -> (x-1)^(1/2) * (x+1)^(1/2)
+
+               // sinh(acosh(x)) -> sqrt(x-1) * sqrt(x+1)
                if (is_ex_the_function(x, acosh))
-                       return power(t-_ex1(),_ex1_2())*power(t+_ex1(),_ex1_2());
-               // sinh(atanh(x)) -> x*(1-x^2)^(-1/2)
+                       return sqrt(t-_ex1)*sqrt(t+_ex1);
+
+               // sinh(atanh(x)) -> x/sqrt(1-x^2)
                if (is_ex_the_function(x, atanh))
-                       return t*power(_ex1()-power(t,_ex2()),_ex_1_2());
+                       return t*power(_ex1-power(t,_ex2),_ex_1_2);
        }
        
        return sinh(x).hold();
@@ -757,9 +1049,28 @@ static ex sinh_deriv(const ex & x, unsigned deriv_param)
        return cosh(x);
 }
 
+static ex sinh_real_part(const ex & x)
+{
+       return sinh(GiNaC::real_part(x))*cos(GiNaC::imag_part(x));
+}
+
+static ex sinh_imag_part(const ex & x)
+{
+       return cosh(GiNaC::real_part(x))*sin(GiNaC::imag_part(x));
+}
+
+static ex sinh_conjugate(const ex & x)
+{
+       // conjugate(sinh(x))==sinh(conjugate(x))
+       return sinh(x.conjugate());
+}
+
 REGISTER_FUNCTION(sinh, eval_func(sinh_eval).
                         evalf_func(sinh_evalf).
                         derivative_func(sinh_deriv).
+                        real_part_func(sinh_real_part).
+                        imag_part_func(sinh_imag_part).
+                        conjugate_func(sinh_conjugate).
                         latex_name("\\sinh"));
 
 //////////
@@ -777,10 +1088,18 @@ static ex cosh_evalf(const ex & x)
 static ex cosh_eval(const ex & x)
 {
        if (x.info(info_flags::numeric)) {
-               if (x.is_zero())  // cosh(0) -> 1
-                       return _ex1();
-               if (!x.info(info_flags::crational))  // cosh(float) -> float
+
+               // cosh(0) -> 1
+               if (x.is_zero())
+                       return _ex1;
+
+               // cosh(float) -> float
+               if (!x.info(info_flags::crational))
                        return cosh(ex_to<numeric>(x));
+
+               // cosh() is even
+               if (x.info(info_flags::negative))
+                       return cosh(-x);
        }
        
        if ((x/Pi).info(info_flags::numeric) &&
@@ -788,16 +1107,19 @@ static ex cosh_eval(const ex & x)
                return cos(x/I);
        
        if (is_exactly_a<function>(x)) {
-               ex t = x.op(0);
+               const ex &t = x.op(0);
+
                // cosh(acosh(x)) -> x
                if (is_ex_the_function(x, acosh))
                        return t;
-               // cosh(asinh(x)) -> (1+x^2)^(1/2)
+
+               // cosh(asinh(x)) -> sqrt(1+x^2)
                if (is_ex_the_function(x, asinh))
-                       return power(_ex1()+power(t,_ex2()),_ex1_2());
-               // cosh(atanh(x)) -> (1-x^2)^(-1/2)
+                       return sqrt(_ex1+power(t,_ex2));
+
+               // cosh(atanh(x)) -> 1/sqrt(1-x^2)
                if (is_ex_the_function(x, atanh))
-                       return power(_ex1()-power(t,_ex2()),_ex_1_2());
+                       return power(_ex1-power(t,_ex2),_ex_1_2);
        }
        
        return cosh(x).hold();
@@ -811,9 +1133,28 @@ static ex cosh_deriv(const ex & x, unsigned deriv_param)
        return sinh(x);
 }
 
+static ex cosh_real_part(const ex & x)
+{
+       return cosh(GiNaC::real_part(x))*cos(GiNaC::imag_part(x));
+}
+
+static ex cosh_imag_part(const ex & x)
+{
+       return sinh(GiNaC::real_part(x))*sin(GiNaC::imag_part(x));
+}
+
+static ex cosh_conjugate(const ex & x)
+{
+       // conjugate(cosh(x))==cosh(conjugate(x))
+       return cosh(x.conjugate());
+}
+
 REGISTER_FUNCTION(cosh, eval_func(cosh_eval).
                         evalf_func(cosh_evalf).
                         derivative_func(cosh_deriv).
+                        real_part_func(cosh_real_part).
+                        imag_part_func(cosh_imag_part).
+                        conjugate_func(cosh_conjugate).
                         latex_name("\\cosh"));
 
 //////////
@@ -831,10 +1172,18 @@ static ex tanh_evalf(const ex & x)
 static ex tanh_eval(const ex & x)
 {
        if (x.info(info_flags::numeric)) {
-               if (x.is_zero())  // tanh(0) -> 0
-                       return _ex0();
-               if (!x.info(info_flags::crational))  // tanh(float) -> float
+
+               // tanh(0) -> 0
+               if (x.is_zero())
+                       return _ex0;
+
+               // tanh(float) -> float
+               if (!x.info(info_flags::crational))
                        return tanh(ex_to<numeric>(x));
+
+               // tanh() is odd
+               if (x.info(info_flags::negative))
+                       return -tanh(-x);
        }
        
        if ((x/Pi).info(info_flags::numeric) &&
@@ -842,16 +1191,19 @@ static ex tanh_eval(const ex & x)
                return I*tan(x/I);
        
        if (is_exactly_a<function>(x)) {
-               ex t = x.op(0);
+               const ex &t = x.op(0);
+
                // tanh(atanh(x)) -> x
                if (is_ex_the_function(x, atanh))
                        return t;
-               // tanh(asinh(x)) -> x*(1+x^2)^(-1/2)
+
+               // tanh(asinh(x)) -> x/sqrt(1+x^2)
                if (is_ex_the_function(x, asinh))
-                       return t*power(_ex1()+power(t,_ex2()),_ex_1_2());
-               // tanh(acosh(x)) -> (x-1)^(1/2)*(x+1)^(1/2)/x
+                       return t*power(_ex1+power(t,_ex2),_ex_1_2);
+
+               // tanh(acosh(x)) -> sqrt(x-1)*sqrt(x+1)/x
                if (is_ex_the_function(x, acosh))
-                       return power(t-_ex1(),_ex1_2())*power(t+_ex1(),_ex1_2())*power(t,_ex_1());
+                       return sqrt(t-_ex1)*sqrt(t+_ex1)*power(t,_ex_1);
        }
        
        return tanh(x).hold();
@@ -862,7 +1214,7 @@ static ex tanh_deriv(const ex & x, unsigned deriv_param)
        GINAC_ASSERT(deriv_param==0);
        
        // d/dx tanh(x) -> 1-tanh(x)^2
-       return _ex1()-power(tanh(x),_ex2());
+       return _ex1-power(tanh(x),_ex2);
 }
 
 static ex tanh_series(const ex &x,
@@ -870,21 +1222,44 @@ static ex tanh_series(const ex &x,
                       int order,
                       unsigned options)
 {
-       GINAC_ASSERT(is_exactly_a<symbol>(rel.lhs()));
+       GINAC_ASSERT(is_a<symbol>(rel.lhs()));
        // method:
        // Taylor series where there is no pole falls back to tanh_deriv.
        // On a pole simply expand sinh(x)/cosh(x).
-       const ex x_pt = x.subs(rel);
+       const ex x_pt = x.subs(rel, subs_options::no_pattern);
        if (!(2*I*x_pt/Pi).info(info_flags::odd))
                throw do_taylor();  // caught by function::series()
        // if we got here we have to care for a simple pole
-       return (sinh(x)/cosh(x)).series(rel, order+2, options);
+       return (sinh(x)/cosh(x)).series(rel, order, options);
+}
+
+static ex tanh_real_part(const ex & x)
+{
+       ex a = GiNaC::real_part(x);
+       ex b = GiNaC::imag_part(x);
+       return tanh(a)/(1+power(tanh(a),2)*power(tan(b),2));
+}
+
+static ex tanh_imag_part(const ex & x)
+{
+       ex a = GiNaC::real_part(x);
+       ex b = GiNaC::imag_part(x);
+       return tan(b)/(1+power(tanh(a),2)*power(tan(b),2));
+}
+
+static ex tanh_conjugate(const ex & x)
+{
+       // conjugate(tanh(x))==tanh(conjugate(x))
+       return tanh(x.conjugate());
 }
 
 REGISTER_FUNCTION(tanh, eval_func(tanh_eval).
                         evalf_func(tanh_evalf).
                         derivative_func(tanh_deriv).
                         series_func(tanh_series).
+                        real_part_func(tanh_real_part).
+                        imag_part_func(tanh_imag_part).
+                        conjugate_func(tanh_conjugate).
                         latex_name("\\tanh"));
 
 //////////
@@ -902,12 +1277,18 @@ static ex asinh_evalf(const ex & x)
 static ex asinh_eval(const ex & x)
 {
        if (x.info(info_flags::numeric)) {
+
                // asinh(0) -> 0
                if (x.is_zero())
-                       return _ex0();
+                       return _ex0;
+
                // asinh(float) -> float
                if (!x.info(info_flags::crational))
                        return asinh(ex_to<numeric>(x));
+
+               // asinh() is odd
+               if (x.info(info_flags::negative))
+                       return -asinh(-x);
        }
        
        return asinh(x).hold();
@@ -918,12 +1299,29 @@ static ex asinh_deriv(const ex & x, unsigned deriv_param)
        GINAC_ASSERT(deriv_param==0);
        
        // d/dx asinh(x) -> 1/sqrt(1+x^2)
-       return power(_ex1()+power(x,_ex2()),_ex_1_2());
+       return power(_ex1+power(x,_ex2),_ex_1_2);
+}
+
+static ex asinh_conjugate(const ex & x)
+{
+       // conjugate(asinh(x))==asinh(conjugate(x)) unless on the branch cuts which
+       // run along the imaginary axis outside the interval [-I, +I].
+       if (x.info(info_flags::real))
+               return asinh(x);
+       if (is_exactly_a<numeric>(x)) {
+               const numeric x_re = ex_to<numeric>(x.real_part());
+               const numeric x_im = ex_to<numeric>(x.imag_part());
+               if (!x_re.is_zero() ||
+                   (x_im > *_num_1_p && x_im < *_num1_p))
+                       return asinh(x.conjugate());
+       }
+       return conjugate_function(asinh(x)).hold();
 }
 
 REGISTER_FUNCTION(asinh, eval_func(asinh_eval).
                          evalf_func(asinh_evalf).
-                         derivative_func(asinh_deriv));
+                         derivative_func(asinh_deriv).
+                         conjugate_func(asinh_conjugate));
 
 //////////
 // inverse hyperbolic cosine (trigonometric function)
@@ -940,18 +1338,26 @@ static ex acosh_evalf(const ex & x)
 static ex acosh_eval(const ex & x)
 {
        if (x.info(info_flags::numeric)) {
+
                // acosh(0) -> Pi*I/2
                if (x.is_zero())
                        return Pi*I*numeric(1,2);
+
                // acosh(1) -> 0
-               if (x.is_equal(_ex1()))
-                       return _ex0();
+               if (x.is_equal(_ex1))
+                       return _ex0;
+
                // acosh(-1) -> Pi*I
-               if (x.is_equal(_ex_1()))
+               if (x.is_equal(_ex_1))
                        return Pi*I;
+
                // acosh(float) -> float
                if (!x.info(info_flags::crational))
                        return acosh(ex_to<numeric>(x));
+
+               // acosh(-x) -> Pi*I-acosh(x)
+               if (x.info(info_flags::negative))
+                       return Pi*I-acosh(-x);
        }
        
        return acosh(x).hold();
@@ -962,12 +1368,24 @@ static ex acosh_deriv(const ex & x, unsigned deriv_param)
        GINAC_ASSERT(deriv_param==0);
        
        // d/dx acosh(x) -> 1/(sqrt(x-1)*sqrt(x+1))
-       return power(x+_ex_1(),_ex_1_2())*power(x+_ex1(),_ex_1_2());
+       return power(x+_ex_1,_ex_1_2)*power(x+_ex1,_ex_1_2);
+}
+
+static ex acosh_conjugate(const ex & x)
+{
+       // conjugate(acosh(x))==acosh(conjugate(x)) unless on the branch cut
+       // which runs along the real axis from +1 to -inf.
+       if (is_exactly_a<numeric>(x) &&
+           (!x.imag_part().is_zero() || x > *_num1_p)) {
+               return acosh(x.conjugate());
+       }
+       return conjugate_function(acosh(x)).hold();
 }
 
 REGISTER_FUNCTION(acosh, eval_func(acosh_eval).
                          evalf_func(acosh_evalf).
-                         derivative_func(acosh_deriv));
+                         derivative_func(acosh_deriv).
+                         conjugate_func(acosh_conjugate));
 
 //////////
 // inverse hyperbolic tangent (trigonometric function)
@@ -984,15 +1402,22 @@ static ex atanh_evalf(const ex & x)
 static ex atanh_eval(const ex & x)
 {
        if (x.info(info_flags::numeric)) {
+
                // atanh(0) -> 0
                if (x.is_zero())
-                       return _ex0();
+                       return _ex0;
+
                // atanh({+|-}1) -> throw
-               if (x.is_equal(_ex1()) || x.is_equal(_ex_1()))
+               if (x.is_equal(_ex1) || x.is_equal(_ex_1))
                        throw (pole_error("atanh_eval(): logarithmic pole",0));
+
                // atanh(float) -> float
                if (!x.info(info_flags::crational))
                        return atanh(ex_to<numeric>(x));
+
+               // atanh() is odd
+               if (x.info(info_flags::negative))
+                       return -atanh(-x);
        }
        
        return atanh(x).hold();
@@ -1003,7 +1428,7 @@ static ex atanh_deriv(const ex & x, unsigned deriv_param)
        GINAC_ASSERT(deriv_param==0);
        
        // d/dx atanh(x) -> 1/(1-x^2)
-       return power(_ex1()-power(x,_ex2()),_ex_1());
+       return power(_ex1-power(x,_ex2),_ex_1);
 }
 
 static ex atanh_series(const ex &arg,
@@ -1011,7 +1436,7 @@ static ex atanh_series(const ex &arg,
                        int order,
                        unsigned options)
 {
-       GINAC_ASSERT(is_exactly_a<symbol>(rel.lhs()));
+       GINAC_ASSERT(is_a<symbol>(rel.lhs()));
        // method:
        // Taylor series where there is no pole or cut falls back to atanh_deriv.
        // There are two branch cuts, one runnig from 1 up the real axis and one
@@ -1019,40 +1444,52 @@ static ex atanh_series(const ex &arg,
        // On the branch cuts and the poles series expand
        //     (log(1+x)-log(1-x))/2
        // instead.
-       const ex arg_pt = arg.subs(rel);
+       const ex arg_pt = arg.subs(rel, subs_options::no_pattern);
        if (!(arg_pt).info(info_flags::real))
                throw do_taylor();     // Im(x) != 0
-       if ((arg_pt).info(info_flags::real) && abs(arg_pt)<_ex1())
+       if ((arg_pt).info(info_flags::real) && abs(arg_pt)<_ex1)
                throw do_taylor();     // Im(x) == 0, but abs(x)<1
        // care for the poles, using the defining formula for atanh()...
-       if (arg_pt.is_equal(_ex1()) || arg_pt.is_equal(_ex_1()))
-               return ((log(_ex1()+arg)-log(_ex1()-arg))*_ex1_2()).series(rel, order, options);
+       if (arg_pt.is_equal(_ex1) || arg_pt.is_equal(_ex_1))
+               return ((log(_ex1+arg)-log(_ex1-arg))*_ex1_2).series(rel, order, options);
        // ...and the branch cuts (the discontinuity at the cut being just I*Pi)
        if (!(options & series_options::suppress_branchcut)) {
                // method:
                // This is the branch cut: assemble the primitive series manually and
                // then add the corresponding complex step function.
                const symbol &s = ex_to<symbol>(rel.lhs());
-               const ex point = rel.rhs();
+               const ex &point = rel.rhs();
                const symbol foo;
-               const ex replarg = series(atanh(arg), s==foo, order).subs(foo==point);
-               ex Order0correction = replarg.op(0)+csgn(I*arg)*Pi*I*_ex1_2();
-               if (arg_pt<_ex0())
-                       Order0correction += log((arg_pt+_ex_1())/(arg_pt+_ex1()))*_ex1_2();
+               const ex replarg = series(atanh(arg), s==foo, order).subs(foo==point, subs_options::no_pattern);
+               ex Order0correction = replarg.op(0)+csgn(I*arg)*Pi*I*_ex1_2;
+               if (arg_pt<_ex0)
+                       Order0correction += log((arg_pt+_ex_1)/(arg_pt+_ex1))*_ex1_2;
                else
-                       Order0correction += log((arg_pt+_ex1())/(arg_pt+_ex_1()))*_ex_1_2();
+                       Order0correction += log((arg_pt+_ex1)/(arg_pt+_ex_1))*_ex_1_2;
                epvector seq;
-               seq.push_back(expair(Order0correction, _ex0()));
-               seq.push_back(expair(Order(_ex1()), order));
+               seq.push_back(expair(Order0correction, _ex0));
+               seq.push_back(expair(Order(_ex1), order));
                return series(replarg - pseries(rel, seq), rel, order);
        }
        throw do_taylor();
 }
 
+static ex atanh_conjugate(const ex & x)
+{
+       // conjugate(atanh(x))==atanh(conjugate(x)) unless on the branch cuts which
+       // run along the real axis outside the interval [-1, +1].
+       if (is_exactly_a<numeric>(x) &&
+           (!x.imag_part().is_zero() || (x > *_num_1_p && x < *_num1_p))) {
+               return atanh(x.conjugate());
+       }
+       return conjugate_function(atanh(x)).hold();
+}
+
 REGISTER_FUNCTION(atanh, eval_func(atanh_eval).
                          evalf_func(atanh_evalf).
                          derivative_func(atanh_deriv).
-                         series_func(atanh_series));
+                         series_func(atanh_series).
+                         conjugate_func(atanh_conjugate));
 
 
 } // namespace GiNaC